
Abstract. We consider the conversion of monochromatic
radiation in the case of resonant interaction with a quantum
system under the condition of harmonic modulation of the
quantum transition frequency by the action of additional
nonresonant radiation due to the Stark or Zeeman effect,
taking into account the inhomogeneous broadening of the
quantum transition line. It is shown analytically and
numerically that resonant radiation can be converted in a
train of ultrashort pulses with a peak intensity exceeding
manifold the incident wave intensity. The possibility of the
additional compression of the produced pulses is studied by
compensating the inherent frequency modulation in a medium
with a quadratic or programmable dispersion. The optimal
values of the radiation ë matter interaction parameters are
found numerically. It is shown that generation of femtosecond
optical pulses of radiation quasi-resonant to the d transition
of the atomic hydrogen Balmer series is possible.

Keywords: ultrashort pulses, coherent optics, resonant interaction,
inhomogeneous broadening, Stark effect, Zeeman effect.

1. Introduction

The technique of laser pulse generation by the mode-
locking method has now acquired its énal form [1]. The
advance in the éeld of shorter durations and higher peak
intensities, formation of far-IR and vacuum UV pulses, X-
ray and gamma pulses is based on new physical methods.
These methods involve compression of laser pulses in the
soliton propagation regime in a two-level medium [2, 3],
compression of optical solitons in plasma channels pro-
duced in a gas [4, 5], self-action of tightly focused laser
pulses in a transparent condensed medium [6], generation of
tunable femtosecond pulses in optical ébres with length-
variable dispersion [7], formation of few-cycle far-IR and
terahertz pulses during the interaction of radiation with a
relativistic electron beam [8, 9], generation of a broad line
spectrum and formation of sub-femtosecond optical pulses
during the stimulated Raman scattering (SRS) on vibra-

tional or/and rotational transitions of molecules [10 ë 14].
When coherence in the SRS medium is excited by a driving
laser pulse, a train of femtosecond pulses is obtained
experimentally [15], and the possibility of producing a single
1-fs pulse is shown [16]. The decrease in the pulse repetition
rate is feasible via SRS on a coherence induced between the
superéne sublevels [17, 18]. Formation of attosecond pulses
with a duration less than 100 as is achieved during
generation and in-phase summation of high laser radiation
harmonics in the case of tunnel ionisation and recombina-
tion of atoms in the éeld of a terawatt ultrashort laser pulse
[19 ë 24]. Generation of shorter pulses (with a duration less
than 1 as) is predicted in the case of ionisation of a solid
target in a superstrong optical éeld [25 ë 29].

We proposed the method of ultrashort electromagnetic
pulse formation [30, 31] based on the deep amplitude and
frequency modulation of incident monochromatic radiation
due to the resonant interaction with a quantum system
under the condition of harmonic modulation of the resonant
quantum transition frequency. It can be used for generating
ultrashort pulses in different spectral regions, from the
microwave to the gamma region. Unlike most of the
above-mentioned approaches, efécient in the region of
optical transparency of the medium, this method allows
one to use strong resonant interaction for generating a
broad spectrum and compensating for the phases of the
emerging harmonics. Further comparison of the proposed
method with that mentioned above, especially with respect
to the generation eféciency and the limiting values of the
pulse parameters, requires separate investigations. One such
investigation is the present paper.

In this paper, we consider the application of the above
method for producing ultrashot optical pulses in the case of
resonant interaction with a quantum system under con-
ditions of inhomogeneous broadening of the resonant
transition line. The harmonic modulation of the quantum
transition frequency is achieved due to oscillations of the
position of atomic levels caused by additional nonrsonant
radiation due to the Stark or Zeeman effect.

2. Formulation of the problem
and analytic solution

Consider the conversion of a plane monochromatic electro-
magnetic wave in a plane dielectric layer of a medium under
the condition of harmonic modulation of the resonant
quantum transition frequency by a low-frequency electro-
magnetic éeld due to the Stark or Zeeman effect.

The electric éeld of the incident wave is
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Ein �
1

2
x0E0 exp�ik0zÿ io0t� � c:c., (1)

where x0 is the polarisation unit vector; o0 is the incident
wave frequency; k0 � o0=c is the wave number of the
incident wave; c is the speed of light in vacuum. The éeld in
the medium satisées the wave equation

q 2E

qz 2
ÿ e
c 2

q 2E

qt 2
� 4p

c 2
q 2P
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where P is the resonant polarisation vector of the medium; e
is the nonresonant dielectric constant.

The frequencies o21 of the resonant quantum transition
of the particles in a spectrally inhomogeneous medium are
characterised by the distribution p(o21) and the average
value o 0

21 �
�
o21p(o21)do21. The resonant polarisation

vector of the isotropic medium is codirected with the
éeld vector (P kE ) and is expressed via the density matrix
elements:

P � x0N

�
r21�o21�d12 p�o21�do21� c.c., (3)

where d12 is the average dipole moment of the quantum
transition; r21 is the nondiagonal element of the density
matrix; N is the concentration of the resonant particles. The
quantity r21 depends on o21 as on a parameter and satisées
the equation

qr21
qt
� �io21 � g21�r21 �

i

�h
n12d21E, (4)

where g21 is the half-width of the homogeneous component
of the spectral transition line; n12 � r11 ÿ r22 is the
population difference between the lower and upper levels
of the quantum transition. We will restrict our consid-
eration to the approximation linear in the éeld, when the
population difference is unperturbed: n12 � n 0

12. We will
assume that n 0

12 > 0, which corresponds to the resonant
éeld absorption.

In the presence of the additional nonresonant radiation
at the frequency O, which we will call modulating, the
atomic energy levels start oscillating at this frequency due to
the Stark or Zeeman effect, which leads to modulation of
the transition frequency o21(t). If the medium thickness h is
small compared to the modulating radiation wavelength
(h5 2pc=O), the quantum transition frequencies of all the
particles change in-phase:

o21 � �o21 � D cos�Ot�, (5)

where �o21 is the transition frequency in the absence of the
modulating éeld; D is the modulation depth of the quantum
transition frequency. Equation (4) for the nondiagonal
element of the density matrix in the presence of the
modulating éeld has the form

qr
qt
� �i�o21 � g21�r21 � iD cos�Ot�r21 �

i

�h
n12d21E. (6)

A convenient way to solve problems (2), (3), (6) is the
change of the variable, t! ta, which is determined from the
condition of constancy of the resonant transition frequency:

�o21ta �
� t

0

��o21 � D cos�Ot 0��dt 0. (7)

It is easy to see that when the conditions jo0 ÿ �o21j5 �o21

and D5 �o21 are fulélled, we have the equality

o0t � o0ta ÿ
D
O

sin�Ota�. (8)

The change t! ta transforms equation (6) to the form
coinciding with (4). In this case, the expression for the
incident wave takes the form

Ein�
1

2
x0E0 exp�iR sin�Ota��exp�ik0zÿ io0ta� � c:c:

� 1

2
x0E0 exp�ik0z�

X�1
n�ÿ1

Jn�R� exp�ÿi�o0 ÿ nO�ta� � c:c:, (9)

where R � D=O; Jn(R) are the Bessel functions of the érst
kind.

Thus, the above change reduces the study of the
monochromatic wave conversion (1) in the medium with
the harmonically modulated transition frequency (5) to the
investigation of the frequency-modulated wave conversion
(9) in the medium with the éxed frequency of the quantum
transition.

Below, we assume the dielectric constant of the medium
to be close to unity (e � 1) so that the boundary conditions
on the sample faces would be reduced to the equality of the
electric éeld strengths in the medium and outside its
boundaries: E jz�0 � Einjz�0 and Etrjz�h � E jz�h (Etr is the
strength of the electric éeld transmitted through the
medium).

We will seek the éeld satisfying equations (2) ë (4) and
boundary conditions depending on the variables z, ta in the
form

E�z; ta� �
1

2
x0E0 exp�ikz�

X�1
n�ÿ1

Jÿn�R� exp�ÿgnz�

� exp�ÿionta� � c:c:, (10)

where on � o0 � nO; gn � g(on) are the complex decre-
ments of the éeld harmonics; k � ��

e
p

o0=c is the wave
number in the medium. We will seek the elements of the
density matrix r21(�o21) in the form

r21��o21� � exp�ikz�
X�1
n�ÿ1

Jÿn�R�bn��o21�

� exp�ÿgnz� exp�ÿionta�. (11)

By substituting expressions (10), (11) into equations
(2) ë (4), using the resonant approximation, jo0 ÿ �o21j5
�o21, and slowly varying amplitude approximation, max jgnj,
D5 �o21, we obtain

gn �
2pNn 0

12o0jd12j2��
e
p

�hc

�
p��o21�d�o21

g21 � i��o21 ÿ on�
. (12)

If the spectral inhomogeneity is caused by the thermal
motion of particles or by statistically independent random
perturbations of the local éelds in the medium, the
distribution of resonant frequencies of the particles in the
medium will be close to Gaussian
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In the case s4 g21, taking into account that the sequence of
Lorentz curves is reduced to a d-function by decreasing the
width, we obtain
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where dn � (on ÿ o 0
21)=s.

Expressions (10), (14) completely determine the depend-
ence of the éeld on the variables z, ta, transition to the
variables z, t being performed by the transformation inverse
to transformation (8):

o0ta � o0t�
D
O

sin�Ot�. (15)

In this case, the expression for the éeld, transformed in the
medium, takes the form

E � 1

2
E0 exp�ikh�

X�1
m�ÿ1

X�1
n�ÿ1

�ÿ1�mJn�R�Jnÿm�R�

� exp�ÿgnh� exp�ikm�zÿ h� ÿ iomt� � c:c: (16)

where om � o0 �mO; km � om=c.
The resonant interaction of the monochromatic radia-

tion with the medium under the condition of harmonic
modulation of the quantum transition frequency can lead to
a qualitative change in the emission spectrum. The time
dependence of the éeld, which is responsible in the general
case to its amplitude and frequency modulation, changes
correspondingly.

3. Formation of pulses
in a resonant frequency-modulated medium

Four dimensionless parameters

R � D
O
, Z � O

s
, x � o0 ÿ o 0

21

s
, G � hRegmax, (17)

which denote the modulation depth of the quantum
transition frequency with respect to the modulation
frequency (R), the modulation frequency with respect to
the inhomogeneous width of the quantum transition line
(Z), frequency detuning of the incident wave from the
quantum transition frequency with respect to the inhomo-
geneous quantum transition linewidth (x), and the optical
thickness (G) of the medium, determine the harmonic
amplitudes and phases of éeld (16) and its time dependence.
At certain values of the mentioned parameters, after
transformation in the medium, the éeld takes the form
of a pulse train. There appears the problem of determining
the optimal values of parameters (17) at which the
maximum peak intensity and the minimum pulse duration
are achieved. This problem is solved numerically.

Consider the results of the numerical search for the
optimal values of parameters (17) at which the pulses at the
medium output have the maximum peak intensity with
respect to the incident wave intensity:

Imax=I0 ! max. (18)

We found several sets of optimal values of the param-
eters whose énal choice is determined by the possibilities of
experimental realisation. We will consider the physical
mechanism of the pulse formation in the medium with a
variable frequency of the resonant quantum transition by
the example of one of these sets (R � 2:0, Z � 10, x � ÿ12:5,
G � 10). The spectrum of the incident monochromatic wave
(1) assuming form (9) after the substitution t! ta (8) is
shown in Fig. 1 against the background of the curves of the
resonant absorption and resonant dispersion. As the fre-
quency-modulated wave (9) propagates in the medium with
the éxed parameters with respect to the variables z, ta, the
amplitudes and phases of the éeld harmonics change due to
the resonant absorption and resonant dispersion. According
to the results of the numerical research, the range of the
values of the parameters RZ4 1 in which the width of the
radiation spectrum (9) signiécantly exceeds the transition
linewidth is optimal for producing intense pulses. In this
case, the resonant dispersion plays a crucial role in the pulse
formation, while the resonant absorption is insigniécant.
After radiation is transmitted through the medium, its
spectrum (10) acquires the shape presented in Fig. 2.

Returning to the initial variable [ta ! t (15)], the
radiation spectrum takes the shape (16) shown in Fig. 3.
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Figure 1. Spectrum of an incident monochromatic wave [amplitudes (*)
and phases (�) of the éeld harmonics] as a function of ta at R � 2:0,
Z � 10, x � ÿ12:5, G � 1 against the background of the proéles of the
resonant absorption ( 1 ) and resonant dispersion ( 2 ).

ÿ6 ÿ4 ÿ2 0 2 4 n

2

1

En=E0

0.461

0.346

0.231

0.115

0

jn

�
rad

ÿp
ÿ3p=4
ÿp=2

p=2

ÿp=4

p=4

3p=4

0

Figure 2. Spectrum of the wave transformed due to the resonant
interaction with the quantum system as a function of ta for the same
parameters as in Fig. 1.
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The corresponding time dependence of the éeld intensity
represents a train of pulses shown in Fig. 4. Comparison of
Figs 1, 2, and 3 shows that the selection of optimal values of
the parameters is reduced to the minimisation of the energy
losses due to resonant absorption as well as to synchronisa-
tion to the best advantage of spectral components due to the
resonant phase incursion. As a result, the average éeld
intensity at the output hardly decreases, while the re-
distribution of the intensity with respect to time due to
synchronisation of spectral components leads to deep dips
and high-power bursts, which signiécantly exceed the
intensity at the medium input. For the selected values of
parameters (17) the peak pulse intensity of the incident wave

is more than four times greater than the incident radiation
intensity. The pulse duration is 1/6 of the repetition period.
The produced pulses are frequency-modulated; the intrinsic
frequency modulation is shown in Fig. 5. The compensation
of frequency modulation makes it possible to compress the
produced pulses and to increase the peak intensity.

4. Compression of produced pulses

Consider conversion of radiation experiencing resonant
interaction with the frequency-modulated medium in a
transparent dispersive medium. The relative phases of
harmonics change as radiation propagates in the dispersive
medium. Consider a medium with a quadratic dispersion:

k�o� nO� ' k�o� � k 0onO�
1

2
k 00oon

2O 2. (19)

The éeld (16) transmitted through the dispersive medium
layer of thickness L has the form

E � 1

2
E0 exp�ij0�h;L��

X�1
m�ÿ1

X�1
n�ÿ1

�ÿ1�mJn�R�Jnÿm�R�

� exp

�
i
1

2
k 00oom

2O 2L

�
exp�ÿgnh�

� exp�ikmzÿ iom�tÿ t0�� � c:c: (20)

The choice of the optimal value of the parameter k 00ooO
2L

characterising the medium dispersion allows one to
compensate for the linear component of the frequency
deviation of the éeld (20). The numerical optimisation of
compression showed the possibility of a substantial
decrease in the duration and an increase in the peak
intensity of produced pulses. One of the optimal solutions
corresponds to R � 6:8, Z � 1:4, x � ÿ4:8, G � 7:8,
k 00ooO

2L � ÿ2:800. Figure 6 presents the time dependence
of the intensity. The peak intensity exceeds the incident
wave intensity by more than seven times, the pulse duration
being 1/15 of the repetition period.

Compensation for the nonlinear component of the
frequency deviation achieved in the prism compressors
and mirrors with a programmable dispersion allows further
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Figure 3. Spectrum corresponding to that presented in Fig. 2 in the
laboratory reference frame.
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Figure 4. Time dependences of the instant ( 1 ) and average ( 2 ) inten-
sities of produced pulses for the same parameters as in Fig. 1.
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Figure 5. Time dependences of the instant phase ~F ( 1 ) and frequency ~O
( 2 ) of produced pulses for the same parameters as in Fig. 1.
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Figure 6. Instant ( 1 ) and average ( 2 ) intensities of pulses, produced in
the case of the resonant interaction with the quantum system and
compressed in a medium with the quadratic dispersion at R � 6:8,
Z � 1:4, x � ÿ4:8, G � 7:8, k 00ooO

2L � ÿ2:800.
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pulse compression. In the case of the complete compensa-
tion for the phase difference of harmonics, the éeld (16)
takes the form

E � 1

2
E0 exp�ij0�

X�1
m�ÿ1

X�1
n�ÿ1

jJn�R�Jnÿm�R�j exp�ÿhRe gn�

� exp�ikm�zÿ h� ÿ iomt� � c:c: (21)

According to the results of the numerical analysis, the
compensation for both the linear and nonlinear components
of the frequency deviation makes it possible to improve
signiécantly the pulse parameters. Figure 7 demonstrates
the time dependence of the intensity of the pulses produced
at R � 16, Z � 22:4, x � ÿ291:2, G � 80 and at the com-
plete compensation for the difference in the harmonic
phases. The peak intensity exceeds the incident wave
intensity by 14 times, the average intensity is equal to
0:94I0, the pulse duration is 1/34 of the repetition period.

The presented approach to the formation of the electro-
magnetic pulses is not limited by a speciéc frequency range
neither with respect to the initial resonant radiation nor with
respect to the modulating radiation. It is obvious that the
experimental realisation allows the use of radiation pulses if
their duration exceeds the relaxation time of the resonant
polarisation of the medium and the modulating éeld period.
One can see from Figs 6 and 7 that the duration of the
produced pulses can be less than 1/30 of the modulating éeld
period and less than 1/600 of the relaxation time of the
resonant polarisation. The selection of the optimal medium
as well as of modulating and resonant radiation sources can
provide the possibility for producing ultrashort pulses in
differnet frequency ranges, from far-IR to UV.

Consider, for example, a 1-mm-long cell élled with
atomic hydrogen at a pressure of 20 Torr and a temperature
of 400 K under the conditions of a glow discharge. The
second harmonic of a Ti : sapphire laser at 409.45 nm
interacts with the 410.17-nm d transition of the Balmer
series, which has a Gaussian proéle of the absorption line of
width 5 GHz. The population difference n12 of the d
transition energy levels (with the principal quantum num-
bers equal to 2 and 6) is maintained equal to 0.02.

Modulation of the d-transition frequency due to the Stark
effect is produced by the gyrotron radiation at a frequency
of O=2p � 80 GHz focused into a beam with the effective
cross section S � 1 cm2. At a 770-kW pulse power of the
gyrotron, the optical pulses formed in a medium with a
modulated resonant quantum transition frequency will have
the shape presented in Fig. 7, after the compensation for the
frequency modulation. The pulse duration is t � 370 fs and
the pulse repetition rate is T � 12:5 ps. If a CO2 laser is used
as a modulating radiation source, it is possible to form
pulses with duration of the order of a femtosecond.

5. Conclusions

Therefore, we have considered monochromatic radiation
conversion in the case of the resonant interaction with a
quantum system under the condition of harmonic frequency
modulation and inhomogeneous broadening of the resonant
quantum transition line. The harmonic modulation of the
transition frequency is produced by additional nonresonant
radiation due to the Stark and Zeeman effect. We have
shown that incident resonant radiation under certain
conditions is converted into a train of ultrashort pulses
whose duration is inversely proportional to the modulation
depth of the quantum transition frequency, the repetition
period being equal to the modulating radiation period, and
the peak intensity being able to exceed the incident wave
intensity by many times. The possibility of the pulse
compression by compensating the inherent frequency
modulation has been demonstrated. We have studied
numerically the pulse compression in media with a
quadratic or programmable dispersion. It has been
established that the compensation for the linear and
nonlinear components of the frequency deviation allows
one to signiécantly increase the peak intensity and decrease
the pulse duration. We have optimised numerically the
pulse formation and determined the optimal values of the
radiation ëmatter interaction parameters. The possibility of
producing femtosecond optical pulses of radiation quasi-
resonant to the d transition of the atomic hydrogen Balmer
series has been shown.
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