
Abstract. We continue to investigate the phenomena related
to smoothing of temperature proéles in rectangular laser
slabs and to an increase in the thresholds of their breakdown
under optical pumping with variations in the slab optical
density [the effect of smoothing of thermooptical inhomoge-
neities (STOI effect)]. It is found that the STOI effect is
observed not only with increasing but also with decreasing
optical density if this occurs due to a decrease in the sample
thickness. The dependence of the maximum temperature
difference inside the slab on its optical density at the instant
of its thermal breakdown is calculated. It is shown that the
variations in the optical density caused by variations in both
the absorption coefécient and geometric dimensions of the slab
differently affect the order of occurrence of two undesirable
events ë destruction of the slab or boiling of cooling water ë
with increasing pump power. The calculated relationships
reveal two optical density regions corresponding to different
orders of occurrence of these events. The maximum allowable
temperatures in each region are determined.
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1. Introduction

One of the main problems in the creation of lasers with high
average powers is the heating of active elements (AEs),
which restricts the lasing eféciency due to deterioration of
the AE spectroscopic parameters, induces a thermal lens,
causes thermal breakdown of the AE, etc. As is known, the
use of AEs in the form of rectangular slabs allows one to
enhance heat removal by increasing the area of surfaces
contacting with the cooling medium.

As was shown in works [1 ë 4], an increase in the AE
optical density at the pump wavelength causes smoothing of
thermooptical inhomogeneities (STOI effect), which mani-
fests itself as a decrease in the laser beam divergence and an
increase in the thermal breakdown threshold.

In this paper, we consider the ultimate potentials of AEs
in the form of rectangular slabs under steady-state pumping,
whose increase either leads to the thermal breakdown of the

AE or heats it to a temperature at which the normal cooling
regime is impossible (for example, in the case of water
cooling, at which the water boils). We determined the
dependences of the maximum possible pump radiation
intensities not only on the optical density D (D � kh),
but also on the absorption coefécient k at the pump
wavelength and on the slab thickness h. The maximum
allowable pump intensities that still do not cause cata-
strophic events are calculated. The order of failures is
determined, i.e., we found the combinations of k and h
at which an increase in pumping érst causes either break-
down of the AE or boiling of water. It is shown that the
STOI effect can occur with both increasing and decreasing
optical density if the latter occurs due to a decrease in the
slab thickness.

2. Transverse pumping scheme. Function of heat
sources

Figure 1 shows the optical scheme of pumping of an AE.
The steady-state selective pumping is performed along the z
axis from the two sides of the slab. The pump intensity
from each side comprises half the total intensity I0
(symmetric double-sided pumping) and is uniformly dis-
tributed along the x and y axes. Cavity mirrors with the
reêection coefécient R at the pump wavelength return the
unabsorbed pump radiation back to the AE. The absorp-
tion coefécient k of the AE at the pump wavelength is
uniform over the entire thickness h of the slab, which
is possible at a pump intensity exceeding or equal to the
threshold value. Thus, the total pump intensity inside a slab
can be written as a function of the z coordinate by the
expression

I�z� � A1

I0
2
f� exp�ÿkz� � R exp�kzÿ 2kh��

� exp�ÿkh�� exp�kz� � R exp�ÿkz��g, (1)
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Figure 1. Optical scheme of transverse pumping (M1 and M2 are the
cavity mirrors).



where A1 � �1ÿ Rnexp�ÿnkh��=�1ÿ R2exp�ÿ2kh��; and n is
the number of passes of pump radiation in the slab.

At R � 1 and n!1, expression (1) is reduced to the form

I�z� � I0
2

cosh�k�zÿ h�� � cosh�kz�
sinh�kh� , (2)

and the pump radiation in this case is completely absorbed
due to the inénite number of passes. Distribution (2) is
similar to the distribution of pump energy absorbed in
the AE. From (2), we derive the function describing the
distribution of heat sources in the form

qv�z� �
xI0k
2

cosh�kzÿD=2�
sinh�D=2� , (3)

where x is the fraction of the absorbed pump energy
converted to heat and D � kh is the slab optical density at
the pump wavelength.

Expression (3) for the function of heat sources under
selective pumping can be generalised to the case of broad-
band lamp pumping. In this case, I0 corresponds to the total
lamp radiation intensity and k is the spectrally averaged
absorption coefécient [1 ë 4]. It is obvious that the thermal
component x in the case of lamp pumping will differ from
x for selective pumping. The expression derived from (3)
taking into account these replacements will exactly coincide
with the function of heat sources obtained in [1 ë 4] by a
somewhat different method.

3. Thermal conductivity equation. Temperature
distribution in the AE. Internal and external
temperature differences

Let us consider the temperature distribution in a slab under
symmetric double-sided uniform pumping for the above-
given optical scheme when cooling (by, for example, running
water) is also symmetric, i.e., occurs from two sides, at
z � 0 and z � h, and the slab faces are heat-insulated.

The thermal conductivity equation for this pumping
scheme has the form [5 ë 7]

d2T�z�
dz2

� ÿ qv�z�
l

,

where l is the thermal conductivity coefécient, the third-
kind boundary conditions are

dT�z�
dz

����
z�0
� a

l
�T�0� ÿ Tf �,

dT�z�
dz

����
z�h
� ÿ a

l
�T�h� ÿ Tf �;

a is the coefécient of heat exchange between the slab and
water; T(0) and T(h) are the temperatures of the slab side
faces at z � 0 and z � h; and Tf is the temperature of the
cooling water.

Since the problem is completely symmetric, i.e., the
pump radiation intensities and the slab cooling conditions
are identical for both sides, we have T(0) � T(h). Then, the
temperature distribution in the slab will have the form

T�z� � xI0
2lk

cosh�D=2� ÿ cosh�kzÿD=2�
sinh�D=2� � xI0

2a
� Tf. (4)

The érst term in (4) [we denote it as DT1(z)] describes
the temperature difference inside the slab and coincides with

that obtained in [1 ë 4], and the second term (denoted as
DT2) describes the difference between the temperature of the
slab side surface and the temperature of the cooling
medium. It is clear that, if the sum of the temperature
difference DT2 and the temperature of cooling water reaches
100 �C, the water will boil. This causes vaporisation and
sharply weakens the heat exchange, which, in turn, increases
the temperature of the side surface and the internal temper-
ature difference and, as a énal result, catastrophically
deteriorates the cooling regime. Then, the critical pump
intensity causing water to boil is

I cr
0 �

2a
x
DT cr

2 . (5)

It is of interest to consider the dependence of temper-
ature difference on the parameters h and D or k and D.
Therefore, to analyse the temperature properties of the slab
as functions of these parameters, below we will write the
expression for DT1(z) in two ways.

Under arbitrary pumping, the maximum temperature
difference (at z � h=2) with respect to the temperature of the
slab surface (at z � 0 or z � h) is

DT max
1 �

(
AI0h

Y�D�
D

;

AI0
1

k
Y�D�;

(6)

where A � x=(2l) and Y(D) � tanh(D=4).
Introducing a variable w determined from the relation

z � h(w� 1)=2, the difference DT1(z) can be written by the
expression

DT1�z� � DT1�w� � DT max
1 f �w;D�,

where w � z=(h=2)ÿ 1,

f �w;D� � cosh�D=2� ÿ cosh�wD=2�
cosh�D=2� ÿ 1

describes the proéle of the temperature difference distri-
bution inside the sample over w normalised to DT max

1 , and
D=2 characterises the degree of smoothing of the function
f (w;D). The dependence f (w;D) shown in Fig. 2 is trans-

Figure 2. Proéles of the internal temperature difference distribution
normalised to DTmax

1 in slabs with different optical densities.
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formed into parabolic with decreasing D and into a shell-
like distribution with increasing D:

f �w;D� �
�
1ÿ w2; D! 0;
1; D!1:

Thus, the smoothing of thermooptical inhomogeneities
inside the slab is characterised by two main parameters,
namely, by the maximum temperature difference DT max

1 and
by the normalised function of temperature distribution over
the slab thickness f (w;D).

Figure 3 shows the calculated maximum internal temper-
ature difference DT max

1 � DT cr
1 in the crystal as a function

of the optical density at the critical pump intensity I cr
0 that

causes boiling of the cooling water. Hereinafter, the param-
eters used for calculations correspond to the Nd :YAG
crystal: l � 0:13 W cmÿ1 Kÿ1, x � 0:24 (for selective pumping
at a wavelength of � 808 nm), and a � 1 W cmÿ2 Kÿ1 [8, 9].

Curves ( 1 ), ( 2 ), and ( 3 ) are plotted for constant thick-
nesses h (hi, i � 1; 2; 3), while curves ( 1 0 ), ( 2 0 ), and ( 3 0 ) are
calculated for constant k (kj, j � 1; 2; 3), the values of
constant h and k being chosen so that hi kj � 4 at i � j.
Then, DT cr

1i jD!0 � DT cr
1i jD!1. One can see from Fig. 3 that

DT cr
1 decreases both with increasing and decreasing optical

density D, as D increases at h � const, D � const with
decreasing h and increasing k, and D decreases with k �
� const. In all the three cases, the thermooptical inhomo-
geneities are smoothed due to a decrease in the maximum
internal temperature difference. However, the STOI effect is
most pronounced in the érst case, because, in addition to a
decrease in DTmax

1 , the normalised temperature difference
distribution f (w;D) is also smoothed. The occurrence of the
STOI effect at h � const and increasing D was experimen-
tally conérmed in [4, 10] by a decrease in the laser radiation
divergence.

4. Distribution of thermoelastic stresses in the slab

The expression for thermoelastic stresses in a slab with
the internal temperature distribution T(z) was obtained, for
example, in [11, 12]:

s�z� � g
� ÿ T�z� � �T� T�z��zÿ h=2� �, (7)

sxx�z� � syy�z� � s�z�, szz � 0,

where

�T � 1

h

� h

0

T�z�dz;

T�z�
�
zÿ h

2

�
� 12

h3

�
zÿ h

2

�� h

0

T�z�
�
zÿ h

2

�
dz;

g is a coefécient proportional to the thermal expansion
coefécient and inversely proportional to the elastic com-
pliance coefécient, which changes depending on the slab
orientation with respect to the crystallographic axes of the
crystal [4].

Substituting temperature from (4) into expression (7), we
énd the stress distribution over the slab thickness similar to
the expression given in [4],

s�z� � g
xI0h
4l
�D=2� cosh�kzÿD=2� ÿ sinh�D=2�

�D=2�2sinh�D=2� . (8)

To prevent breakdown of the slab with heating, it is
necessary to hold the inequality s(z)4ss, where ss is the
critical cleavage stress (for YAG crystals with the orienta-
tion z || [100], ss � 2008 kg cmÿ2 and g � 33:95 kg cmÿ2 Kÿ1

[4]). Under stressed conditions, inside the slab there are two
symmetrically lying relief planes, which are parallel to the
wide surfaces of the slab. The stress is negative (pressing)
between the relief planes and positive (stretching) between
the relief planes and the slab surfaces.

At any values of parameters k and h, the maximum
stresses s(z) appear at the surfaces with z � 0 and z � h. The
limiting pump intensity at which the slab is destroyed is
estimated as

I lim
0 �

�
BDO�D�=h;
BkO�D�; (9)

where

B � ssl
gx

; O(D) � D sinh�D=2�
�D=2� cosh�D=2� ÿ sinh�D=2�.

Figure 4 shows the calculated limiting pump intensity
I lim0 (at a wavelength of � 808 nm), which causes the thermal
breakdown of the slab, versus the optical density. Each of
the curves ( 1 ), ( 2 ), ( 3 ) is calculated for a constant thickness
h (hi, i � 1; 2; 3), and each of the curves ( 1 0 ), ( 2 0 ), ( 3 0 ) is
plotted for a constant coefficient k (kj, j � 1; 2; 3). The
values of k and h are chosen so that hi kj � 6 at i � j. In this
case, I lim

0i jD!0 � I lim
0i jD!1. Figure 4 shows that I lim

0 increases
both with increasing and decreasing optical density, as D
increases with h � const, D � const with decreasing h and
increasing k, and D decreases with k � const. In all three
cases, the threshold intensity corresponding to the thermal
breakdown of the slab increases. An experimental proof of this
STOI effect at h � const and increasing k is given in [4, 10].

The limiting internal temperature difference at the instant
of breakdown is found from (6) and (9) as

DT lim
1 � ss

2g
C�D�, (10)

Figure 3. Dependences of the critical (DT cr
1 ) ( 1 ± 3, 1 0 ± 3 0) and limiting

(DT lim
1 ) ( 4 ) internal temperature difference in a Nd :YAG slab on the

optical density calculated at hi � 0:2 ( 1 ), 0.5 ( 2 ), and 1 cm ( 3 ) and

kj � 20 ( 1 0 ), 8 ( 2 0 ), and 4 cmÿ1 ( 3 0 ). The hi and kj parameters are

bound by the relation hi kj � 4 at i � j.
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where

C�D� � Y�D�O�D� � D� cosh�D=2� ÿ 1�
�D=2� cosh�D=2� ÿ sinh�D=2� ;

lim
D!0

C�D� � 3, lim
D!1

C�D� � 2.

One can see that DT lim
1 , in contrast to DT max

1 � DT cr
1 and

I lim
0 , depends only on the optical density.

The limiting internal temperature difference integral-
averaged over the thickness at the instant of breakdown is
determined from (4) and (9):

DT lim
1 � 1

h

� h

0

DT1�z� dz �
ss
2g

�C , (11)

where �C � 2.
The limiting internal temperature difference in a Nd :YAG

crystal at the instant of breakdown as a function of the
optical density is shown in Fig. 3.

Thus, we obtained the dependences of the maximum
internal temperature difference in a slab pumped with dif-
ferent intensities on the optical density, as well as on each of
the k and h parameters separately. From Figs 3 and 4, one
sees that there exists a particular order at which the internal
temperature difference reaches its either critical or limiting
calculated value with increasing pump intensity, which
depends on the values of the k and h parameters.

5. Regions of optical densities corresponding to
boiling of water or to breakdown of the AE

If the equality I lim
0 � I cr

0 is valid, the limiting internal
temperature difference DT lim

1 is reached simultaneously with
the critical external temperature difference DT cr

2 . This is
possible only at a particular combination of the k and h
parameters, which is determined from the following equation
found by equating expressions (5) and (9):

DO�D�
h

� 2aDT cr
2 g

lss
. (12)

Note that Eqn (12) does not contain x. Therefore, the k and
h parameters that satisfy Eqn (12) can be exist for different
pumping methods, for example, lamp or selective pumping.

Let us take into account the temperature dependence
of l. To do this, we use the data given for YAG in, for
example, [13]:

l�T� � l0

�
204K

Tÿ 96K

�0:63

, (13)

where l0 is the thermal conductivity coefécient at T � 300 K.
To determine l, we will use two values of the temper-

ature T in formula (13), the maximum limiting and the
limiting integral-averaged over the thickness, at which the
slab breakdown and water boiling occur simultaneously:

T lim
max�D� �

ss
2g

C�D� � 100 �C, (14)

T lim
max �

ss
g
� 100 �C. (15)

We assume that the thermal conductivity coefécient is
constant over the entire slab thickness. The calculation with
the use of the two temperatures, T lim

max and T lim
max, allows us to

more reliably estimate the sought relation between the k and
h parameters.

Figure 5 presents the calculated curves that divide the
plane (h, k) into regions in which an increase in the pump
intensity érst causes either boiling of water (to the left of
each curve) or breakdown of the slab (to the right of each
curve). It is obvious that the maximum temperature of the
slab at the boundaries of the regions is determined by
expression (14), i.e., it is �190 �C at D! 0 and decreases to
�160 �C at higher D.

6. Conclusions

In this work, we studied the speciéc features of thermal
regimes in water-cooled rectangular laser slabs under steady-
state pumping.

(i) It is shown that, with increasing optical density of the
slab, along with the STOI effect, there exists the anti-STOI
effect, which manifests itself depending on the relation

Figure 4. Dependences of the limiting (I lim0 ) ( 1 ± 3, 1 0±3 0 ) and critical

(I cr0 ) ( 4 ) intensities of selective (808 nm) pumping of a Nd :YAG slab on

its optical density calculated at hi � 0:5 ( 1 ), 1 ( 2 ), and 2 cm ( 3 ) and
kj � 12 ( 1 0 ), 6 ( 2 0 ), and 3 cmÿ1 ( 3 0 ). The hi and kj parameters are

bound by the relation hikj � 6 at i � j.

Figure 5. Lines dividing the (h, k) plane into regions corresponding to
different events occurring with increasing the pump intensity: destruction
of the sample (to the right of each line) or boiling of water (to the left).
The calculations are performed for an YAG crystal with the orientation
z || [100]. The solid and dashed curves are calculated for the thermal
conductivity coefécients l corresponding to Tmax and �Tmax, respectively.
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between the h and k parameters. For example, increasing the
optical density at h � const, we obtain the STOI effect,
while the anti-STOI effect is observed if the optical density is
increased at k � const (due to an increase in the maximum
internal temperature difference and a decrease in the threshold
of the thermal breakdown of the crystal under action of
optical pumping).

(ii) The dependence of the maximum internal temper-
ature difference on the optical density at the instant of the
slab breakdown is determined. With increasing optical
density, this difference decreases no more than by 1/3 of
its value at low optical densities.

(iii) The plane (k, h) is divided into two regions that
differ by the érst event occurring with increasing the pump
intensity ë destruction of the slab or boiling of water. It is
shown that the position of the boundary between the regions
does not depend on the fraction of absorbed pump energy
converted to heat. Thus, the calculated results can be
applied for any pumping method, both for the lamp
(broadband spectrum) and diode (narrow selective spectrum)
pumping.

(iv) For a crystal with thermomechanical parameters
corresponding to the YAG crystal, it is shown that the
maximum temperature of the slab in each of the two regions
cannot exceed 190 �C at low optical densities and 160 �C at
higher optical densities without damage to the crystal. These
limiting temperatures are reached at the boundary between
the two regions, i.e., at k and h at which the breakdown of
the slab and boiling of water occur simultaneously.
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