
Abstract. The thermal lens in an YLF crystal is calculated
taking into account the anisotropy of the thermal conduc-
tivity, elasticity, linear expansion, and refractive index. It is
proved that the experimentally observed strong astigmatism
of the thermal lens in YLF can be explained only taking into
account the photoelastic effect. It is shown that, in an YLF
crystal cut so that the optical axis lies in the plane of the rod
face, the contribution to the thermal lens is made only by
three photoelastic coefécients for the ordinary wave and only
by two coefécients for the extraordinary wave. Using these
éve photoelastic coefécients as étting parameters, all the
known experimental data are quantitatively interpreted.
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1. Introduction

The average power of solid-state lasers with nearly
diffraction-limited divergence is limited mainly by such
thermal effects in the active elements as thermal lens and
depolarisation. The thermal lens is formed due to three
effects: the temperature dependence of the refractive index,
the thermal expansion, and the photoelastic effect, the latter
usually making insigniécant contribution in isotropic
crystals. In contrast, depolarisation is caused only by the
photoelastic effect. An important advantage of anisotropic
crystals compared to isotropic crystals is that the depolar-
isation of radiation in them is almost absent [1, 2]. This
occurs because the natural birefringence is much stronger
than the birefringence induced by the photoelastic effect
and, hence, the intrinsic polarisations of the crystal are
determined only by the orientation of optical axes and do
not depend on the transverse coordinates. Recall that the
intrinsic polarisation is the polarisation which does not
change as the beam propagates through the medium.

One of the most frequently used anisotropic crystals is
the YLF crystal. It can be doped with various ions: Nd, Yb,
Ho, Tm, Er, Ce, Pr, etc. The most widely used is the

Nd :YLF crystal, which has several advantages compared to
Nd :YAG, namely, a longer excited-state lifetime (480 ms), a
higher saturation energy (1.18 J cmÿ2 [3] for the ordinary
and 0.77 J cmÿ2 for the extraordinary wave), a wider gain
band, a weaker thermal lens, and a lasing wavelength of
1053 nm (for the ordinary wave), which coincides with the
wavelength of neodymium phosphate glass.

YLF is a uniaxial crystal, which shows no thermally
induced depolarisation when cut perpendicular to the
optical axis (the so-called p-orientation, or a-cut, Fig. 1)
and, hence, the thermal lens is the only thermal effect in this
crystal. The thermal lens in Nd :YLF rods with p-orienta-
tion was experimentally studied in several works using both
the side [3 ë 8] and end [9 ë 12] pumping; the measurements
in [3 ë 8, 10] were performed for both the ordinary (s
polarisation, gain at a wavelength of 1053 nm) and extra-
ordinary (p polarisation, gain at 1047 nm) wavelengths. In
[3 ë 7], a strong astigmatism of the thermal lens was
observed for both wavelengths, i.e., the thermal lens for
each polarisation is characterised by two focal lengths: Fjj
for rays propagating in a plane passing through the optical
axis and F? for rays lying in the perpendicular plane. Thus,
the observed thermal lens is completely determined by four
focal lengths: Fojj, Fo?, Fejj and Fe?. Hereinafter, the
subscripts `o' and `e' correspond to the ordinary and
extraordinary polarisations of radiation. The experimental
data published in papers [3 ë 7] are considerably different. In
particular, the ratio Fejj=Fe? for the extraordinary wave
varies from 1.5 [3] to 7 and higher values [7]. The spread for
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Figure 1. Geometry of a p-oriented (a-cut) crystal.



the ordinary wave is even greater: the lens in [3] is negative
with Fojj=Fo? � 0:5, the focal lengths of the lens in [4 ë 6]
have different signs (Fojj < 0, Fo? > 0), and the lens in [7] is
cylindrical and positive. The authors of [8 ë 12] do not
mention about astigmatism and, obviously, give the
mean value of the focal length.

Despite such a large body of experimental data, the
authors of [3 ë 7] even qualitatively do not explain the
thermal lens astigmatism in Nd :YLF crystals. In
[3, 5, 6], the astigmatism nature is not discussed at all.
The authors of [4] refer to the anisotropy of the thermal
conductivity (kjj < k?, where k is the thermal conductivity
coefécient)*, but this anisotropy would lead to jFejjj < jFe?j,
while all experiments show jFejjj > jFe?j. The contribution
of thermal expansion to the thermal lens in long rods is
insigniécant, and, in addition, the astigmatism of this
component is small. The authors of [7] explain the astig-
matism by the fact that, in their experiments, the size of the
pump beam cross section along the optical axis c was 1.5-
fold larger than in the perpendicular direction. However,
this can lead to the focal length ratio of 2.25, which is
considerably smaller than the values given in the work.
Finally, the explanation of the thermal lens astigmatism by
the refractive index anisotropy (no 6� ne, dno=dT 6� dne=dT )
is completely groundless because the astigmatism is a
phenomenon that occurs for radiation of one polarisation
and is observed for the o- and e-waves independently of each
other.

We believe that the only cause of the thermal lens
astigmatism is the photoelastic effect, which was not
even mentioned in works [3 ë 9, 11 ë 12] and was mistakenly
neglected in [10] based on the absence of depolarisation in
anisotropic crystals. The reasonable neglect of the contri-
bution of the photoelastic effect to depolarisation [1, 2] in
no way allows one to disregard its contribution to the
thermal lens. In other words, the photoelastic effect does not
change the intrinsic polarisations of crystals with natural
anisotropy, but can substantially change the refractive
indices for radiation with these polarisations. These changes
are principally astigmatic because the angle between the
optical axis and the temperature gradient (the source of the
photoelastic effect) is different at different points of the
crystal cross section.

In this work, we precisely calculate the thermal lens in an
YLF crystal taking into account the anisotropy of the
thermal conductivity, elasticity, linear expansion, and
refractive index. It is proved that, neglecting the photoelastic
effect, it is impossible to explain numerous experimental
data even qualitatively. It is shown that the contribution to
the thermal lens is made by only three photoelastic
coefécients for the ordinary wave and by only two coefé-
cients for the extraordinary wave. Using these éve
photoelastic coefécients as étting parameters (their values
are not given in the literature), we have quantitatively
interpret all experimental data.

2. Formulation of the problem

The thermal lens in an optical element is formed by a
volume heat source, which, in our case, is the pump

radiation absorbed in the crystal. The need to remove heat
through the sample surface leads to the appearance of a
temperature gradient. The inhomogeneous temperature
éeld T(x; y; z) forms a displacement éeld U(x; y; z) in the
crystal. The temperature and deformations determine
variations in the refractive index and the sample shape,
which, in turn, specify the phase incursion for radiation
passing through the sample. This is the phase incursion
inhomogeneity over the sample aperture that is responsible
for the appearance of the thermal lens under study.

In this paper, we restrict ourselves to the consideration
of a steady-state case. The steady-state temperature dis-
tribution is determined by the balance equation for heat
êuxes in the sample,

div�K gradT � �Q � 0; (1)

where Q is the volume density of heat sources and T is the
temperature. In contrast to isotropic materials, the thermal
conductivity is determined by the second-rank tensor K
rather than by a égure. The sample is not exposed to
external volume forces and, hence, the internal stress forces
under equilibrium conditions must be mutually compen-
sated in each element of the sample volume. Thus, the
balance equation of a deformed sample has the form

qsij
qqj
� 0; i; j � 1; 2; 3; (2)

where sij is the stress tensor and qj are the coordinates of
any Cartesian system. Hereinafter, we mean the summation
over recurring indices. The stress tensor sij for an
inhomogeneous temperature distribution can be expressed
via the linear thermal expansion tensor aij, the elasticity
tensor Cijkl (fourth-rank tensor), and the deformation
tensor uij, which is determined by the displacement éeld U :

sij � Cijkl�ukl ÿ aklT �; (3)

uij �
1

2

�
qUi

qqj
� qUj

qqi

�
: (4)

In the absence of external surface forces applied to the
sample, we can write the zero boundary conditions

sij sj � 0; (5)

where s is the normal to the sample surface. From
Eqns (2) ë (4), we can derive a system of three equations
for Ui. Solving this system with allowance for the boundary
conditions (5), we énd the displacement éeld, substitute it
into (4), and obtain the deformation tensor uij.

Knowing uij and T, we énd the relative permittivity
tensor eij taking into account the small perturbations
associated with the refractive index temperature dependence
and the photoelasticity effect [1] :

eij � e0ij � 2dijni
dni
dT

Tÿ e0ikBkle0lj; (6)

where

Bkl � pklijuij; (7)
*Hereinafter, the values with the subscripts || and ? characterise the
properties of the medium along (||) and perpendicular (?) to the optical
axis c.
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e0ij is the unperturbed relative permittivity tensor; ni � ������e0ij
p

is the unperturbed refractive index for the wave polarised
along the corresponding crystallographic axis; pklij is the
photoelasticity tensor (fourth-rank tensor); and dij is the
Kronecker delta; summation over i in (6) is not performed.
Note also that formulae (2) ë (5) are valid in any Cartesian
coordinate system and do not change their form with
rotation of the system. At the same time, expressions (6),
(7) can be applied only to the coordinate system whose axes
coincide with the crystallographic axes a, b, c. The e0ij
tensor in this coordinate system has a diagonal form. To
calculate the eij tensor in the laboratory coordinate system
xyz, we must érst énd it by formula (6) and then use the
matrix transformation formulae for rotation of the
coordinate system [13, 14]. The relative position of the
laboratory (xyz) and crystallographic (abc) coordinate
systems is shown in Fig. 1.

In the general case, solving the problem of eigenvectors
of the e0ij tensor, one can énd the intrinsic polarisations and
refractive indices at each point of the medium and then solve
the problem of radiation propagation. For naturally aniso-
tropic crystals, this approach is applicable only to the
samples cut along the optical axis (the c-cut) or at a small
angle to it. Such YLF crystals were used in, for example,
[3, 15 ë 17]. In this work, we consider only the crystals cut so
that the optical axis c lies in the plane of the rod face
(Fig. 1). For these crystals, the inêuence of the photoelastic
effect on the intrinsic polarisations can be neglected [1, 2],
i.e., the effect of nondiagonal elements of the third term in
(6) on the e0ij tensor eigenvectors is weak. It is also easy to
show that the effect of these nondiagonal elements on the
refractive index of eigenwaves can also be neglected , i.e., the
eij tensor can be considered to be diagonal, as well as the e0ij
tensor. Then, using (6), we can énd the phase of radiation
passed through the crystal with a length l as

jp�x; y� � k

� l

0

dnr
dT

T dzÿ kn 3
r

2

� l

0

Brrdz� k�nr ÿ 1�

�
� l

0

u33dz; p � o; e; r � 1; 2: (8)

Here, r � 1 for the ordinary wave and r � 2 for the
extraordinary wave; k � 2p=l; l is the wavelength; and
tensors B and u in this expression were taken in the
laboratory coordinate system xyz. Thus, an additive
contribution to the thermally-induced phase is made by
three effects : the temperature dependence of the refractive
index, the dependence of the refractive index on deforma-
tions (photoelastic effect), and the temperature-induced
increase in the length. These effects are described by the
corresponding three terms in formula (8).

To numerically calculate the temperature T and the
deformation tensor uij, we used the method of énite
elements. The program was tested for particular cases
with the known analytical solutions, namely, for cubic
crystals in the disc and rod geometries. The discrepancy
in all the tested cases did not exceed �0:5%. The found
values of T and uij were substituted into expression (8). For
a uniform heat source [Q(x; y) � const] in a long rod, the
dependence of the thermally induced phase jp on the x and
y coordinates is close to parabolic. This is not the general
case, but, when quantitatively describing the thermal lens,
we will characterise it by two focal lengths corresponding to

the parabolic distribution that most exactly describes the
distribution of the phase jp in the centre of the crystal.
Thus, the thermal lens is characterised by four focal lengths,
Fojj, Fo?, Fejj and Fe?.

3. Results of calculations without taking into
account the photoelastic effect

It is convenient to describe the focal power of the thermal
lens in an anisotropic long rod analogously to the lens
power in an isotropic long rod [1]:

1

Fo;e;jj;?
� Pheat

2Skjj;?
Po;e;jj;?: (9)

Here, Pheat �
�
V QdV is the heat release power in the entire

sample volume V; S is the square of the crystal aperture;
and Po;e;jj;? is the thermooptical constant, which, according
to (8), is additively contributed by three effects: the
temperature dependence of the refractive index (No;e;jj;?),
the photoelastic effect (Eo;e;jj;?), and the increase in the
length with heating (Lo;e;jj;?),

Po;e;jj;? � No;e;jj;? � Eo;e;jj;? � Lo;e;jj;?: (10)

In calculations, we used the known parameters of the
YLF crystal [18, 19] listed below.

We failed to énd data on the photoelasticity tensor
needed to calculate the second terms in (8) and (10). Table 1
presents all the numerically calculated coefécients Lo;e;jj;?
and No;e;jj;?, for a rod with the aspect ratio 1 : 10 (length
50 mm, diameter 5 mm), which are close to the approximate
values

Lo;e;jj;? � �no;e ÿ 1�a d
l
; No;e;jj;? �

dno;e
dT

; (11)

where a is the linear thermal expansion coefécient along the
sample (along the z axis in Fig. 1); in our geometry, a � a?.

Table 1 shows that, for a long rod, the third term in (10)
in negligibly small compared to the érst term for both the

Refractive indices [19]:

no . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.448

ne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.470

Temperature coefécients of the refractive index

(at a constant density)
�
Kÿ1 [19]:

dno=dT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ÿ2:0� 10ÿ6

dne=dT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ÿ4:3� 10ÿ6

Linear thermal expansion coefécients
�
Kÿ1 [18]:

ajj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13� 10ÿ6

a? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8� 10ÿ6

Thermal conductivity coefécients
�
W Kÿ1mÿ1 [19]:

kjj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8

k? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2

Components of the elasticity tensor
�
GPa [19]:

C11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60.9

C13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.6

C16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ÿ7:7
C33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.9

C66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.7
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ordinary and extraordinary waves. Since the érst term
determines the negative lens, the appearance of the positive
thermal lens observed in [4 ë 7] cannot be explained without
the second term (photoelastic effect). The calculation
performed disregarding the photoelastic effect for the
experimental conditions of [8 ë 12] also yields a negative
thermal lens power instead of observed positive. The strong
astigmatism of the thermal lens measured in [3 ë 7] also
cannot be explained without the photoelastic effect. The
anisotropy of the thermal conductivity (kjj � 0:8k?) leads to
the relation jFejjj � 0:8jFe?j, while the focal length jFejjj in all
the experiments [3 ë 7] was larger or even much larger than
jFe?j. According to Table 1, the thermal lens astigmatism
associated with lengthening of the sample is also negligibly
small (Lo;e;jj � Lo;e;?). Thus, the numerous experimental
data [3 ë 12] cannot be even qualitatively explained without
the photoelastic effect.

4. Inêuence of the photoelastic effect

The inêuence of the photoelastic effect can be analysed
despite unknown pijkl for YLF. First of all, we take into
account the symmetry group of the YLF crystal (tetragonal,
point group 4/m). For this group, the photoelasticity tensor
in the Nye two-index notation in the crystallographic
coordinate system is given by ten independent photoelastic
coefécients [20] :

pmn �

p11 p12 p13 0 0 p16
p12 p11 p13 0 0 ÿp16
p31 p31 p33 0 0 0
0 0 0 p44 p45 0
0 0 0 ÿp45 p44 0
p61 ÿp61 0 0 0 p66

0BBBBBB@

1CCCCCCA;

m; n � 1; :::; 6: (12)

To obtain the tensor in the laboratory coordinate system,
we should use the tensor rotation formula. Since the second
term in (8) is linear in the tensor pijkl, it is obvious that the
second term in (10) can be represented in the form

Eo;e;jj;? �
P6

n;m�1
R
�mn�
o;e;jj;?pmn; (13)

where coefécients R are determined by the elasticity and
linear expansion tensors. This allows us to consider the
effect of all the ten photoelastic coefécients on the thermal
lens independently of each other. Successively equating to
zero nine of the ten photoelastic coefécients, we numerically
énd all the coefécients R (see Table 1). Since (8) contains
only the diagonal elements of the tensor B, the form of the
elasticity tensor (12) reveals that the coefécients p44, p45, p61
and p66 do not affect the thermal lens. The numerical
calculation shows that the contribution of p12 can also be
neglected.

Thus, considerable contributions to the thermal lens in a
long a-cut YLF rod are made only by éve of the ten
photoelastic coefécients pmn, three of them (p11, p13, p16)
affecting only the ordinary wave and two coefécients (p31,
p33) affecting only the extraordinary wave. Therefore, it is
enough to know only p11, p13 and p16, for lasers emitting the

Table 1. Numerically calculated coefécients L, N, and R (in 10ÿ6 Kÿ1) for a rod with the aspect ratio 1 : 10.

Polarisation
Astigmatism
direction

N L R �11� R �12� R �13� R �16� R �31� R �33� R �61� R �66� R �54� R �55�

Ordinary
||c ÿ1:91 0.48 ÿ12:3 ÿ1:62 ÿ17:3 ÿ0:95 0 0 0 0 0 0

?c ÿ1:96 0.52 ÿ29:0 ÿ1:83 ÿ2:17 ÿ5:25 0 0 0 0 0 0

Extraordinary
||c ÿ4:1 0.50 0 0 0 0 ÿ14:5 ÿ18:1 0 0 0 0

?c ÿ4:21 0.54 0 0 0 0 ÿ32:3 ÿ2:27 0 0 0 0

Ordinary wave Extraordinary wave

a

jp (arb. units)

b

c

d

e

f

g

0.01

0

ÿ0:01

0.1

0

ÿ0:1

0.1

0

ÿ0:1

0.1

0

ÿ0:1

0.1

0

ÿ0:1

0.1

0

ÿ0:1

0.05

0

ÿ0:05

Figure 2. Calculated transverse distributions of the thermally induced
phase of radiation passed through a long YLF rod with the aspect ratio
1 : 10 for a volume-uniform heat source with the power Pheat � 1 W. The
optical axis c lies in the plane of the rod face. The thermal lens is caused
by the temperature dependence of the refractive index (a), by thermal
expansion (b), and by the photoelastic effect with nonzero photoelastic
coefécients p11 � 0:1 (c), p13 � 0:1 (d), p16 � 0:1 (e), p31 � 0:1 (f), and
p33 � 0:1 (g).
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ordinary wave (l � 1053 nm for the Nd :YLF crystal) and
p31, p33 for lasers emitting the extraordinary wave
l � 1047 nm for Nd :YLF). Figure 2 shows the ther-
mally-induced phase distribution in an YLF rod 50 mm
long and 5 mm in diameter, which are determined by
different components of the photoelasticity tensor, as
well as by the temperature dependence of the refractive
index and by the thermal expansion.

Using the photoelastic coefécients as étting parameters,
we correlated the numerical calculations results with the
experimental data of [3 ë 7]. This is a rather difécult problem
because the heat release power Pheat is not known exactly
and can only be estimated from the pump power with an
accuracy to coefécients � 2 for diode pumping and � 5 for
lamp pumping. Within this uncertainty, the heat release
power was also used as a étting parameter. With this
statement of the problem, we managed to qualitatively
interpret 24 experiments [3 ë 7] (six geometries and four
focal lengths Fo;e;jj;? in each of them) using 11 étting
parameters (six values of the heat release power and éve
photoelastic coefécients). The results are listed in Table 2.
This proves that all the speciéc features (including the
strong astigmatism) of the thermal lens in the YLF crystal
can be explained with the help of the photoelastic effect.

The values of pmn presented in Table 2 do not claim to be
highly accurate since they are obtained by étting to different
experimental data whose accuracy is unknown. In addition,
we did not take into account that some experiments were
performed at the wavelength l � 1053 nm and the others at
l � 633 nm. To determine pmn precisely, we need additional
experiment. At the same time, the parameters of the thermal
lens in a long YLF rod can be estimated quite accurately by
formulae (9), (10) using expressions (11) and values of
Eo;e;jj;? given in Table 2.

5. Conclusions

In this work, we have proved that the astigmatism of the
thermal lens in the YLF crystal is caused solely by the
photoelastic effect. The photoelastic effect does not change
the intrinsic polarisations of crystals with natural aniso-
tropy but substantially changes the refractive indices for
radiation with these polarisations. These changes are
principally astigmatic since the angle between the optical
axis and the temperature gradient is different at different
points of the crystal cross section.

We have precisely calculated the thermal lens in an a-cut
YLF rod taking into account the anisotropy of the thermal
conductivity, elasticity, linear expansion, and refractive
index. It is proved that the numerous experimental data
cannot be even qualitatively explained neglecting the
photoelastic effect. It is shown that the contribution to
the thermal lens is made only by three photoelastic
coefécients (p11, p13, p16) for the ordinary wave and only
by two coefécients (p31, p33) for the extraordinary wave.
Using these éve coefécients as étting parameters, we
quantitatively interpreted all available experimental data.
Simple formulae for estimation of the thermal lens param-
eters in an YLF rod have been presented.

In the future, we plan to generalise the obtained results
to the disc geometry, to an arbitrary orientation of the YLF
crystal axes, and to other crystals, including crystals of other
symmetry groups.
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Table 2. Photoelastic coefécients pmn, which allow interpretation of the experimental data [3 ë 7], and coefécients Eo;e; jj;? calculated by formula (13).

p11 p13 p16 p31 p33 Eojj �10ÿ6 Kÿ1� Eo? �10ÿ6 Kÿ1� Eejj �10ÿ6 Kÿ1� Ee? �10ÿ6 Kÿ1�
ÿ0:04 ÿ0:04 ÿ0:05 ÿ0:06 ÿ0:15 1.2 1.5 3.6 2.3
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