
Abstract. An operator model of a mirror as a reêector with a
reêectance variable over the aperture is developed on the
basis of a Fabry ëPerot interferometer. The main character-
istics of the interferometer (mirror) are studied in the
geometric, diffraction, and modal approximations. The
differences in the calculation results obtained using the
conventional geometric approximation and the diffraction
approach proposed in this study are discussed. It is shown
that, when the effective Fresnel numbers are comparable to
unity, it is necessary to use the diffraction approximation.
The possibility of using an interferometer-based mirror as a
selector of transverse laser modes is demonstrated.

Keywords: mirror with reêectance variable in amplitude and phase,
Fabry ë Perot interferometer, laser resonator, microchip laser,
transverse mode selection.

1. Introduction

The mirrors with reêectance variable over the aperture have
found wide application in laser systems [1 ë 3]. The
introduction of apodized mirrors into a laser cavity allows
one to decrease the beam divergence by a factor of 1.2 ë 2.5
and to achieve the beam quality close to the diffraction
limit [2 ë 4]. Variations in the mirror reêectance over the
mirror aperture can be achieved by several methods,
namely, by depositing proéled dielectric coatings [5] or
by using birefringence elements [2] or Fabry ë Perot
interferometers with nonplanar mirrors [1]. The latter
method possesses a wide scope of possibilities for forming
various reêectance distributions. In addition, this method
seems to be the only method that can be used in modern
miniature and microchip lasers, which have a small
transverse size of the output beam. The formation of a
éeld amplitude distribution in a multibeam Fabry ë Perot
interferometer is described, as rule, considering the wave
propagation only in the geometric approximation [1, 6].
However, an important role in the formation of éelds by a
mirror interferometer in, for example, microchip lasers with
an aperture of � 100 mm can be played by diffraction effect.

There are works devoted to the study of the role played by
diffraction in laser cavities (see [7, 8] and references
therein). At the same time, the role of diffraction in
Fabry ë Perot interferometers with nonplanar mirrors is not
suféciently studied.

In the present paper, we propose a method of diffraction
calculation of a cavity mirror based on a Fabry ë Perot
interferometer composed of nonplanar mirrors. The differ-
ences in the calculation results obtained using the diffraction
and the conventional geometric approaches are discussed.
The possibility of using an interferometer-based mirror as a
selector of transverse laser modes is demonstrated.

2. Mathematical model of a mirror
interferometer

Let us consider an interferometer that is schematically
shown in Fig. 1. The interferometer is composed of two
semitransparent reêectors with given reêectances variable in
amplitude and phase as Rq exp (iaq) [q � 1, 2 for reêectors
( 1 ) and ( 2 ), respectively]. Here, Rq is the reêectance; aq is
the phase component, which depends on the mirror shape
and appears in the éeld distribution function inside the
interferometer due to the reêection of radiation from this
mirror; U0 is an arbitrary radiation éeld incident on the
interferometer from the side of reêector ( 1 ); U01 � U0T1;
T1 is transmittance of reêector ( 1 ); U1 is the radiation éeld
reêected from mirror ( 1 ) and propagating toward reêector
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Figure 1. Interferometer scheme.



( 2 ), which is determined in the aperture plane of mirror
( 1 ); and V is the éeld reêected from the interferometer. In
the general case, aq, U0, U01, U1 and V depend on the
coordinates of the point on the corresponding reêector
aperture; R1 and R2 are taken to be real constants; and the
semitransparent reêectors are assumed to be inénitely thin.

One of the main physical characteristics of an interfer-
ometer is reêectance. The radiation éeld reêected from an
interferometer is

V � exp�ÿia1���T1=R1�U1 ÿ R1U0�; (1)

and the power reêectance of an interferometer is

R 2
int �

�
jVj2dS

��
jU0j2dS; (2)

where integration is performed over the aperture of
reêector ( 1 ).

The éeld inside an interferometer can be considered as a
superposition of the wave directly transmitted through the
reêector and the waves formed as a result of all multiple
reêections. The output éeld is determined as a sum of all the
éelds taking into account the corresponding phase incur-
sions and amplitude variations. The effective number F of
round-trips in an interferometer (the number of interfering
beams) depends on the parameter |R1R2|: F �
p
��������������jR1R2j

p
=(1ÿ jR1R2j). [7]. The amplitude ë phase distribu-

tions of éelds in different interfering beams are different due
to their diffraction and geometric divergences. The diffrac-
tion divergence must be taken into account when the
effective Fresnel number is Neff � Nint=2F91. Here,
Nint � d 2=(4ll ) is the Fresnel number for the interferometer
(d is the beam diameter, l is the radiation wavelength, and l
is the interferometer length).

In [1, 9], the characteristics of an interferometer with
spherical mirrors were studied in detail in the geometric
approximation. Let us derive a relationship for the éeld U1

in the diffraction approximation. Taking into account the
results of studies [10, 11] devoted to multipass telescopes, we
will consider an interferometer as a stationary system with a
self-reproducing éeld. The éeld U1 reêected from mirror ( 1 )
is summed with the éeld U01, thus forming the éeld
U1 �U01 propagating to reêector ( 2 ). After a round trip
in the interferometer, this éeld transforms into U1. Let a
round trip be described by the propagation operator K.
Then, the operator equation of the interferometer takes the
form

K�U1 �U01� � U1: (3)

In the absence of nonlinear éeld effects, we have

KU1 � KU01 � U1: (4)

In this equation, U1 is the sought éeld. Solving Eqn (4) with
respect to U1, from (1) we énd the reêected éeld

V � exp�ÿia1�
R1

�
T 2
1K

Eÿ K
ÿ R 2

1

�
U0; (5)

where E is the unit operator.
In the diffraction approximation, the operator K is the

éeld integral transform with a known kernel [8, 12]. Passing

to a discrete lattice of individual sub-apertures of the
reêector, expression (5) takes a matrix form. In this case,
E is the N�N-dimension unit matrix, N 2 is the number of
nodes in the discrete lattice, K is the N�N-dimension
square matrix, and exp (ÿia1) is the diagonal matrix of the
same dimension.

In the geometric quasi-plane wave approximation, the
round-trip operator is given by the relationship K �
R1R2 exp (2ikl) exp�i(a1 � a2)�, which enters (4) as a factor.
Here, k � 2p=l is the wave number and E � 1.

Using relations (5), (1), and (2), we can calculate the
main characteristics of an interferometer as a laser mirror.
However, the analysis of its selecting properties is rather
complicated. Let us consider the interferometer using the
laser resonator theory. We will solve Eqn (4) by expanding
into modes. We introduce into consideration the orthonor-
mal eigenfunctions Cn (EFs) and the eigenvalues gn (n � 0,
1, 2, ...) (EVs) of the propagation operator K=(R1R2). Then,

KCn � �R1R2�gnCn: (6)

The solution of Eqn (6) with respect to Cn, gn coincides
with the solution of (6) for a laser cavity [8] with mirrors
whose shape coincides with the shape of the interferometer
reêectors with the reêectance equal to unity. In (4), we will
use the EF expansion of the incident éeld U0 and of the
éeld U1:

U0 �
X

U
�n�
0 Cn; U1 �

X
U
�n�
1 Cn: (7)

The expansion coefécients U
�n�
0 are calculated from the

known functions U0 and Cn, while U
�n�
1 are the sought

coefécients. Substituting (7) into (4), we énd

U
�n�
1 � R1R2gnT1

1ÿ R1R2gn
U
�n�
0 : (8)

Thus, the éeld (1) reêected for the interferometer is
written in the form

V � exp�ÿia1�
X

V�n�Cn;

where V �n� � R
�n�
int U

�n�
0 ;

R
�n�
int �

R2gn ÿ R1

1ÿ R1R2gn
(9)

is the éeld reêectance of the interferometer for the nth
mode, gn � jgnj exp�ijn); jgnj4 1; jn � 2klÿ Djn; Djn is
the correction to the geometric phase incursion per one
round trip [12]. The power of the nth mode éeld is

jV�n�j2 � jR �n�int j2jU �n�0 j2; (10)

where

jR �n�int j2 �
�R1 ÿ R

�n�
2 �2 � 4R1R

�n�
2 sin2�jn=2�

�1ÿ R1R
�n�
2 �2 � 4R1R

�n�
2 sin2�jn=2�

is the power reêectance of the interferometer for the nth
mode and R

�n�
2 � jgnjR2 is the effective reêectance of

reêector ( 2 ) for the nth mode. In this case, the power
reêectance (2) of the interferometer is
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R 2
int �

X
jR �n�int j2jU �n�0 j2X
jU�n�0 j2

.

Relation (10) is similar in form to the well-known
formula for the reêection coefécient of a plane interfer-
ometer. The difference is that the phase of the propagating
mode takes into account not only the geometric but also
diffraction incursion Djn [13]. In addition, in the general
case, the effective reêection coefécient R

�n�
2 decreases with

increasing n. The values Djn and R
�n�
2 are different for

different modes. It is these circumstances that make it
possible to use interferometers as transverse mode selectors.

Let an interferometer be a stable resonator with inénite
spherical mirrors. In this case, jgnj � 1 and the selective
properties of the interferometer are determined by the
parameter jn � 2klÿDjn. The power of a selected nth
mode is maximal under the condition kl � pm� p=2�
Djn=2, m � 1, 2, ... However, if the phase distances between
modes are small (jjn ÿ jn�1j5 1), it is reasonable to choose
the interferometer length taking into account the rate of
change of function (10) with Djn.

3. Results of numerical experiments

The main properties of the mirror interferometer were
numerically studied based on relations (2) and (5) in the
diffraction and geometric approximations using the matrix
description of éelds and propagation operators. In the
numerical experiment, we considered an interferometer (see
Fig. 1) designed to be used as an output mirror of a
microchip laser [14]. We studied the interferometer selec-
tivity with respect to reêectance (2) and the coincidence of
calculation results obtained using the geometric and
diffraction approaches. The interferometer consisted of
two spherical reêectors. The phase components introduced
into the éeld inside the interferometer due to reêection from
mirrors ( 1 ) and ( 2 ) were given by the relations

a1�r� �
kr 2

r1
; a2�r� �

kr 2

r2
; (11)

where r1, r2 are the radii of curvature of reêectors ( 1 ) and
( 2 ), whose signs were chosen according to the resonator
theory [8]; r is the radius vector of the point on the reêector
aperture in the cylindrical coordinate system with the z axis
coinciding with the optical axis of the interferometer; r �
(x; y); and x, y are the Cartesian coordinates of the point.

In calculations, we assumed that the interferometer,
when considered as a resonator, has a stable conéguration.
The incident éeld U0 was given by the functions describing
the TEMm;n modes (m; n are the transverse indexes) of a
cavity external with respect to the interferometer. The éeld
U0 and the éled corresponding to Cn had identical radii of
curvature but different amplitude distributions. The ampli-
tude ë phase distribution of U0 was given by the Hermite
polynomial [8].

Figure 2 shows the results of calculation of the ampli-
tude ë phase distribution of a laser beam éeld reêected from
an interferometer with the length l (l � l0 � Dl, where l0 is
the base length of the interferometer multiple of an integer
number of half-wavelengths and Dl is the variable displace-
ment of one of the interferometer mirrors along the optical
axis). We considered a one-dimensional incident beam with
the TEM00 mode éeld distribution. The effective Fresnel

number for the interferometer is Neff � 0:35. In this case, as
should be expected, the éelds calculated in the diffraction
and geometric approximations were considerably different.

The interferometer reêectances (2) calculated for several
lowest transverse modes of the stable external resonator are
shown in Figs 3 and 4. The dependences in Fig. 3 are
calculated for the interferometer conéguration with
r2 � ÿr1, r1 > 0. In this case, the reêectance in the geo-
metric approximation depends only on the interferometer
length l and reêectances R1 and R2 of its mirrors. The
interferometer affects the transmitted and reêected éelds
similar to a semitransparent mirror with a radius of
curvature equal to the radius of curvature of reêector
( 1 ). However, in the diffraction approximation, the reêec-
tances for different modes are noticeably different.

Figure 4 presents the results of calculations of R 2
int for a

mirror interferometer with r2 � ÿr1 � 1100l. Its selectivity
was found to be considerably higher than the selectivity of
an interferometer with r2 � ÿr1. This is explained by the
fact that the intermode phase differences strongly depend on
r1, r2 (just as in stable resonators) and are larger at
r2 � ÿr1 � 1100l.

With increasing Fresnel number Nint, which was varied
in our calculations by changing the interferometer length, all
the reêectances become close to geometric ones. In these
calculations, the reêectance R1, R2 of the interferometer
mirrors were chosen so that the effective Fresnel numbers
Neff varied from 0.2 to 1. Note that, according to the
calculation results, the interferometer reêectances (2) for the
TEMmn modes with identical sums of indices m� n are
almost the same. This occurs because the phase incursion
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Figure 2. Amplitude (a) and phase (b) distributions of a éeld reêected
from an interferometer calculated in the geometric ( 1 ) and diffraction
( 2 ) approximations at r1 � 1, r2 � 0:02 m, l0 � 500l, l � 1:064 mm;
Dl � 0; d � 140 mm, and R1 � R2 � 0:88.
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Djm�n appearing additionally to the geometric one in the
case of expansion of the éeld TEMmn mode in terms of Cm�n
functions is identical for these modes. Therefore, Figs 3 and
4 present the curves not for all lowest transverse modes but
only for the modes with different sums of indices m� n.

It is necessary to note that the length l � l0 � Dl (l0 �
ml=2, where m is an integer number) in our calculations was
discretely changed with changing m (the misalignment Dl
was éxed), and, hence, the number Nint � Nint�m� also
varied discretely. For convenience, the dependences
R 2

int(Nint) are shown in Figs 3 and 4 by continuous lines
obtained by extrapolation of the calculated data.

The interferometer selectivity also strongly depends on
the misalignment Dl (Figs 3 and 5). The data presented in
Fig. 5 allow one to optimise Dl with respect to the mode
selection and the parameter R 2

int. For example, as one can
see from Fig. 5, to select the TEM00 mode, it is preferable to
use the misalignment region Dl � 0:05lÿ 0:12l. In this
region, the reêectances for neighbouring modes differ by
a factor of 1.5 ë 2. At the same time, in the misalignment
regions Dl � 0ÿ 0:01l and Dl � 0:43lÿ 0:5l, the TEM00

mode is suppressed and the TEM01 becomes dominant. In
the displacement region where the higher modes dominate,
DNeff decreases from the point Dl close to 0.5l.

The presented results conérm the possibility of using an
interferometer as a selector of transverse cavity modes.
When optimising the interferometer parameters, it is neces-
sary to take into account the amplitude ë phase distributions
of the resonance éelds that form inside the external laser
cavity and are incident with respect to the interferometer.

4. Conclusions

Based on the developed operator model of a mirror
interferometer as a reêector with a reêectance variable
over the aperture, the basic characteristics of the interfer-
ometer are studied in the geometric, diffraction, and modal
approximations. It is shown that the spherical interferom-
eter can be used as a selector of transverse laser modes. At
the optimal choice of the mirror interferometer parameters
(base, misalignment, curvature radius of reêectors), the
relative difference in the reêectance of neighbouring modes
can reach a factor of 1.5 ë 2. In the cases when the effective
Fresnel number is Neff91, the mirror interferometer
parameters must be optimised using the diffraction
approach.

The mirror interferometer has been considered as a
passive unit, which transforms the laser radiation but
does not affect the laser operation. The second part of
the work is to be devoted to the investigation of the
properties of an interferometer and a laser cavity as a
uniéed system.
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