
Abstract. It is shown that the propagation of gamma rays in
crystals is accompanied by phenomena similar to those
appearing in low-frequency optical and microwave wave-
guides, including effects of the image transmission and
transformation.
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1. Introduction

Although the wave properties of gamma rays have long
been known, the speciéc radiophysical concepts and
methods have been developed for this spectral range
considerably less than for microwave and optical ranges.
This is mainly explained by fundamental diféculties
encountered in the development of coherent gamma
radiation sources of the laser type (see, for example, [1]).

However, it is known that the absence of coherent
gamma radiation sources cannot be an insurmountable
obstacle, and the success can be achieved by using stable
narrowband spontaneous radiation sources such as
M�ossbauer isomeric nuclei emitting zero-phonon lines
with the natural linewidth. The radiation coherence length
of some M�ossbauer isomers (for example, 67mZn, 73mGe,
181mTa) [2] is � 1 km, which is quite acceptable for solving
many purely radiophysical problems, for example, for
manufacturing highly reêecting crystal gamma reêectors
for interferometry [3], high-Q monoblock crystal resonators
[4], etc.

The consideration presented below, which is based on
the Bragg diffraction in crystals and the theory and
applications of electromagnetic waveguides, is motivated,
along with general interest, by a pragmatic quest to extend
the radiophysical ideology to X-ray and gamma-ray spectral
regions. The approach used in the paper can be applied not
only to the propagation of gamma rays in crystals but also
to any material éelds with the wave properties inherent in
them.

The main attention is paid to the reproduction of the
known phenomenon of electromagnetic image transmission
in regular smooth waveguides [5] in the gamma-ray spectral
range. This phenomenon involves the expansion of the input
image, i.e. a complex electromagnetic éeld exciting a wave-
guide into a series in eigenfunctions (eigenmodes) of a
waveguide problem, the propagation of separate mode
waves (terms of the series) in the waveguide, and the phased
summation of them in a cross section away from the input.
This summation leads to the synthesis of the terms of the
series and the reproduction of the input image. In this case,
both the expansion in the series and synthesis occur
automatically, without any additional operations (see
also review [6]). The possibility of similar processes for
the wave functions of cold neutral atoms in an extended
quantum channel is pointed out in [7].

Before solving the problem, it is necessary to consider
the peculiarities of the regular propagation of waves in
crystal structures playing the role of gamma waveguides.
Because the general analysis for an arbitrary Bravais lattice
is rather complicated, we will demonstrate the main rules by
the example of a simplest cubic lattice projected on a plane
for further simpliécation, i.e. of a plane square lattice with
the period a0 and Bragg resonance condition

2ai sin#i � nil �i � 0; 1; 2; . . . ; ni � 1; 2; . . .�; (1)

where ai is the distance between planes of the ith system
and Wi is the beam grazing angle. The systems of lattice
planes differ in the value ai 4 a0 and the number of
scattering nodes per unit area of the plane (for the plane
lattice under study ë per unit length), which decreases with
increasing i and decreasing the ratio ai=a0 .

2. Guided gamma-wave modes propagating
in a crystal

Guided gamma-waves in a crystal are travelling gamma
waves with the stationary transverse structure and high
longitudinal directivity. The multiple reêections of waves at
angles �Wi from the ith system of planes in a plane square
lattice produce a standing wave in the transverse direction y
and select the propagation direction of a group of waves
parallel to atomic planes along the longitudinal axis z. This
picture of the common wave éeld exactly reproduces the
propagation of microwave radiation in metal waveguides,
where multiple reêections from the walls are known to
produce the longitudinal travelling and transverse standing
waves, the period of the latter being determined by the
distance between the walls with metal boundary conditions
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corresponding to the metal. The difference consists only in
the form of boundary conditions, which are periodic in a
single crystal and zero for the electric component on the
wall of a metal waveguide.

As in a multimode microwave waveguide, Bragg con-
dition (1) in the general case is valid for many groups of
waves propagating in different directions with different
grazing angles �Wi and indices ni, which form a set of
allowed modes for a selected system of crystal planes. If the
problem consists in the preservation of a small number of
`waveguide' groups (ideally, of the one lowest type with
n0 � 1 coupled to the ith system of planes) and in the
exclusion of propagation of the rest of the set, then the
wavelength range in the square lattice under study is
determined by the relation

2ai < l < 2a0 �i � 1; 2; . . .�; (2)

when condition (1) is fulélled only for n0 � 1 in the system
of principal crystallographic planes with i � 0. Because in
the nearest system of planes with i � 1 the distance a1 is
a0=

���
2
p

, inequality (2) is reduced to the form���
2
p

a0 < l < 2a0: (3)

The right inequalities in (2) and (3) show that l is smaller
than the waveguide critical value for fundamental waves,
while the left inequality in (3) shows that l exceeds the
critical value for any other type of the waves with i > 0, i.e.
such a `waveguide' is a single-mode one for radiation at the
wavelength l.

Although the waveguide should be single-mode not
always, these inequalities restrict the spectral interval of
radiation capable of propagating in a guided mode to the
subnanometre range (thus, 0.14 nm<l<0.2 nm for a0 �
0:1 nm).

The condition n0 � 1 (which is not necessary but is
sometimes desirable) means that only the lowest type wave
with l > a0 propagates in the guided mode in the system of
principal planes with i � 0. This means that l exceeds the
critical value for the n0 � 2 mode. As a result, the fulélment
of double inequality (2) is favourable for the guided
directional single-mode propagation of the lowest-type
modes (i � 0; n0 � 1).

Along the longitudinal axis z in a crystal a set of
travelling waves with phase velocities

vi�ni� � c= cos Wi � c=�1ÿ �nil=2ai�2 �1=2 > c (4)

and group velocities

ui�ni� � c cos#i � c�1ÿ �nil=2ai�2 �1=2 < c (5)

propagates. These expressions are analogous to the
corresponding formulas for usual electromagnetic wave-
guides, in particular, to relation viui � c 2. In the transverse
direction along the y axis, standing waves with a period of
ai=ni are established, which propagate without a change in
the stationary transverse structure, together with the
travelling wave, along the z axis. As a whole, the éeld of
each guided mode in the crystal is a superposition of two
plane waves propagating at angles �Wi to the z axis.

Borrmann effect in a waveguide crystal. If the stationary
éeld structure of a guided mode provides the coincidence of

the nodes of the electric component of a transverse standing
wave with crystal lattice sites, the Borrmann effect [8] can
appear and photon losses for the total éeld of the guided
mode produced by the standing and travelling components
considerably decrease. This does not prevent the interaction
of the guided mode radiation with nuclear radiative tran-
sitions if the latter have a high enough multipolarity [9, 10].
The Borrmann effect favours cleaning of the guided-mode
éeld from photons, which can be emitted by an isotropic
(for example, M�ossbauer) source at grazing angles Wi not
equal to Bragg angle (1), and from higher-mode photons
with i4 1 because their mean free paths are considerably
smaller than those of `Borrmann' photons of the lower
guided modes. As a result, the photon êux, which is not
captured in guided modes, decays with distance from the
entrance to the crystal by the order of the mean free path of
`non-Borrmann' photons, and only the gamma-ray êux in
the selected guided mode propagates in the crystal.

Splitting and combining of photon beams. The radiation
éeld at the crystal output, which corresponds to the guided-
mode éeld, is represented by the standard interference
pattern of two plane mutually coherent waves propagating
at an angle of 2Wi to each other. In this éeld the splitting of
the wave occurs, which is necessary, in particular, for
various interferometric experiments. Similarly, when two
external waves are incident at angles �Wi on the end of a
waveguide single crystal, a pair of waves is emitted from its
opposite end, each of them being a superposition of the two
incident waves. This produces the mixing of both waves,
which is also required for quadratic detection in interfero-
metric experiments.

3. Resonance narrowing of a gamma line

Although the coherence length of many sources (for
example, M�ossbauer sources) is usually quite large, a
gamma line can be considerably narrowed down to the
width smaller than the natural linewidth by the nuclear
resonance êuorescence (resonance scattering) during con-
structive gamma interference [11 ë 16]. To realise this
possibility in the case of a M�ossbauer source, a waveguide
crystal should consist of unexcited nuclei that are identical
to emitting M�ossbauer nuclei of the source or at least are
enriched with them.

The rigorous quantum theory of êuorescence [17] gives
substantially different results for two limiting cases of
radiation linewidths, which are clearly described in classical
wave language.

If the incident radiation linewidth noticeably exceeds the
natural linewidth of a transition in a scattering atom, the
atom is excited by a nearly delta-shaped electromagnetic
pulse of duration smaller than the spontaneous decay time t
of the upper state. This state emits spontaneous radiation
after the end of the exciting pulse and is free of its inêuence,
decaying exponentially with the decay time t and the
linewidth Do0 � 2p=t.

If the exciting radiation linewidth is much narrower than
the transition linewidth, then the primary radiation is
described by a nearly monochromatic sinusoid of duration
considerably exceeding the spontaneous decay time t.
Correspondingly, êuorescence proceeds under the continu-
ous synchronising inêuence of the éeld. In this case, the
secondary wave is coherent with the primary wave and their
linewidths are the same.
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The evolution of the êuorescence line during the
resonance scattering of primary radiation with the line-
width, which is close to or even coincides with the atomic
linewidth, noticeably differs from the two limiting cases.
During multiple successive resonance scattering events, both
the shape and width of the êuorescence line change. Thus,
after N successive events of scattering of primary radiation
with the Lorentzian line f0(o) normalised to unity with the
central frequency o0 and width Do0 by atoms with the same
transition line, the êuorescence line shape fN(o) and its
width DoN are described by the expressions

fN�o� �
�Do0=2�2�N�1�

��oÿ o0�2 � �Do0=2�2 �N�1
; (6)

DoN � Do0�21=�N�1� ÿ 1� 1=2: (7)

Examples Do1=Do0 � 0:64 for N � 1 and Do3=Do0 � 0:43
for N � 3 demonstrate the êuorescence line narrowing even
after a small number N of scattering events.

Of course, a resonance-êuorescence gamma-ray source
emitting the line of width much narrower than the natural
linewidth can be only partially used instead of a nuclear
laser because stimulated emission in the inverted medium is
accompanied by the multiplication of photons, whereas
during resonance êuorescence the primary photons are
only reproduced without increasing their number. There-
fore, the number of photons in a laser can be maintained or
even increased, whereas the initial photon êux in the case of
resonance êuorescence only decreases due to inevitable
losses. Of course, both these processes require the external
energy input (sometimes, with not very high eféciencies and
quantum yields), either upon pumping in one case or
excitation of the primary wave in the other.

The narrowing of the resonance êuorescence line can
lead to the positive result when the central radiation and
scattering frequencies of nuclei coincide, but it is not always
applicable in the case of noticeable different frequencies.
Thus, even small difference between central frequencies of
radiation and scatterers leads to the shift of the central
frequencies of scattered waves to the centre of the scatterer
line, which sometimes can introduce the undesirable error
(in particular, in interferometric problems).

4. Gamma-image transmission and
transformation in a waveguide crystal

The presence of guided modes in a crystal facilitates the
gamma-image transmission in a crystal, which is similar to
such processes in the low-frequency range mentioned in the
introduction.

Let the éelds of a guided mode be excited by a gamma
image projected on the input end of a single crystal. Such an
image can be produced, for example, by irradiating the end
surface by a monochromatic gamma-ray source through a
contrast mask with a picture inscribed on it. The amplitudes
and phases of partial waves excited in this case correspond
to the terms of the image-éeld expansion as a series in the
eigenmodes of the waveguide. This expansion occurs
automatically, being the more complete, the greater is
the number of paraxial modes propagating in the crystal
(n0 4 1), i.e. under the condition

l=a0 5 1; (8)

which for the values of a0 in real crystals of the order of
fractions of nanometre can be fulélled only for very short
wavelengths (the latter almost completely excludes
M�ossbaur isotopes as possible radiation sources).

Thus, the gamma-ray éeld excited at the crystal input is
a superposition of the éelds of individual modes. Then, the
éelds of individual modes propagate with different phase
velocities vi(ni) along the crystal (4). For paraxial modes of a
multimode waveguide [i.e. when inequality (8) is fulélled]
and for ai � a0, we have

v0�n0� � c�1� �n0l=2a0�2=2� �n0 � 1; 2; . . .�: (9)

In this case, the phase difference between any pairs (A
and B) of such paraxial mode waves with indices n0A and n0B
at a point z on the longitudinal axis of the waveguide crystal
is

DjAB � 2p
lz
8a 2

0

�n20B ÿ n20A�: (10)

Because the difference of the squares of two numbers in
parentheses in (10) is an integer, the requirement that the
phase difference DjAB (10) would be a multiple of 2p, i.e.
that jDjABj � 2p(n 2

0Bÿ n 2
0A)s (s � 0; 1; 2; . . .�, means that the

so-called in-phase cross sections with coordinates

zs � 8
a 2
0

l
s �s � 0; 1; 2; . . .� (11)

exist in the crystal, where, as in usual smooth waveguides
[5], all the partial mode waves have the same phases as for
z � 0. Thus, in the cross section zs the terms of the series
are added with initial phase differences and amplitudes (the
decay for different modes being approximately the same)
and therefore the input gamma-image is synthesised and
reproduced.

It can be shown that for special types of excitation of a
waveguide crystal, except in-phase cross sections (11), there
also exist additional cross sections in which, as in [5], input
images are transformed (for example, multiplicated).

5. Conclusions

The sketch consideration presented in the paper has shown
that gamma rays can be subjected in single crystals to
various manipulations, similarly to lower-frequency micro-
waves and optical waves, such as propagation in guided
modes, splitting and mixing of gamma-ray beams, gamma-
image transmission and transformation, etc. The analysis
has been performed for the simplest cubic crystal lattice
projected to a plane, but simple rules established for
realisation of operations are clear enough (also possibly are
more complicated) for other Bravais lattices. It is also clear
that similar phenomena are possible both in crystal
structures of different types (photonic and ultrasonic
crystals, optical potential-well gratings, etc.) and for various
material waves (cooled ensembles of neutral atoms, ultra-
cold neutrons, etc.). There is reason to hope that the
development of this direction in quantum nucleonics will
improve the understanding of various wave phenomena and
open up new experimental possibilities.
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