
Abstract. Based on the quasi-optic parabolic equation, we
derived analytically an expression for the probability density
of strong intensity êuctuations of radiation propagating in a
random attenuating medium. This probability density is
compared with that obtained experimentally. It is shown
that the agreement between the theory and the experiment in
the entire range of variations in the radiation intensity is
achieved by the combined account for the effect of small
random attenuation on the radiation propagation and the
action of noises on the radiation receiver.

Keywords: propagation of laser radiation, random attenuation,
strong êuctuations, probability distribution.

1. Introduction

The problem of the propagation of laser radiation in
random media is one of the most important from the point
of view of applications of optical systems, in which lasers
are used as coherent radiation sources for operation in real
atmosphere. The presence of random inhomogeneities in
the medium leads to noticeable changes in the amplitude ë
phase distribution of the laser beam éeld, whose quantity
and character signiécantly depend on the medium param-
eters and the path length. Already the érst experiments on
the propagation of laser beams along long paths demon-
strated a nonmonotonic dependence of the relative variance
s 2
I of the intensity êuctuations on the path length: érst, s 2

I

behaves naturally, i.e. increases, and then, after achieving
the maximum, decreases monotonically and tends to a
certain value equal to unity [1, 2]. The variation region of
the problem parameters at which the relative variance of
intensity êuctuations tends to the limiting value was called
the saturation region or the region of strong intensity
êuctuations.

Detailed theoretical investigations of the saturation
effect [3 ë 5] performed within the framework of approx-

imation of the markovian random process with the use of
the stochastic parabolic equation for the complex wave
amplitude showed a rather good agreement with the
experimental data (see, for example, [6, 7]). However,
some discrepancy between the theory and the experiment
[4] was found for the highest statistical moments and the
probability density of the radiation intensity. Thus, it turned
out that the theoretical function of the probability distri-
bution of intensity êuctuations W(I ) does not coincide with
that obtained experimentally. There appeared a paradox
known in the literature as logarithmically normal [8, 9].
Indeed, the results of the experimental measurements yield a
distribution W(I ) close to logarithmically normal
[6, 10 ë 12], while it follows from the theory that in the
saturation region, the probability distribution should
asymptotically tend to Rayleigh one [5]. The attempts to
solve this paradox by approximating the distribution W(I )
by the piecewise function [13], K distribution [14], within
the heuristic model [15], with the help of other representa-
tions (see, for example, [6]), and numerical simulations of
propagation of a laser beam in turbulent atmosphere (see,
for example, [16 ë 20]) gave, énally, unsatisfactory results
because all the above distributions rather rapidly tend to
the Rayleigh distribution when the path length is increased.

The authors of papers [21 ë 23] proposed a new mech-
anism for producing intensity êuctuations of laser radiation
in the saturation region, based on the account for the
inêuence of relatively small pulsations of the imaginary
component of the permittivity of a random medium on the
radiation statistics, which makes it possible to solve the
logarithmically normal paradox.

In this paper, we derived expressions for the statistical
moments and probability density of the laser radiation
intensity propagating in a random medium with êuctuations
of both real and relatively small imaginary part of the
permittivity. The obtained probability distributions are
compared with the experimental data in the entire range
of variations in the radiation intensity.

2. Formulation of the problem

We will consider the propagation of a laser beam in a
random medium with the êuctuations of the complex
permittivity ~e � ~eR � i~eI (where ~eR and ~eI are the real and
imaginary parts of random variations in the permittivitys)
at a noticeably long path for which the saturation condition
of radiation intensity êuctuations
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is fulélled. Here, b 2
RR is the relative variance of intensity

êuctuations of a plane wave in the approximation of the
method of smooth perturbations for a transparent turbulent
medium; z is the path length; k is the wave number; C 2

RR is
the structural characteristic of êuctuations of the real
component of the permittivity. In inequality (1), the
expression for b 2

RR corresponds to the case of radiation
propagation in a random medium with the Kolmogorov
êuctuation spectrum of the permittivity (see, for example,
[3]).

Let us obtain the expression for the probability dis-
tribution function of strong (saturated) intensity
êuctuations of laser radiation during its propagation in a
weakly absorbing random medium in which pulsation of the
real part of the permittivity signiécantly exceeds its imag-
inary component: hj~eRji4 hj~eIji. We will calculate the
probability density of intensity êuctuations using the
relation

W�I� � 1

2p

�1
ÿ1

dOFI�O� exp�ÿiOI�, (2)

Ôoupling W(I ) with the characteristic function FI (O),
which, in turn, is completely determined by the statistical
moments hINi of the radiation intensity:

FI�O� �
X1
N�0

�iO�N
N!
hINi. (3)

Relations (2), (3) follow directly from the deénition of the
characteristic function (see, for example, [24]). According to
these relations, the distribution of the intensity probabilities
can be reconstructed if we know all the statistical radiation
intensity moments.

3. Statistical intensity moments

In the general form, the expression for the Nth intensity
moment within the framework of approximations of quasi-
optics and the markovian random process (see, for
example, [3]) for the êuctuations of the complex permit-
tivity with the use of the complex wave amplitude in the
form of the Huygens ëKirchhoff integral, as well as with
the use of the Feynman integral over the trajectories for the
Green function of the parabolic equation [5, 23] during the
radiation propagation in a weakly absorbing random
medium can be written in the form:

hINi�R�i � hI�R�iN exp

�
N�Nÿ 1�

2
st

2�z�
�

�L̂ �N� exp
�
ÿ k 2

8

� z

0

dxc 0NN�x�
�
, (4)

where

L̂ �N� �
�

c

8p

�N exp
�
Nst

2�z�=2�
hI�R�iN

YN
j�1

��
d2r 02jÿ1d

2r 02j

�U0�R 02jÿ1�U �0 �R 02j�G0�R;R 02jÿ1�G �0 �R;R 02j�

�jC j2N
YN
j�1

��
D 2v2jÿ1�x�D 2v2j�x��

� exp

�
ik

2

� z

0

dx
�

_v 22jÿ1�x� ÿ _v 22j�x�
�ÿ k 2

4

� z

0

dx~cNN�x�
�

(5)

is the integral operator at L̂ �N� �1; U0(R
0
j ) is the complex

wave amplitude at the medium input (at z � 0);
R 0j � fq 0j , 0g is the radius vector in the source plane; R �
fq, zg is the radius vector of the observation point; C is the
normalisation constant;

�
D 2v(x) means the functional

integration over all the trajectories m(x) starting at point
(q 0, 0) and énishing at point (q, z); _m � dm=dx; G0�R,R 0) �
�k=(2piz)� exp (ikjq ÿ q 0j2=z) is the Green function of the
parabolic equation for the complex wave amplitude in a
medium without êuctuations of the permittivity;

~cNN�x� �
XN
j�1

D�
ÿ
q
�0�
2jÿ1�x� ÿ q

�0�
2j �x� � m2jÿ1�x� ÿ m2j�x�

�
;

c 0NN�x� �
XN
j�1

XN
l�1

�
2�1ÿ djl�Dÿ

ÿ
q
�0�
2jÿ1�x� ÿ q

�0�
2l �x�

(6)

� m2jÿ1�x� ÿ m2l�x�
�ÿDÿ

ÿ
q
�0�
2jÿ1�x� ÿ q

�0�
2lÿ1�x� � m2jÿ1�x�

ÿ m2lÿ1�x�
�ÿDÿ

ÿ
q
�0�
2j �x� ÿ q

�0�
2l �x� � m2j�x� ÿ m2l�x�

��
� 2i

XN
j�1

XN
l�1

�
DRI

ÿ
q
�0�
2j �x� ÿ q

�0�
2l �x� � m2j�x� ÿ m2l�x�

�
ÿDRI

ÿ
q
�0�
2jÿ1�x� ÿ q

�0�
2lÿ1�x� � m2jÿ1�x� ÿ m2lÿ1�x�

��
� 4

XN
j6�1

XN
l�1

DII

ÿ
q
�0�
2jÿ1�x� ÿ q

�0�
2l �x� � m2jÿ1�x� ÿ m2l�x�

�
;

q
�0�
j � �qx� q 0j (zÿ x)�=z; dij is the Kronecker delta;

Daa 0 (q) � Aaa 0 (0)ÿ Aaa 0 (q) are the structural êuctuation
functions of the real (a � a 0 � R) and imaginary
(a � a 0 � I) parts of the permittivity and their correlations
(a � R, a 0 � I); Faa 0 (q) are their corresponding spectra;
Aaa 0 (q) � 2p

�
d2qFaa 0 (q) cos (qq); st

2(z) � k 2� AII(0)z is
the mean square of the êuctuations of the optical path
thickness t of length z; D�(q) � DRR(q)�DII(q).

By generalising the results [23] to the case of calculations
of the highest statistical moments of the radiation intensity
and using the asymptotic method [5, 6] for the analysis of
strong intensity êuctuations and the `cumulant' method for
calculating the integrals [25], we obtain from (4) the
expression

hIN�R�i � N!hI�R�iN exp

�
N�Nÿ 1�

2
g�R�

�
(7)

for the Nth intensity moment, where

g�R� � k 2AII�0�z� K
�2;2�
1 �R� � st

2�z� � K
�2;2�
1 �R�; (8)

K
�2;2�
1 �R� � ÿ k 2

8
L̂ �2�

� z

0

dxc 02;2�x�

is the érst order `cumulant' (see, for example, [23]). One can
see from the deénition (5) of the integral operator L̂ �N� that
the `cumulant' K �2;2�1 depends on the distribution U0(R

0) of
the complex amplitude of the radiation éeld at the medium
input. Because in most experimental papers studying the
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statistics of strong êuctuations of the laser radiation
intensity there were fulélled the conditions for the
propagation of a laser beam in the plane wave regime,
we present the expression for K

�2;2�
1 , corresponding to this

case:

K
�2;2�
1 �R� � pk 2z

� 1

0

dx
��

d2q

�
Fÿ�q�

�
1ÿ cos

�
q 2z

k
x
��

ÿ 2FRI�q� sin
�
q 2z

k
x
��

exp

�
ÿ k 2z

2
D�

�
qz

k
x
��

(9)

ÿ 2pk 2z

� 1

0
dx
��

d 2qFII�q�
�
1ÿ exp

�
ÿ k 2z

2
D�

�
qz

k
x
���

,

where Fÿ(q) � FRR(q)ÿ FII(q).
Expression (7) together with the expression for the

`cumulant' K �2;2�1 reêects the main features in the behaviour
of the statistical intensity moments of laser radiation
propagating in a weakly absorbing medium along a notice-
ably long path. Its derivation is based on the fact that in the
region of strong intensity êuctuations [bRR(z)4 1], where
the effects of multiple radiation scattering on the inhomo-
geneities of the permittivity of the medium are signiécant,
the correlation function of the intensity êuctuations is
characterised by two length scales. The érst ë the radius
of the wave coherence rc ë allocates the region in which the
largest correlation of the intensity êuctuations is achieved.
The second ë rc=(krc) (in the case under study,
rc=rc � z=(kr 2

c ) � b 6=5
RR 4 1) ë determines the behaviour of

the correlation function in the region of large scales (the
`tail' of the correlation function). As a result, the complex
wave amplitude represents a superposition of the éelds
obeying the Rayleigh and logarithmically normal statistics.
The Rayleigh component is caused by the multiple scatter-
ing of the waves on the turbulent vortices whose scales do
not exceed rc. The logarithmically normal component
appears due to scattering of the Rayleigh component on
the vortices of the atmospheric turbulence whose scales lie in
the region rc 5 r5L0, where L0 is the external scale of the
turbulence. Fluctuations of the imaginary part of the
permittivity, as follows from (7) and (9), produce a dual
inêuence on the intensity moments. On the one hand, the
Bouguer factor exp st

2 is determined by the contribution of
the entire êuctuation spectrum of the imaginary part of the
permittivity. In this case, the main contribution is made by
large-scale, of the order of the external scale L0, turbulent
vortices. On the other hand, the attenuation êuctuations
corresponding to the inertial and viscous intervals of the
turbulence also affect the quantity hINi through the struc-
tural functions DII and DRI. All this leads to the fact that the
change in the wave amplitude due to the multiple scattering
of radiation on the turbulent vortices whose scales lie in the
range l0 5 r5 rc (where l0 is the internal scale of the
turbulence) does not obey the Bouguer law. In addition,
the correlation effects determining DRI make a contribution
to the instant hINi. Therefore, due to the presence of
random attenuation, the dependence of the radiation
intensity moments in the saturation region (due to com-
petition of two mechanisms) on the problem parameters will
have an essentially different character for different ~q0 �
rc=L0. This circumstance, in particular, explains the differ-
ence in the applicability conditions of expressions (7), which
have the form

��g�R� ÿ k 2AII�0�z
��5 1 at ~q0 < 1,

jg�R�j5 1 at ~q0 4 1.

Note that the dependence of type (7) for the statistic
moments of the radiation intensity on the moment order N
in the case of the multiple scattering of radiation in a
transparent random medium was érst established in paper
[26] while elucidating the applicability conditions of the K
distribution for the description of the distribution function
of strong intensity êuctuations. Independently of paper [26],
the expression of type (7) was derived based on the
variational principle in [21] while studying the probability
distributions of strong intensity êuctuations in a weakly
absorbing random medium. However, only the use of the
`cumulant' method developed in [25] makes it possible to
calculate successively the statistical moments with the
required accuracy. This was demonstrated in paper [23]
analysing the variance of strong intensity êuctuations as
well as in this paper while deriving relation (7).

To compare the results obtained with the help of
expression (7) with the measurements of the statistical
intensity moments of laser radiation propagating in the
turbulent atmosphere, Fig. 1 shows the dependences JN(J2)
of the normalised moments JN � hINi=hIiN calculated by
the expression

JN � N!�J2=2�N�Nÿ1�=2, (10)

which follows from (7), as well as the similar dependences
corresponding to the experimental data from papers
[27 ë 29]. First of all, Fig. 1 demonstrates good agreement of
the calculated and empirical data for the third moment of
the radiation intensity. One can also see that as the order of
the statistical moment is increased, the discrepancy between
the theory and the experiment, and between the exper-
imental data of different authors, increases. The authors of
papers [30, 31] (see also [6]) showed that the reason for this
discrepancy is the limited region of the experimentally
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Figure 1. Dependences of the Nth moment of the laser radiation
intensity on the second moment. The points are the experiment [27]
(+), [28] (�), and [29] (*). The solid curves are calculated by using
expression (10).
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detected values of the radiation intensity, which leads to an
increase in the errors of the moment measurements with
increasing N. As a result, we observe, on the one hand, a
systematic understatement of the measurement results with
increasing J2 compared to the probability moments, and,
on the other hand, their overstatement at J2 4 2. The
authors of the same papers established that to compare
correctly the theoretical and experimental results, it is
needed to use truncated probability moments calculated by
integrating over the énite intervals in the range from the
minimal to the maximal intensity values in the experimental
realisation under study.

4. Probability distribution function

Let us énd now the density of probability distributions of
the radiation intensity êuctuations. By using expression (7)
for hINi and the relation of characteristic function (2) with
distribution function (1), we obtain

W�I� � exp g�R����������������
2pg�R�p hI�R�i

�
�
dt exp

�
ÿ t 2

2g�R� ÿ
I

hI�R�i exp
�
3

2
g�R� � t

��
(11)

for the case g > 0. Note that the expression similar to (1)
was derived in paper [32] within the framework of the
heuristic model by neglecting the êuctuations of the
radiation attenuation and in paper [21] by taking into
account the random attenuation of radiation to solve the
logarithmically normal paradox. The numerical simulation
[17, 20] of the laser beam propagation in a transparent
turbulent medium gives a probability distribution of strong
intensity êuctuations of radiation, similar to (11).

One can easily see that distribution (11) (at g > 0)
satisées the necessary requirements imposed on the prob-
ability density. The obtained distribution at any nonnegative
I is positive, represents a real function, and is normalised to
unity.

However, when g < 0, the requirement to the non-
negativity for W(I) is violated. The authors of paper [23]
showed that at some values of the problem parameters, it is
possible to realise the conditions under which the relative
variance s 2

I of strong intensity êuctuations of radiation in a
random absorbing medium can take values smaller than
unity: s 2<1

I . In this case, due to a substantial manifestation
of compensation effects caused by the correlation ~eR and ~eI
the function g(R) takes negative values. The reconstruction,
according to (1), (2), and (7), of the distribution function of
strong êuctuations at g � ÿG < 0 yields for it the following
integral representation:

W�I� � exp�G=2����������
2pG
p hIi

�
dt exp

�
ÿ t 2

2G
ÿ I

hIi e
G=2 cos t

�

� cos

�
tÿ I

hIi e
G=2 sin t

�
. (12)

The impracticability of the condition W(I)5 0 at some
values of I can be found in this case from expression (7) for
hINi. Indeed, apart from the nonnegativity of s 2

I , a more
general nonnegativity condition for the quantity S 2N

I �
h(IN=hINi ÿ 1)2i should be fulélled, which, at N � 1,

coincides with the relative êuctuation variance of the
random quantity (S 2

I � s 2
I ). As follows from relations

(7), at any negative g starting with some N � N �ÿ�, the
condition S

�2N�
I 5 0 is not fulélled. The violation of this

condition means that at the given values of the argument
(the smaller the larger jgj, and vice versa), the distribution
function can take any negative values. Therefore, at g < 0,
the approximation of the érst `cumulants' used in deriving
expression (7) for the statistical moments of the radiation
intensity is not sufécient during the reconstruction of the
distribution function. (Note that this problem also takes
place in the probability theory when analysing non-Gaus-
sian random processes with the help of a limited set of true
(probable) cumulants [24].) Finishing the discussion of the
case g < 0, note that distribution function (12) takes
negative values (has the oscillating character near zero)
in the region of the intensity spikes whose probability is
extremely small, while in the signiécant domain of deénition
it is positive in this case as well.

Figure 2 demonstrates the behaviour of the distrubution
function of the intensity probabilities in the case of strong
êuctuations at different parameters g. One can see that as
the parameter g is increased, the probability of the so-called
signal fading and its outliers also increases. At the same
time, in some range (0.5, 3) of the values of the normalised
radiation intensity, the distribution function decreases with
increasing g.

Let us analyse now distribution (12) corresponding to
the case g(R) > 0. First of all, we will mention some features
of the asymtotic behaviour of the function W(I) at different
g. Thus, at g! 0, the function W(I) tends to the Rayleigh
exponential distribution. In the other case, when g4 1
(formally, at g!1 and as show the results of the numerical
experiment, already at g5 3), distribution (12) at
I exp (g=2)=hI i > 1 is close to logarithmically normal. The
description of distribution (12) in a broad range of
variations in the intensity and the parameter g is given
with a good accuracy by the expression:

0 1 2 3 4 5 6 7 8 I=hIi
10ÿ3

10ÿ2

10ÿ1

100

W�I�hIi

3� 10ÿ3

3� 10ÿ2

3� 10ÿ1

3� 100

1

2
3

45

Figure 2. The behaviour of the normalised density of the probability
distributions of the strong intensity êuctuations of radiation at g � 1:0
( 1 ), 0.4 ( 2 ), g! 0 ( 3 ), g � ÿ0:1 ( 4 ), and ÿ0:2 ( 5 ).

Probability density of strong intensity êuctuations of laser radiation 91



W�I� � e g������������������
1� T�J�p exp

�
ÿ T 2�J� � 2T�J�

2g

�
, (13)

where T(J) is the root of the equation T � gJ exp (ÿ T );
J � I exp (3=2g)=hI i. Expression (13) is obtained calculating
the integral in distribution (11) by the saddle point method.

We will compare distribution (11) with some exper-
imental distribution functions obtained while investigatng
the propagation of a laser beam in the turbulent atmosphere
[10, 11]. In the experiments under study, propagation of the
laser beam was studied in the plane-wave regime under the
saturation conditions of the intensity êuctuations. In this
case, the dependence of the parameter g on the problem
conditions is determined by the expression [23]:

g�z� � k 2AII�0�z� 0:43bÿ4=5RR �z�. (14)

Figure 3 shows the calculation results of the function W(I)
obtained using expression (11) and processed experimental
data from papers [10, 11].

Figure 3 illustrates the consistency of the theoretical
values of distribution function (11) with the experiemntal
data [10].

The experiment [10] studied the propagation of the laser
beam in the plane-wave regime at a path of length z �
1.75 km at bRR � 5, k � 105 cmÿ1 and the square of the
relative variance of the intensity êuctuations s 2

I � 1:46. One
can see from this égure that the theoretical distribution with
the parameter g � 0:22 [curve ( 1 )] well describes the
experimental data at the entire measurement domain, while
curve ( 2 ) plotted by neglecting the inêuence on propagation
of random attenuation radiation describes them much
worse. For the conditions of the experiment under study,
the contribution to the statistics of the laser radiation
intensity of the refractive index êuctuations and the
absorption coefécient is approximately the same:
0:43bÿ4=5RR (z) � 0:12 and, in accordance with expression
(14), k 2AII(0)z�0:10. Using the latter relation, we obtain
that the parameter AII(0) � 5:7� 10ÿ17 cm corresponds to
the experimental conditions of paper [10].

The agreement of distribution (11) with the experimental
data borrowed from paper [11] is shown in Fig. 3b. The
experiment [11] studied the propagation of a laser beam in
the plane-wave regime at a natural path of length z �
2.5 km at bRR � 11:5 and k � 105 cmÿ1. The best ét of the
expreimental and theoretical curves is achieved as in the
experiment [10] at g � 0:22, to which AII(0) � 6:4�
10ÿ17 cm corresponds. Unlike paper [10], in the conditions
of the experiment [11], the dominating contribution to the
radiation intensity êuctuations gave randon changes in the
attenuation because in this case, the contribution
0:43bÿ4=5RR (z) � 0:06 approximately three times smaller
than the contribution k 2AII(0)z � 0:16. One can see from
Fig. 3b that curve ( 1 ) plotted taking into account the
attenuation êuctuations describes the entire set of the
expreimental data [11], while curve ( 2 ) plotted by neglecting
the attenuation êuctuations is in agreement with the
measurement results only at a limited interval of the
intensities.

As we have already mentioned, in theoretical inves-
tigations of the laser beam propagation in the turbulent
atmosphere, the inêuence on the radiation propagation of
attenuation êuctuations was traditionally neglected due to
their relative smallness. Therefore, no special investigations
of either the mechanism of their appearance or their
quantities have been performed. At the same time, the
performed analysis showed that the probability distribution
of strong intenisty êuctuations is very sensitive to the
radiation stochastization caused by the relatively weak
pulsations of the imaginary part of the permittivity. The
measurement of the function W(I) allows one to obtain only
the integral characteristic of random variations in the
imaginary part of the permittivity ë the parameter AII(0).
The characteristics of the random éeld ~eI can be studied in
detail by using the following combined approach. First of
all, studying the phase êuctuations of the wave reêected by
the phase-conjugate mirror (whose properties are considered
in [25]), we can establish the principles of the behaviour of
the êuctuations in the imaginary part of the permittivity in
the region of high spatial frequencies. The agreement of
these principles with the behaviour of the attenuation
êuctuations in the low-frequency region can be achieved
by the following investigation of the radiation statistics in
the region of strong intensity êuctuations. Based on the
results of these measurements, we can make certain con-
clusions both about the quantity of the parameters
characterising randon attenuation variations in the turbu-
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Figure 3. Normalised probaility distributions of the intensity êuctua-
tions in the saturation region. The points are the experiment [10] (a) and
[11] (b). Curves ( 1 ) are calculated by using expression (11) at g � 0:22;
curves ( 2 ) are calculated by using expression (11) neglecting the
attenuation êuctuations at g � 0:12 (a) and 0.06 (b).
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lent atmosphere as a whole and about the most probable
reason for their appearance.

5. Probability distribution function
in the region of the signal fading

In conclusion, we will consider one more important issue
concerning directly the topic of the article. Different models
of the distribution function of the intensity probabilities in
the theory of the wave propagation in the turbulent
atmosphere were constructed based on the requirements
for the best description of the experimental data in the
region of large values of the radiation intensity (I5 hI i).
The authors of paper [11] paid attention to the fact that the
signiécant discrepancy between the experimental and
theoretical distribution functions is also observed in the
region of the signal fading at the arguments of the function
W(I) much smaller that the average intensity. For the
correct interpretation of the measurment results at I5 hI i,
it is necessary to take into account that in the general case,
the signal registered by the detecor contains noises whose
equivalent average intensity is signiécantly lower than the
average intensity of the laser beam under study. Therefore,
the model distributions [in particular, distribution (11) as
well] obtained using the assumption about the fact that the
solely reason of the detected radiation stochastization is its
interaction with the atmospheric turbulence, cannot cor-
rectly describe the measured probabilty distributions in the
entire region of the intensities. The signiécant inêuence of
the noises on the behaviour of the experimental distribution
function was demonstrated in paper [29].

To describe adequately the distribution function of the
intensity êuctuations of the measured signal in the fading
region, we assume that the radiation intensity Is detected by
the receiver is a sum of uncorrelated intenisties of the
studied wave I and noise In (Is � I� In), the average noise
intensity being signiécantly smaller than the average signal
intensity: dn � hIni=hI i5 1. The distribution function of the
probabilities of the detected radiation Ws(Is) will represent a
convolution (see, for example, [33])

Ws�Is� �
� Is

0

dI 0Wn�Is ÿ I 0�W�I 0� (15)

of probability distributions Wn(In) and W(I) of the noise
and the wave intensities, respectively.

Consider, as an example, the case when the noise
intensity obeys the exponential Rayleigh distribution law:

Wn�In� �
1

hIni
exp

�
ÿ In
hIni

�
. (16)

Figure 4 demonstrates the results of calculations of integral
(15) with the distributions of intensity probabilities (11) and
(16) of the studied radiation and noise, respectively, for
different parameters dn and g. One can see that the
distribution Ws(Is) is nonmonotonic: increasing at the
initial interval of Is variations, at Is � hIni it achieves a
maximum after which it decreases and at Is 4 hIni tends to
the wave intensity distribution under study.

The comparison of the results of the experiment [11] and
calculations by expressions (15), (11), (16) in the entire range
of variations is shown in Fig. 5. One can see that the
theoretical curve describes to the best advantage the

experimental curves at 0:05 < dn 4 0:1. For more exact
consistency of the theoretical and experimental distribution
functions of the intensity probabilites of the detected signal
in the region of the signal fading, it is necessary to use the
noise distribution corrresponding to the conditions of the
speciéc measurements. The example under consideration
shows that the nonmonotonic dependence of the function
Ws(Is) observed in the experimetns is caused by the action of
radiation noises on the detector and in no way is related to
the character of the radiation intensity êuctuations resulting
from the medium turbulence.

6. Conclusions

We have studied theoretically the probability distribution of
strong intensity êuctuations of laser radiation propagating
in a random attenuating medium. The use of the `cumulant'
method makes it possible to take into account multiple
scattering effects of the Rayleigh radiation component and
to obtain analytically, based on the quasi-potic parabolic
equation, the distribution function of intensity probabilities
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Figure 4. Normalised probaility distributions of the detectected signal
intensity at dn � 10ÿ4 ( 1 ), 10ÿ3 ( 2 ), 10ÿ2 ( 3 ë 6 ), and g � 0:22 ( 1 ë 3 ),
0.01 ( 4 ), 0.4 ( 5 ), and 0.6 ( 6 ).
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Figure 5. Comparison of the probability distribution function of
radiation intensity êuctuations calculated by expression (11) at g � 0:22
and obtained experimentally in the entire range of measurements for
dn � 0:1 ( 1 ), 0.07 ( 2 ), and 0.05 ( 3 ). The points are the experiment [11].
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allowing for the absorption êuctuations. The comparison of
this distribution fucntion with that obtained in the experi-
ment has shown that the consistency of the theory and the
experiment is achieved by taking into account the inêuence
of the small randon attenuation on the radiation prop-
agation. The neglect of this inêuence leads to a noticeable
difference in the theoretical results and the experimental
data. We have shown in addition that the reason for the
nonmonotonic distribution dependence of the strong
intensity êuctuations observed experimentally is the action
of the radiation noises on the detector. The total effect of
two factors on the singal being measured ë the small
random attenuation and noises ë yields an experimental
distribution close to the logarithmically normal, while the
theoretical simulation of the laser beam propagation in the
turbulent medium by neglecting these factors leads to
noticeably different distributions which tend asymptotically
to the Rayleigh distribution. We have also shown that the
combined allowance for the êuctuation inêuence of the
imaginary part of the permittivity of the turbulent medium
on the radiation propagation and the action of noises on
the radiation detector during its registration makes it
possible to give a reasonable explanation of the logarithmi-
cally normal paradox.
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