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Quantum theory of stimulated Cerenkov radiation
of transverse electromagnetic waves
by a low-density electron beam in a medium

M.V. Kuzelev

Abstract. The quantum theory of stimulated Cerenkov
radiation of transverse electromagnetic waves by an electron
beam in an anisotropic medium is presented. Relativistic
quantum nonlinear equations of the Cerenkov beam insta-
bility are obtained. In the linear approximation, the quantum
dispersion equation is derived and the instability growth
increments are determined. The nonlinear problem of the
saturation of the quantum Cerenkov beam instability is
solved.
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The quantum theory of the Vavilov—Cerenkov effect was
first considered by V.L. Ginzburg based on the laws of
conservation of energy and momentum during the inter-
action of an electron and photon in a medium [1]. The
electron was described classically, while the relation
between the photon and its momentum and energy was
established taking into account the influence of the medium.
In fact, paper [1] considered spontaneous radiation because
the individual electron was described, neglecting the
influence of other radiating electrons on it. In the quantum
consideration of stimulated Cerenkov radiation of an
electron beam, another approach, developed in the theory
of plasma and classic microwave electronics, is justified,
where stimulated Cerenkov radiation is treated as a
resonance beam instability. Using this approach, the
authors of papers [2, 3] considered quantum stimulated
Cerenkov radiation of longitudinal waves in plasma. In this
paper, we study Cerenkov radiation of transverse electro-
magnetic waves stimulated in a medium by a relativistic
monoenergetic electron beam.

It is known that in the absence of collisions, the most
general quantum description of a system of charged
particles, including an electron beam, is performed with
the help of a density matrix [4, 5]. If the velocity spread of
the particles is absent, the density matrix is expressed by the
product of the wave functions and the equation for the
matrix is reduced to the Schrodinger equation. Therefore,
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we will describe the electrons of the beam by the equation
for the wave function supplemented by an equation for the
self-consistent electromagnetic field. Because we will con-
sider a relativistic electron beam, the Klein—Gordon—Fock
equation is used as an equation for the wave function.

Taking all the above into account, we will use the
following system of equations for the vector [A(z,r)] and
scalar [¢(t,r)] potentials of the electromagnetic field in the
Coulomb gauge (VA4 = 0):

¢ 0°4 4r Op
__2—2:__1 _V_
ot c or’
)]
47
Ap = —— py,.
® A Pb

Here, ¢ is the dielectric constant operator, and the current
(jp) and charge (p,) densities of electrons in the beam are
expressed via the wave function of an electron by the
expression [6]
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The wave function (t,r) is defined from the Klein—
Gordon—Fock equation linearized with respect to the
potentials:
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Because in the unperturbed state the spread of the electrons
in the beam is absent, the unperturbed wave function of
each electron can be determined by the expressions

W(t,z) = Nexp(—iwgt + ikyz), ko= m}z;y
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where u is the electron velocity in the beam; y=

1 —u?/c?)71/? is the relativistic factor of electrons in the



84

M.V. Kuzelev

beam; N = né/ 2“/’1/ 2 is the normalised multiplier; n,, is the

electron concentration in the beam. Wave function (4) is an
initial condition (at t=0 or 7— oo) for the Klein—
Gordon—Fock equation. Note that if the electrons in the
beam were spread with respect to momenta, the quantum
description would be more difficult: in solving equation (3)
with initial condition (4), the momentum muy would be a
free parameter, which, taking into account the distribution
function relative to the momenta in expressions (2), would
be used in integration. In the nonrelativistic case, this
description would be completely equivalent to the descrip-
tion by a single-particle density matrix [5]. The momentum
spread is insignificant when the inequality |[dw/m|> Apx
(muy)~" is fulfilled, where dw is the increment, o is the
radiation frequency, and Ap is the width of the distribution
function of electrons in the beam with respect to momenta.

We will show below that Cerenkov radiation in the form
of transverse waves is possible only at an angle to the
direction of unperturbed motion of electrons in the beam;
hence, we will represent the potentials and the wave function
in the form

A(t,r) = = [A(1) exp(ikr) + A* (1) exp(—ikr)],
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Here, kg = {0,0,k}; k= {k,,0,k}. By substituting (5) in

expressions (2) and equations (1), after rather cumbersome
computations we obtain the equations:
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Equations (6) and (7) are basic for the presented relativistic
quantum theory of Cerenkov radiation of transverse
electromagnetic waves in a medium.

In the linear approximation, the right-hand side of the
first equation of system (7) is equal to zero; hence, taking (4)
into account, we have H,(f) = Nexp(— iwg?). In this case,
after linearization other equations of systems (6) and (7)
take the form
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Here, wy is the Langmuir frequency of electrons in the
beam;
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We will represent the solution of equations (8) in the form

A = aexp(—iw?), @ = bexp(—iwt),

(10)

H_ =a_exp[—i(wg — w)t], H, = a,exp[—i(wy+ w)1],

where a, b, a_, a, are the constants. By substituting
expressions (10) in equations (8) and eliminating the
constants, we obtain the dispersion equations to determine
the complex frequency w(k):
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In the classical limit # — 0, equation (11) is transformed
into known dispersion equation [7]
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The equation D, (w, k) = 0 determines the frequencies of
transverse electromagnetic waves in a medium with the
dielectric constant ¢, while the equation Dj(w,k) =0 — the
frequencies of quantum longitudinal waves of a relativistic
electron beam. At k, = 0, i.e. during the propagation in the
direction of the beam motion, the transverse waves do not
interact with the beam and Cerenkov radiation proves
possible only in longitudinal waves. Cerenkov radiation
of longitudinal waves in plasma (¢ = l—w,f/wz, oy, is the
plasma frequency) in the nonrelativistic case was considered
in paper [3] and now presents no interest to us. Of no
interest is also the case of interaction of the electron beam
with the transverse waves in plasma. Indeed, in this case, we
obtain from the equation D | (w,k) =0ate=1 —(92/(92 the
transverse wave frequency o = (k2¢>+ cug + w,fy’l)l/z.
The phase velocity of this wave is greater that the velocity
of light and Cerenkov radiation is impossible both in the
classical and quantum cases. Therefore, we consider here
stimulated Cerenkov radiation in an isotropic dispersionless
dielectric, i.e. we assume that ¢ = const > 1.

When the electron density in equation (11) tends to zero,
we obtain the quantum condition of the Cerenkov wave —
particle resonance:
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Let us explain that we define the Cerenkov resonance
condition as the poles of the beam terms in the dispersion
equation. At & =const and w, — 0, the transverse wave
frequency is @ = kc/+/¢; therefore, expression (14) can be
transformed to the form
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Equalities (15) should be considered as the quantum
conditions of Cerenkov radiation (the ‘minus’ sign) and
Cerenkov absorption (the ‘plus’ sign) in the isotropic
dielectric. It is condition (15) with the ‘minus’ sign that was
first derived based on the conservation laws in paper [1]. If
the quantum member is small, condition (14) can be written
in another form:
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In the case of a low-density electron beam, when the
inequality is wy ' < kled (co = ¢/+/e is the speed of light
in the medium), for the frequencies close to the transverse
wave frequency, dispersion equation (11) is substantially
simplified:
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We will restrict here our consideration to the analysis of
dispersion equation (17). Let us assume that the transverse
component k, of the electromagnetic wave vector is fixed
(as in a waveguide), while the longitudinal component kj
can take any values. In addition, we assume that the speed
of light ¢, in the medium is smaller than the electron beam
velocity u. The points with the coordinates k|, w of single-
particle Cerenkov resonance are determined from the
system of equations
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is fulfilled, the coordinates of the resonance points are given
by the expressions:
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where @, > ;. The resonance at point ky;,w; is also
present in the classical case, while the resonance at point
kjy,», is purely quantum because at /i — 0, the point
kj,», tends to infinity. At u > ¢y, the position of the
resonance points in the plane wk is shown in Fig. 1.

At the resonance points, dispersion equation (17) can be
written in the form
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Figure 1. Cerenkov resonance lines and resonance points in the rela-
tivistic quantum theory of stimulated Cerenkov radiation: dispersion
dependences for the transverse electromagnetic waves in a dielectric (/)
as well as the resonance lines of the Cerenkov absorption (2) and
Cerenkov radiation (3).
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where (0w);, = ® — ®;, is the complex increment. When o
the inequality

dw fiw <

|(8ew); | > (6—1) 12,2 22) /
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is fulfilled, we find from (21) the next increment of the P
I

instability development:

7]+1\/§ 1 2 2(,0}3"/_1 871 173
- —kLl/l —_— .
2 2 W€ €

(8w), (23)

The instability with increment (23) is caused by the
ordinary classical single-particle stimulated Cerenkov effect
[2], and inequality (22) is written in the form

kiulody "\ 23 hoy
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Inequality (24) can be fulfilled only for @ = w;, which is
taken into account in (23).

When the beam density decreases, inequality (24) is
violated and the instability character becomes different.
Thus, if the inequality inverse to (22) is fulfilled, the
increment is determined by the expression
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The instability with increment (25) is a purely quantum
effect. At point kjj,w;, both the classical and quantum
instabilities are possible depending on the beam density. At
point kjp,w,, because w, [/ only the quantum
instability with increment (25) proportional to 7/ develops.
The typical dispersion curves w(k) of equation (17) are
presented in Figs 2 and 3 (only the regions closest to points
I and II are shown, see Fig. 1). In the case of Fig. 2,
inequality (25) is fulfilled, while in the case of Fig. 3, the
inverse inequality takes place.

Based on the wave representations, we can give an
interesting interpretation of the quantum stimulated Cer-
enkov effect. As follows from the third expression in Eqn (5)
and two last expressions in Eqn (1), the wave function of the
electron beam has the form
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Figure 2. Dispersion curves in the case of the Cerenkov beam instability
in a dielectric when inequality (22) is fulfilled (description of the curves is
given in the caption to Fig. 1).

A

Figure 3. Dispersion curves in the case of the Cerenkov beam instability
in a dielectric when the inequality inverse to (22) is fulfilled (description
of the curves is given in the caption to Fig. 1)

Y = Aexp(—iwgt + kor) + a_ exp[—i(wy — )t + i(ky — k)r]

+a, exp[—i(wy + w)t + (kg + k)r]. (26)
We will call the first term in (26) the primary de Broglie
wave, which is the wave function of an electron in the initial
state with the energy %w, and momentum #k,. The second
and the third terms denote secondary de Broglie waves
appearing during scattering on the electromagnetic field
potentials. The second term in (26) is the wave function of
an electron emitting an electromagnetic photon with the
energy i and momentum /ik, while the third term is the
wave function of an electron absorbing a photon.

Let us designate the frequency and the wave vector of
any of the secondary de Broglie waves by w( and k. Then,
in accordance with (26), we can write the expressions

wy =)+, ky=kj+k, (27a)

o) =wy+ 0w, kj=ky+k. (27b)

The resonance of the radiation wave and the de Broglie
waves means that one the following resonance conditions

w) = o= (28)
is fulfilled, where the frequencies w.. are determined in (9).
In this case, relations (27) prove to be general conditions
for the decay in the three-wave interation [§8], and taking
into account (28) and (9), they are reduced to the conditions
for the Cerenkov resonance (14). Thus, Cerenkov radiation
can be treated as a decay of a de Broglie wave into a de
Broglie wave and an electromagnetic wave. This process
takes place when conditins (27a) are fulfilled. The reverse
process — Cerenkov absorption — is the wave coalescence
and is realised under conditions (27b).

It is convenient to describe the nonlinear theory of
quantum Cerenkov beam instabilities by considering the
resonance three-wave interaction. By assuming the potential
@ to be zero in system (6) and (7) and neglecting in it the
terms cubic in the field, we will write the following
equations:
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where A =nd; o=ke, is the electromagnetic wave
frequency; n is the polarisation unit vector, which is
assumed constant; in this case, nk = 0 for the transverse
wave. We will represent the solution of equations (29) in the
form [see (10)]
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A = a(t) exp(—iwt),

where ay, az, a are functions slowly varying in time.
Substituting (30) into (29) leads to the equations:
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Let condition (27a) and first condition (28) be fulfilled,
i.e. Cerenkov radiation takes place. Then, the de Broglie
wave with the amplitude «_ is resonant, while the amplitude
a, of the nonresonant wave can be assumed equal to zero.
In this case, equations (31) can be written in the form

dag _ec ) muwy
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These equations take into account that nky =k muy/(hik).
In the linear approximation (g, = 1), increment (25) follows
from (32). Note that neglecting the amplitude «, in
equations (31), we used the inequality inverse to (22).
Otherwise, the amplitudes a, and a_ are comparable
because when inequality (22) is fulfilled with the accuracy to
the increment 6w, both responance conditions (28) take

place. Therefore, the Cerenkov instability under conditions
(22), when it is classical, is analogous to the so-called
modified decay [8—10]. The quantum inbstability is a
simple decay, which is confirmed by the structure of
equations (32).

For adiabatic intial conditions [aqy(t — —o0) =1,
alt - —o0) =0, a_(t — —oo0) = 0], the solution of system
(32) leads to the relation

1 w_2 hony,

2 _
la ~ cosh?(|dw|r)’

(33)

—o0 <t < 00,

where dw is increment (25). The left-hand side of relation
(33) is the energy density of the electromagnetic field of the
transverse wave excited under conditions of the quantum
Cerenkov effect.

Note in conclusion that the possibility of experimental
observation of quantum effects studied in this paper is
problematic. Lasing at a high frequency w, could serve as a
direct check of the quantum condition of the Cerenkov
resonance (15). However, the frequency w, proves to be too
high; therefore, lasing at this frequency requires a more
detailed theroretical investigation taking into account the
temporal and spatial dispersion of the dielectric constant .
As for the easily obtained lasing at a low frequency w,, the
quantum effects affect the radiation time [inverse to incre-
ment (25)] and its power (33). These parameters can be
easily measured but the results of measurements are difficult
to interpret unambigously.
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