
Abstract. The dependences of the second harmonic and drag
current generation eféciency on the electron collision fre-
quency, changing during a rapid heating of electrons and the
lattice in a metal in the case of absorption of s-polarised
femtosecond radiation, are established.

Keywords: second harmonic generation, femtosecond pulse, drag
current, nonlinear response of a metal.

1. Introduction

Generation of laser radiation harmonics by conduction
electrons is an efécient tool in studying the electron pro-
perties of metals [1, 2]. Along with the widely used methods
for determining the physical parameters of the electron by
the measured absorption coefécient [3] or of polarisation
characteristics of reêected radiation [4], investigation of the
generation properties of the fundamental frequency har-
monics makes it possible to obtain additional information
on the collision frequencies of electrons. The possibilities of
this approach for determining the electron ë electron colli-
sion frequency with an umklapp process were demonstrated
in paper [5], which gave a theoretical description of the third
harmonic generation during the heating of electrons in a
metal by a femtosecond laser pulse. To further demonstrate
the possibilities of studying nonequilibrium states of metals
by the optical nonlinear response, in this paper we present a
rather simple model of the inêuence of electron collisions on
the second harmonic and drag current generation eféciency,
which are produced by an s-polarised wave heating the
electrons.

When the inêuence of the electron collisions can be
neglected, the second harmonic generation was studied both
in metals [6, 7] and in plasma [8]. The authors of paper [9]
pointed out the necessity to take into account the interband
transitions in studying the second harmonic generation with
a rather high frequency. In this case, the inêuence of electron
collisions was assumed insigni-écant. This consideration is
justiéed by the fact that the generation eféciency of

harmonics of visible radiation in pure metals at temper-
atures lower than the room temperature is virtually
independent of the small frequency of electron collisions.

The situation changes when metals interact with femto-
second laser pulses heating the electrons. The electron
heating during the time shorter or of the order of a hundred
of femtoseconds, when the energy transfer from the elec-
trons to the lattice is still small, leads to the establishment of
a nonequilibrium state in which the electron temperature T
is although lower than the Fermi energy but much higher
the lattice temperature Tlat. In this case, we deal with a
substantial increase in the frequency nee of electron ë
electron collisions, including those proceeding with an
umklapp process. Already at the electron temperature
exceeding several thousand degrees and room temperature
of the lattice, the frequency nee is comparable with or higher
than the frequency neph of electron ë phonon collisions. If T
is of the order of one electronvolt, nee is comparable with
the visible radiation frequency o. Under these conditions,
the effect of collisions on a weak nonlinear response of the
metal becomes dominant and there arises a need in a theory
adequately describing the nonlinear optical properties of a
nonequilibrium metal.

Note that at such high collision frequencies in the visible
frequency range, we can restrict our consideration to the
study of the regimes of normal and high-frequency skin
effects for typical metals. Below, taking into account the
electron collisions, we derive basic relations for the second
harmonic generation eféciency of the s-polarised wave and
the drag current produced by this wave. Based on the
equations for the electron and lattice temperatures, we show
that as the metal is heated, the radiation generation eféciency
at the frequency 2o decreases. On the contrary, the electron
cooling due to the heat release from the skin layer is accom-
panied by an increase in the second harmonic generation
eféciency. Similar dependences are established for the drag
current as a function of the changing electron and lattice tem-
peratures. We demonstrate how the second harmonic gener-
ation eféciency depends on the constants to be determined,
which characterise the inêuence of the umklapp processes to
the frequency of electron ë electron collisions determining
both the heat conductivity and conductance of the metal.

2. Basic equations. The éeld at the fundamental
frequency

Consider the interaction of the s-polarised electromagnetic
wave with the metal occupying the half-space z > 0. The
electric éeld of the wave incident on the metal has the form
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EL�r; t� �
1

2
ELexp�ÿiot� ikx sin y� ikz cos y� � c:c: (1)

where EL � f0;EL; 0g is electric éeld strength weakly chang-
ing at a distance 2p=k during the time 2p=o; o is the
frequency; k � o=c is the wave number; c is the speed of
light; y is the angle between the direction of the wave
propagation and the vector of the normal to the metal
surface. The magnetic éeld of the incident wave is BL �
� ELfÿcos y; 0; sin yg and has the same dependence (1) on
the time and coordinate.

To describe the metal response to the action of éeld (1),
we will use the hydrodynamics equations for the electron
concentration n and the velocity u:

qn
qt
� div�nu� � 0; (2)

qu
qt
� �uH�u � ÿ 1

nm
Hpÿ nu� e

m

�
E� 1

c
� u;B �

�
; (3)

where n(n;T ) is the characteristic collision frequency depend-
ing on the concentration and temperature T of the electrons;
e and m are the electron charge and mass; p � p(n;T ) is the
electron pressure; E � E(r; t) and B � B(r; t) are the electric
and magnetic éelds in the metal. These éelds are described
by Maxwell's equations

rotE � ÿ 1

c

qB
qt

, (4)

rotB � e
c

qE
qt
� 4p

c
enu, (5)

where e is the static dielectric constant caused by the coupled
electrons and the lattice. Taking into account a periodic
change in the time of the incident wave (1), the solutions of
equations (2) ë (5) should be naturally sought for in the form

F � F0 �
1

2

X1
s�1
�Fs exp�ÿisot� � c:c:�, (6)

where F denotes n, T or one of the vector components u, E
or B. In expression (6), the functions F0 and Fs depend on x
and z and slowly change in time:���� q lnF0

qt

����; ���� q lnFs

qt

����5 so; s � 1; 2; ::: . (7)

The approximate account for this time dependence of F0

and Fs allows one, in particular, to describe slow switching
on and switching off of the éeld EL caused by the énite
duration of the laser pulse as well as to describe the metal
parameters. We will restrict our consideration by the analysis
of the approximate solution of equations (2) ë (5) with the
accuracy to corrections quadratic in the éeld strength EL (1).
In this approximation, it is sufécient to retain only the
terms with s4 2 in expansion (6). In this case, being inter-
ested in harmonics with s � 1, we can neglect the per-
turbations of the electron temperature and concentrations
quadratic in the éeld and perturbations of the pressure p
and frequency n caused by them. The inêuence of the quasi-
stationary éeld E0, which is proportional to E 2

L, is also
insigniécant.

In this approximation, we have a system of linear equa-
tions to determine the harmonics with s � 1. In the linear
approximation, the éeld E1 proportional to the external éeld
EL can be represented in the form E1 � E1(z) exp(ikx sin y).
It follows that divE1 � 4pen1 � 0, i.e. n1 � 0 as well as that
p1 � 0 and n1 � 0. As a result, neglecting the weak change in
the velocity u1, we énd from linearized equation (3) that

u1 �
e

m
E1

i

o� in0
, (8)

where n0 depends on n0 and T0 (the electron concentration
and temperature slowly varying in time). Taking into
account inequality (7) and relation (8), we obtain from (4)
and (5) the equation for the function E1(z):

d2E1�z�
dz2

� k2�e�o� ÿ sin2y�E1�z� � 0, (9)

where e�so� � e 0�so� � ie 00�so� is the permittivity at the
frequency so; s � 1; 2; ::: ;

e 0�so� � eÿ o2
L

�so�2 � n20
; (10)

e 00�so� � n0o
2
L

so��so�2 � n20 �
; (11)

oL � (4pe 2n0=m)1=2 is the plasma frequency of the elec-
trons. At o2

L > (o2 � n20 )�eÿ sin2y), when e 0(o) < sin2y, the
solution of equation (9) decreasing inside the metal depth
has the form

E1�z� � E1�0� exp�ÿK�o�z�, (12)

where the quantity K�o� is described by the relations

K�so� � K1�so� � iK2�so� sgn�e 0�so� ÿ sin2y�, (13)

Kl�so� �
so

c
���
2
p
� ���������������������������������������������������������
�e 0�so� ÿ sin2y�2 � �e 00�so��2

q

ÿ �ÿ1�l je 0�so� ÿ sin2yj
�1=2

, l � 1; 2. (14)

The solution (12), (13) takes place if the change in e�o� at
distances Kÿ1l �o� can be neglected (see details in [4]). In
accordance with equation (4), the magnetic éeld in the
metal has two components: Bx(x; z; t) and Bz(x; z; t). For the
function Bx(x; z; t) used below in the linear approximation
in the éeld EL taking into account (7), we obtain from (4)
and (12) the expression

Bx�x; z; t� �
K�o�
2ik

E1�z� exp�ÿiot� ikx sin y� � c:c: (15)

Radiationg with the frequency o is partially reêected from
the metal. In the approximation linear in EL, the éeld of the
reêected s-polarised wave has the form

Er�r; t� �
1

2
ELR exp�ÿiot� ikx sin y

ÿ ikz cos y� � c:c: (16)
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where R is the complex reêection coefécient. For the strength
vector of the magnetic éeld of the reêected wave, we have
the expression RELfcos y, 0, sin yg from (4) and (16). Using
relations (1), (12), (16) and their corresponding expressions
for the magnetic éeld, from the condition of the continuity
of tangential components of the electric and magnetic éelds
on the metal surface we énd the relation of E1(0) with EL

and the complex reêection coefécient:

E1�0� �
2k cos y

k cos y� iK�o�EL, (17)

R � k cos yÿ iK�o�
k cos y� iK�o� . (18)

Relations (6), (12), and (17) completely determine the éeld
in the metal at the frequency o.

In deriving relations (17), (18) in accordance with
inequality (7), we assumed that the change in the éeld
EL and metal parameters during the time 2p=o is negligibly
small. In this case, we made no assumptions about the rela-
tion between the characteristic time of EL variation and the
times of variations in the quantities determining the dielectric
constant in the metal. The absence of the mentioned
restrictions makes it possible to use relations (17), (18)
for the description of the inêuence of laser pulses with the
énite duration of the order of tp 4 2p=o on the metal,
which leads to a weak change in the metal parameters during
the time 2p=o. The insigniécance of the éeld switching on/off
effects at tp 4 2p=o for relations (17), (18) was demonstrated
earlier in paper [10].

3. Second harmonic generation

Consider now the éeld at the second harmonic frequency
2o. Taking into account the smallness of the derivative in
time, j q ln u2=qt j [see (7)], we énd from (3) and (6)

�n0 ÿ 2io�u2 �
e

m
E2 �

e

2mc

�
u1;B1

�
ÿ 1

2

ÿ
u1H

�
u1 ÿ

1

n0m
Hp2. (19)

In expression (19), the pressure perturbation is propor-
tional to the perturbation of the electron concentration n2
and temperature T2, which depend on E 2

1 ë the square of the
éeld at the frequency o. The quantity E 2

1 is associated with
u2
1 by relations (8), (12), and (17). If we designate p2 by u21 ,

we can see that under the discussed conditions of the normal
or high-frequency skin effects, the term containing Hp2 is
small compared to the term depending on �u1;B1�. Then,
neglecting Hp2 and using (8) and the relation between B1 and
E1 given by equation (4), we obtain from (19)

u2 �
ie

m�2o� in0�
E2 �

ie2

4m2o�o� in0��2o� in0�
HE 2

1 , (20)

which takes into account that �E1H�E1 � 0. According to
(20), the energy density gradient of the éeld at the funda-
mental frequency HE 2

1 leads to the electron motion along
the axes x and z. Due to this, the electromagnetic éeld at
the frequency 2o has two components of the electric éeld
E2 � fE2x; 0;E2zg and one components of the magnetic
éeld B2 � f0;B2y; 0g. This conéguration corresponds to the

p-polarised éeld at the frequency 2o. In this case, B2y �
� B2y(z) exp(i2kx sin y) can be determined from (4) ë (6), (20)
using the equation

d2B2y�z�
dz2

� 4k2�e�2o� ÿ sin2y�B2y�z� � 0. (21)

If the condition

o2
L > �4o2 � n20 ��eÿ sin2y� (22)

is fulélled, the solution of equation (21) decreasing at
z!1 has the form

B2y�z� � B2y�0� exp�ÿK�2o�z�, (23)

where K(2o) � K1(2o)ÿ iK2(2o) is given by expressions
(13), (14) at s � 2. In deriving expression (23), we took
into account inequality (7). Note that according to (13),
K1(2o) > K2(2o) > 0. The quantity Kÿ11 (2o) determines the
penetration depth of the magnetic éeld of the second har-
monic into the metal. Under condition (22), the solution of
type (23) corresponds to the nonuniform electromagnetic
wave. Its amplitude decreases proportionally to exp�ÿK1(2o)z�,
while the wave vector f2k sin y; 0; K2(2o)g is directed at an
angle to the metal surface. If the inêuence of the collisions is
insigniécant, K2(2o) � 0 and the wave propagates along the
surface. Below, taking into account inequality (7) and rela-
tion (20), we obtain from (5), (6), and (23) the electric éeld
components in the metal:

E2x�z� �
i

2ke�2o�
�
K�2o�B2y�0� eÿK�2o�z

�o2
L

c2
eE 2

1 �0� sin y
2m�o� in0��2o� in0�

eÿ2K�o�z
�
, (24)

E2z�z� � ÿ
1

4k2e�2o�
�
4k2 sin yB2y�0� eÿK�2o�z

�o2
L

c2
eK�o�E 2

1 �0�
m�o� in0��2o� in0�

eÿ2K�o�z
�
, (25)

where E1(0) is related to the fundamental wave éeld EL by
(17). Unlike the magnetic éeld (23), the dependence of the
electric éeld on the coordinate z is described by two
different functions. In this case, the vortex part of the
electric éeld, as the magnetic éeld (23), is proportional to
exp�ÿK�2o�z�, while its potential part is proportional to
exp�ÿ2K�o�z� [see (20), (24), (25)].

The electromagnetic éeld at the frequency 2o is emitted
from the metal surface. It obeys Maxwell's equations in
vacuum and has the form

B2r�r; t� �
1

2
B r
2exp�ÿ2iot� 2ikx sin y

ÿ2ikz cos y�� c.c., (26)

where B r
2 � f0;B r

2y; 0g. The magnetic éeld has the same
dependence on the coordinate and time, while its strength is
E r
2 � ÿB r

2yfcos y; 0; sin yg. The tangential components of
the electric and magnetic éelds are continuous on the metal
surface:
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B2y�0� � B r
2y; E2x�0� � E r

2x � ÿB r
2y cos y. (27)

From relations (24), (27), we énd the electromagnetic éeld
of the wave at the frequency 2o:

B r
2y � B2y�0� � ÿ

k2�k cos y� iK�o��ÿ2
2ke�2o� cos y� iK�2o�

� 2io2
LeE

2
L

mc2�o� in0��2o� in0�
sin y cos2y. (28)

In deriving (28), we used the relation of E1(0) with EL (17).
In accordance with relations (23) ë (27), the magnetic éeld
(28) completely determines the electromagnetic éeld in the
metal and vacuum. Note that according to relations (25),
(28), and E r

2z � ÿB r
2y sin y, the electric êux density eE2z

normal to the metal surface changes jump-wise at z � 0. In
addition, according to (20), (25), and (28), the z component
of the current density is j2z � en0u2z 6� 0 at z � 0. The
appearance of these nonphysical properties is the conse-
quence of the use of expression (20) for u2z, obtained by
solving hydrodynamic equations (2), (3). However, these
inaccuracies in the hydrodynamic description do not lead to
the change in expression (28) derived using only the expres-
sion for the velocity u2x (20), which follows from the rigorous
kinetic consideration under the discussed conditions of
normal and high-frequency skin effects, when corrections
caused by the thermal motion of the electrons can be
neglected.

According to relations (16) and (26), the waves reêected
with the frequency o and generated with the frequency 2o
propagate in the same direction speciéed by the unit vector
n � fsin y; 0;ÿcos yg. The Poynting vector averaged over
the period p=o, which describes radiation at the frequency
2o, has the form S(2o) � nI(2o), where I(2o) �
(c=8p)jB r

2yj2 is the radiation êux density. The ratio of
I(2o) to I(o) � � (c=8p)E 2

L, the êux density at the
fundamental frequency, yields the second harmonic gen-
eration eféciency: Z(2o) � � I(2o)=I(o). According to this
deénition of Z(2o), we énd from (28)

Z�2o� �
�
2eEL

mco

�2 o4
Lk

6sin2y cos4y
�o2 � n20 ��4o2 � n20 �

���k cos y� K2�o��2 � K2
1 �o�

	ÿ2
���2ke 0�2o� cos y� K2�2o��2

� �2ke 00�2o� cos y� K1�2o��2
	ÿ1

. (29)

If the collisions are insigniécant and n0 � 0, the eféciency
(29) is four times smaller than that presented in paper [6].
This difference is caused by the use of the unconventional
deénition of the éeld strength in [6]. At n0 � 0, the results
of paper [6] follow from the relations [8] determining the
radiation éeld at the frequency 2o.

At o4 n0, relation (29) allows generalisation to the case
when it is necessary to take into account the interband
transitions. According to paper [7], in (29) and expressions
(13), (14) determining Kl(so), it is needed to change e(so) by
e(so)� de(so), where

de�so� � ÿ o2
L

nms2o2

X
k;b;b0

hbkjpjb 0kihb 0kjpjbki
�Eb 0k ÿ Ebk ÿ �hsoÿ id�

� � fF�Eb 0k� ÿ fF�Ebk�
�
; (30)

jbki is the Bloch function; p is the momentum operator; k is
the quasi-momentum; �h is Planck's constant; Ebk is the
electron energy in the band b; fF(Ebk) is the Fermi distribu-
tion; d > 0 is a small correction determining the trip around
the pole. In addition, it is necessary to multiply expression (29)
by j�e(2o)� de(2o)ÿ 1��e(2o)ÿ 1�ÿ1j2.

Let us discuss the peculiarities of second harmonic
generation under conditions when the inequality inverse
to (22) is fulélled:

o2
L < �4o2 � n20 ��eÿ sin2y�, (31)

but, as before, o2
L > (o2 � n20 )(eÿ sin2y�. Under these con-

ditions, e 0(2o) > sin2y and the solution of equation (21) has
the form [cf. (23)]

B2y � B2y�0� exp�iK1�2o�zÿ K2�2o�z�. (32)

In the absence of dissipation due to electron collisions,
K2(2o) � 0 and this solution corresponds to the wave with
the frequency 2o and the wave vector f2k sin y; 0; K1(2o)g
propagating inside the metal. Because of the dissipation
caused by collisions, this wave decays at a distance � Kÿ12 (2o),
and its electric éeld (23) has two components described
by expressions (24), (25), if we replace in them K(2o) by
ÿiK(2o). As before, this wave is partially emitted into
vacuum. The éeld in the vacuum is found from the con-
ditions of continuity of the tangential components (27). In
this case, the magnetic éeld in vacuum and on the metal
surface is described by expression (28) in which it is necessary
to replace K(2o) by ÿiK(2o). As in the case of lower fre-
quencies [see (22)], under condition (31) radiation at the
frequency 2o propagates in vacuum along the vector n, and
its generation eféciency is given by the relation [cf. (29)]

Z�2o� �
�
2eEL

mco

�2 o4
Lk

6sin2y cos4y
�o2 � n20 ��4o2 � n20 �

���k cos y� K2�o��2 � K21�o�
	ÿ2

���2ke 0�2o� cos y� K1�2o��2

� �2ke 00�2o� cos y� K2�2o��2
	ÿ1

. (33)

At e 0(2o) � sin2y, K1(2o) � K2(2o), relations (29) and (33)
coincide. If e 0(2o) > sin2y, the denominators containing the
functions K1(2o) and K2(2o) in expressions (29) and (33)
differ by the quantity 4k�K1(2o)ÿ K2(2o)��e 0(2o)ÿ e 00(2o)��
cos y. Because K1(2o) � K2(2o); the denominator in (33) is
greater if K1(2o) > K2(2o), and, vice versa, the denominator
is smaller if e 0(2o) < e 00(2o). In particular, at a compara-
tively low dissipation due to collisions, when
e 0(2o) > e 00(2o); the comparison of expressions (33) and
(29) allows one to make a conclusion about the relative
decrease in the gener-ation eféciency of radiation into
vacuum at the frequency 2o. The latter is caused by the fact
that at e 0(2o) > sin2y, the wave propagating inside the

54 S.G. Bezhanov, S.A. Uryupin



metal carries away more energy of the fundamental wave
than the wave localised at the surface at e 0(2o) < sin2y [see
(22), (23)]. If o4 n0, similarly to (29), expression (33) also
allows generalisation to the case when interband transitions
are signiécant. To this end, according to paper [7], it is
sufécient to introduce in (33) the same changes as in
expression (29).

4. Drag current

In the approximation quadratic in the éeld strength EL (1),
along with the second harmonic generation there appears a
direction motion of electrons with the velocity u0, slowly
varying within 2p=o. Using relations (6), (8), (12), (14), (17)
and equations (3), (4), we obtain the equation describing
the slow evolution of the velocity u0:

qu0
qt
� n0u0 �

e

m
E0 �

2e2E 2
L

m2�o2 � n20 �

� k2cos2y

�k cos y� K2�o��2 � K2
1 �o�

�
��

K1�o� �
n0
o
K2�o�

�
ez �

�
k
n0
o
sin y

�
ex

�

� exp�ÿ2K1�o�z�, (34)

where ex and ez are the unit vectors along the axes x and z.
After the time of the order of the inverse frequency of
electron collisions (�nÿ10 ), the quasi-stationary velocity u0 is
established. The presence of the current along the normal
to the metal surface would lead to charge accumulation.
Therefore, the equality jz � en0u0z � 0 should be fulélled. The
appearance of the z component of the quasi-stationary éeld

E0z � ÿ
2eE 2

L

m�o2 � n20 �
k2cos2y�K1�o� � K2�o�n0=o�
�k cos y� K2�o��2 � K2

1 �o�

� exp�ÿ2K1�o�z� (35)

ensures the vanishing velocity u0z. On the contrary, the
current density j0 � en0u0xex along the metal surface is not
zero. At n0t41 from (34), we énd u0x and j0 � f j0; 0; 0g,
where j0 � s0E0x � jd;

jd �
eE 2

Lk
2

2pmc

o2
L

o2 � n20

sin y cos2y

�k cos y� K2�o��2 � K2
1 �o�

� exp�ÿ2K1�o�z� (36)

is the drag current density; s0 � o2
L=(4pn0) is the conduct-

ivity. If E0x � 0, then j0 � jd. The drag current (36) produces
a quasi-stationary magnetic éeld, which is directed along
the metal surface: B0 � f0;B0; 0g, where

B0�z� �
eE 2

Lk
2

mc2K1�o�
o2

L

o2 � n20

� sin y cos2y

�k cos y� K2�o��2 � K2
1 �o�

exp�ÿ2K1�o�z�. (37)

Outside the metal, the magnetic éeld is uniform and equal
to B0(z � 0). The expressions for the drag current density
and the quasi-stationary magnetic éeld strength have a
very simple form at oL 4

��
e
p

o and o4 n0, when jd '
�4eI=(mc2)�sin y cos2y, B0(z� 0)' �8peI=(oLmc2)�sin y cos2y,
where I � cE 2

L=8p is the energy êux density of the incident
wave. By assuming that E0x � 0, we will estimate the drift
motion velocity u0x and the magnetic éeld strength for gold
when n0 ' 5:9� 1022 cmÿ3, m' 10ÿ27 g, oL ' 1:4�1016 sÿ1.
Then, at the radiation êux density I ' 1013 W cmÿ1, we
énd u0x ' 8�103 cm sÿ1, B0(z � 0) ' 80 Gs.

5. Electron and lattice heating

The characteristic frequency of electron collisions n0 �
n0(n0;T0) determining the éeld in the skin layer (12), (13),
(17), the eféciency of the second harmonic generation (29),
(33), and the drag current density (36) depends on their
concentration n0 and temperature T0. Usually, in normal
metals, the collision frequency n0 is equal to the sum of fre-
quencies of electron collisions with impurities (nei), phonons
(neph), and with each other (nee): n0 � nei � neph � nee. We
will neglect the weak dependence of nei on the electron
temperature. At temperatures above the Debye temperature
YD, the frequency of electron ë phonon collisions depends
on temperature T0, which can be signiécantly higher than
Tlat during the electron heating by a femtosecond laser pulse.
Under the conditions of a strongly degenerate electron
distribution [11, 12], we have

nee � a�kBT0�2=��heF�, (38)

where eF is the Fermi energy; a is the numerical factor
depending on the type of the band structure of the metal.
Relation (38) also takes place in the case when umklapp
processes are signiécant [11]. In describing rapidly varying
processes for which �ho >� 2pkBT0, one should take into
account the increase in the frequency of electron ë electron
collisions by 1� ��ho=(2pkBT0)�2 times [13]. The term prop-
ortional to o2 enters additively altered expression (38) and
in the approximation under study is independent of the
electron temperature. This makes it possible to assume that
the term containing o2 leads to an additive contribution to
nei, and to use expression (38) for nee at high frequencies. For
example, for gold with eF ' 5:5 eV at o ' 1:5�1015 sÿ1,
the additive contribution to nei is �1013 sÿ1 if a � 1. Note
that this contribution is an order of magnitude smaller that
the frequency of the electron ë phonon collisions neph, which
is equal to � 0:93�1014 sÿ1 at room temperature of the
lattice.

The electron collisions lead to dissipation of the high-
frequency éeld in the skin layer. The absorption power is
determined by the Joule heat Q released per unit time in a
unit volume of the electron subsystem:

Q�z� � o2
L

8p
n0

o2 � n20
jE1j2 �

4

c
I

n0o
2
L

o2 � n20

� k2cos2y exp�ÿ2K1�o�z�
�k cos y� K2�o��2 � K2

1 �o�
. (39)

Absorption of the éeld in the skin layer is the reason of a
nonuniform electron heating. At the initial heating stage, the
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spatial scale of the temperature nonuniformity is compa-
rable with the skin layer dimensions, and, strictly speaking,
the above-used expressions for the éeld at frequencies o and
2o should be revised similarly to that in paper [4] for Fresnel
formulae. At the same time, at the beginning of heating the
difference between T0 and Tlat is not large and the nonuni-
form frequency nee is small compared to the virtually uniform
frequency of electron ë phonon collisions. Therefore, unless
neph >� nee, the nonuniformity can be not taken into account
approximately in the description of the éelds in the skin
layer. If nee >� neph but n0 ' nee < o, expression (39) also
yields a sufécient accuracy in the case when the frequency
nee determining n0 changes in the depth of the skin-layer.
This property of expression (39) is caused by the fact that
the change in the effective skin-layer thickness during heating,
proportional to Kÿ11 (o), is comparatively small, if nee is
two ë three times smaller than o. Further, expression (39) is
used under those conditions when the corrections quadratic
in n0=o � nee=o can be neglected in the expression for e(o).
The electron cooling is caused by the heat release from the
skin layer and the energy transfer in the lattice. The
equation for the temperature taking into account the above
processes has the form [14 ë 16]

Ce

qT0

qt
� qq

qz
� Q�z� ÿ G�T0 ÿ Tlat�, (40)

where Ce � p2k2
Bn0T0=(2eF) is the heat capacity of electrons;

G is the coupling constant of electrons with the lattice. Note
that the use of the temperature equation is justiéed at times
greater that the relaxation time of the electron energy,
which is of the order of a picoseconds at room temperature.
Therefore, at the initial heating stage, it is not applicable.
However, at small times, nee < neph and the errors appearing
when equation (40) is used, do not affect substantially the
optical nonlinear properties of the metal. By the time when
nee >� neph, the relaxation time of the electron energy is
no more than 10 fs, and equation (40) is quite suitable to
describe the next slower temperature evolution. The density
of the heat q transferred by the electrons is proportional to
the temperature gradient:

q � ÿl qT0

qz
, (41)

where the heat conductivity is l � Cev
2
F=(3nl), which

depends on the total frequency nl � nl ei � nl eph � nl ee of
electron collisions with the impurities (nl ei), phonons
(nl eph), and with each other (nl ee), and vF is the Fermi
velocity. The effective collision frequencies determining the
heat conductivity differ from those, which are responsible
for the high-frequency and quasi-static conductivity. Note
that in the above described model of the metal conductivity
and the second harmonic generation eféciency, the differ-
ence in the frequencies determining the high-frequency and
quasi-static conductivities was neglected. If necessary, this
difference can be taken into account by introducing into the
theory additional parameters determining the distinction of
charac-teristic frequencies from nei, neph and nee, for
example, at o < n0. Returning to the discussion of the
frequencies deter-mining the heat conductivity, note that for
nl eph and nl ee, we also deal with the same dependences on
the lattice and electron temperatures, namely:
nl eph � kBTlat=�h and nl ee � � b�kBT0�2=(�heF), where

b 6� a. The change in the lattice temperature is described
by the equation [14 ë 16]

Clat

qTlat

qt
� G�T0 ÿ Tlat�, (42)

where Clat is the heat capacity of the lattice for which at
Tlat > YD the estimate Clat ' 3kBN is possible; N is the
concentration of atoms in the lattice. The system of equa-
tions (40) ë (42) allows us to study the inêuence of the
comparatively low evolution of electron and lattice temper-
atures on the second harmonic generation eféciency.

6. Numerical solution of temperature equations

Consider the properties of weakly nonlinear response of the
metal to the effect of the femtosecond pulse heating the
electrons. Let the density of the laser radiation êux change
in time according to the law I(t) � I exp(ÿt2=t2p�, where the
time tp characterising the pulse duration is much greater
than the period 2p=o corresponding to the fundamental
frequency of the pulse: tp 4 2p=o. Consider, as an example,
the evolution of the electron and lattice temperatures and the
evolution of the second harmonic generation eféciency caused
by a change in T0 and Tlat in pure gold for which eF '
5:5 eV, n0 'N' 5:9�1022 cmÿ3, oL'1:4�1016 sÿ1, neph '
0:93�1014 sÿ1, nl eph'3:7�1013 Ôÿ1,G�3:5�1010 W Kÿ1 cmÿ3,
Clat ' 2:4�107 erg ¬ÿ1, while the scattering of electrons on
the impurities can be neglected. The initial temperatures of
electrons and lattice are the same: T0 � Tlat � 300 K. The
presented values of neph and nl eph correspond to this
temperature Tlat . We used the following parameters of the
laser pulse: o � 1:5� 1015 sÿ1, tp ' 60 fs, I ' 1013 W cmÿ2.
These values of tp and I are typical of the experiment. Note
that at these parameters of the pulse and metal, the charac-
teristic electron velocity in the laser pulse éeld is small
compared to their thermal velocity, which makes it possible
to use the above-stated theory in which the effect of the
alternating éeld is taken into account in the approximation
quadratic in the éeld strength.

Figures 1 ë 3 show the numerical solution of equations
(40), (42) obtained for the mentioned parameters. Figure 1
presents the time dependences of the electron temperature
T0(z � 0; t) on the metal surface. The function T0(z � 0; t)
érst increases, achieves a maximum, and then monotonically
decreases. The shape of the function T0(z � 0; t) signiécantly
depends on the parameters a and b determining the frequen-
cies nee and nl ee, respectively. The larger a, the stronger the

Figure 1. Temporal changes in the electron temperature on the gold
surface. Calculations are performed for a laser pulse with the frequency
o � 1:5� 1015 sÿ1, the êux density 1013 W cmÿ2, and the characteristic
switching-on time tp � 60 fs.
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electron heating. An increase in b leads to a decrease in the
heat conductivity coefécient and to a decrease in the cooling
rate of electrons in the skin layer. The latter is well seen in
Fig. 2 presenting the temperature proéle T0(z; t) at the instant
t � 120 fs. At t � 120 fs, the temperature T0 is close to the
maximum values equal to � 2� 104 K (see Fig. 1). In this
case, it is nonuniform over the skin-layer thickness. However,
the maximum difference of the skin-layer thickness Kÿ11 (o)
from c=oL is no more than 10% during the entire action of
the laser pulse and the nonuniformity T0 does not lead to
signiécant changes in the éeld in the skin layer.

The behaviour of the lattice temperature on the metal
surface Tlat(z � 0; t) is shown in Fig.3 for the same param-
eters a and b. One can see that at small t, a monotonic
increase in the lattice temperature takes place. At the selected
parameters of the laser pulse, Tlat(z � 0; t) increases only by
30%, which does not lead to a change in the crystal lattice
during the pulse action.

7. Effect of heating on the second harmonic
generation and drag current

The temporal change in the electron and lattice temper-
atures in the skin layer is accompanied by a change in the
collision frequencies of electrons with phonons and with
each other. The eféciency of the second harmonic gener-
ation changes with varying n0. Figure 4 presents the
time dependence of the function Z(2o)=Z0 ÿ 1, where Z0
is the radiation eféciency at tp !1 for initial temperatures
T0(t! ÿ1) and Tlat(t! ÿ1). One can see that that the
electron heating is accompanied by a decrease in the second
harmonic generation eféciency, and during cooling, the
function Z(2o)=Z0 ÿ 1 monotonically increases. The minimal
generation eféciency takes place at those instants when the
electron temperature is close to the maximum. The shape of
the curves in Fig. 4 substantially depends on the parameters
a and b. This means that by measuring the radiation êux

density at the frequency 2o at different instant as well as by
measuring the reêection coefécient at the fundamental
frequency o (see details in [1, 3]), we can obtain additional
information on the frequency of electron collisions. Note
that in numerical calculations, the radiation frequency was
assumed equal to the generation frequency of a Cr : forsterite
laser. In this case, the photon energy of the second har-
monic is 2�ho ' 1:8 eV, which is smaller than the band gap
for gold, close to 2.5 eV. According to [17], for the
mentioned energy and room temperature, the contribu-tion
to the dielectric constant from the interband transitions is
comparatively small. If this condition is violated at high
electron temperatures, the accuracy in determining the param-
eters a and b for gold can be increased by using radiation
sources with somewhat lower frequencies. For example, an
erbium femtosecond laser for which 2�ho ' 1:4 eV.

During the metal heating, the drag current density (36)
also changes. When the radiation êux density changes over
time, relation (36) for n0t4 1 can be obtained if n0tp 4 1
and temperatures of electrons and lattice vary slowly during
the time � nÿ10 . The peculiarities of the evolution of the drag
current density due to the metal heating is demonstrated in
Fig. 5, which presents the functions DJ(t) � jd=jc ÿ 1 ( jc is
the current density at tp !1 and the metal temperature at
the instant of the laser pulse action). One can see that during
the metal heating, the function DJ(t) érst decreases, achieved
a minimum, and then monotonically increases up to zero.
The relative decrease in the drag current is caused by an
increase in the frequency of electron collisions. For the
selected pulse parameters and the times under study, the
change in DJ(t) is mainly caused by the frequency evolution

Figure 2. Electron temperature proéle at the instant t � 120 fs.

Figure 3. Time dependence of the lattice temperature on the gold
surface. The calculation parameters are the same as in Figs 1 and 2.

Figure 4. Temporal evolution of the relative eféciency of the second
harmonic generation for gold. The calculation parameters are the same
as in Figs 1 ë 3.

Figure 5. Relative drag current density on the gold surface as a function
of time. The calculation parameters are the same as in Figs 1 ë 3.
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of the electron ë electron collisions. The weak heating of the
lattice is manifested at the énal stage of laser pulse action
and leads to an increase in the relaxation time of the drag
current density to the initial value. The dip in the curve DJ(t)
the deeper, the greater the electron heating. Therefore, the
curve in Fig. 5 corresponding to the parameters a � 1 and
b � 3 lies noticeably lower than the curve obtained at
a � 0:5 and b � 1. One can see from expression (36) and
Fig. 5 that to generate large drag currents it is necessary to
deal with pure metals and to minimise the heating of the
electron and the lattice.

8. Conclusions

In this paper, we have presented the theory of second
harmonic and drag current generation by a femtosecond
pulse of s-polarised radiation heating the metal. The theory
takes into account the possibility of a signiécant increase in
the frequencies of electron ë electron and electron ë phonon
collisions in the metal skin layer. We have demonstrated
how important it is to consecutively describe the dynamics
of the electron and lattice temperatures in order to obtain
reliable values of the radiation intensity of the metal at the
double frequency and the drag current. The theory
developed can be used for interpreting and planning
experiments on the interaction of femtosecond moderate-
intensity laser pulses with metals and serves as a basis for
obtaining information on the frequency of electron colli-
sions. Under modern conditions, the utility of the stated
theory consists in the fact that the number of the experi-
ments studying a weakly nonlinear response of the metal
with the electron temperature, greater than the lattice tem-
perature, continue to increase.
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