
Abstract. We report efécient cascade up-conversion gene-
ration due to two simultaneous quasi-synchronous processes
of parametric decay x3 ! x1 � x2 of pump quanta at the
frequency x3 and up-conversion of one of the generated waves
x1 � x3 ! x4 > x3 at the frequency x1 in a medium with a
quadratic nonlinearity. It is found that the necessary
condition for this generation is the requirement j c1j2 >
(x2=x1) jc1j2, where c1;2 are the averaged constants of the
nonlinear coupling for the processes x1 � x2;3 ! x3;4,
respectively. If this requirement is fulélled, the plane
monochromatic pump wave is completely depleted, while
the limiting (the noise seed intensity is I10;20 ! 0 at the input)
eféciency of the energy conversion into radiation at the
frequency x4 is independent of I10;20 and determined only by
the relations between j c1;2j2 and the frequencies of the
interacting waves.

Keywords: quadratic nonlinearity, quasi-synchronous interaction,
efécient cascade parametric generation with up-conversion.

1. Introduction

The authors of paper [1] showed that the problem of
interaction of three plane collinear monochromatic waves
(modes) in a medium with a quadratic nonlinearity [2] can
be described in terms of the effective cubic nonlinearity [3].
In this case, the initial problem is reduced to three
independent stationary nonlinear Schr�odinger equations
(NSEs) relative to the wave amplitudes participating in the
processes. Later, the authors of paper [4] managed to
reduce, in a similar way, the problem of cascade [5] quasi-
synchronous [6] quadratic nonlinear conversion to a system
of two stationary NSEs with respect to the amplitudes
involved in both nonlinear processes. It was found in [4]
that this system is transformed into two identical inde-
pendent NSEs, which determines its solution in the form of
a sum and difference of two identical solutions of the same
NSE with shifted arguments and allows optimisation of the
process eféciency in any concrete situation.

By using the approach developed in [1, 4], we will
consider the problem of efécient cascade quasi-synchronous
parametric generation with up-conversion (with respect to
the pump wave frequency) and the peculiarities of the
analytic solutions corresponding to this process. Generation
of this type can proceed in a quadratic nonlinear medium
due to two simultaneous processes: parametric decay o3 !
o1 � o2 of pump quanta at the frequency o3 and up-
conversion o1;2 � o3 ! o4 > o3 of the frequency o1;2 of
one of the waves generated owing to this decay. According
to numerical calculations performed in paper [7] for the
process of the degenerate decay (photons at the frequencies
o1;2 are indiscernible), conversion of the pump energy êux
into radiation at the frequency o4 can be almost complete in
this case. However, because the degeneration regimes
correspond to singularities of the system phase space in
which the properties of its evolution change qualitatively,
the possibility to account only for the degenerate modes in
interactions for the generation problem casts some doubt.
Therefore, we will be interested below in the non-degenerate
(o1 6� o2) case and in the search, among the variants of its
realisation, for the analogues of `soft' excitation regime [8] in
which the conversion eféciency of the pump energy êux at
the frequency o4 can be large at any arbitrarily small input
noise seeds at the frequencies o1;2.

2. Cascade parametric generation

Consider collinear propagation of four (subscripts
i � 1; . . . ; 4) plane monochromatic waves (modes) with
multiple (for simplicity of notation) frequencies o1,
o2 � 2o1, o3 � o1 � o2 � 3o1 and o4 � o1 � o3 � 4o1,
wave vectors k1ÿ4, and complex amplitudes A1ÿ4 along the
z axis in a medium with a non-resonance quadratic
nonlinearity. We assume that their interaction is caused
by two nonlinear processes, o1 � o2;3 ! o3;4, with the
wave detunings Dk1;2 � k1 � k2;3 ÿ k3;4. Suppose that in a
nonlinear medium (half-space z5 0) there is a spatial
structure in which the signs of the nonlinear coupling
constants b1;2 for the processes o1 � o2;3 ! o3;4 change
periodically along the z axis, and in analogy with [4 ë 7], we
will write in the quasi-synchronous interaction regime

dA1

dz
� ÿig1A�2A3 ÿ ig2A

�
3A4; (1a)

dA2

dz
� ÿi2g1A�1A3; (1b)
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dA3

dz
� ÿi3g�1A1A2 ÿ i3g2A

�
1A4; (1c)

dA4

dz
� ÿi4g�2A1A3: (1d)

Here, g1;2 � hb1;2 exp (ÿiDk1;2z)iz are the averaged nonlinear
coupling constants for the processes o1 � o2;3 ! o3;4

respectively.
System (1) has éve second-order integrals, J0ÿ4 � const,

corresponding to the law of conservation of the total energy
êux and the so-called Manly ëRow relations [2]

J0 � I1 � I2 � I3 � I4; (2a)

J1 � I1 ÿ I2 ÿ
1

3
I3; J2 � I1 ÿ

1

2
I2 �

1

4
I4;

(2b)

J3 � I1 �
1

3
I3 �

1

2
I4; J4 � I2 �

2

3
I3 �

1

2
I4:

However, only two of these integrals are independent, and
we can write, for example, that

I2 ÿ I20 � �I1 ÿ I10� ÿ
1

3
�I3 ÿ I30�;

(3)

I4 ÿ I40 � ÿ2�I1 ÿ I10� ÿ
2

3
�I3 ÿ I30�;

where Ii � AiA
�
i are proportional to the wave intensities

and Ii0 � Ai0A
�
i0 � AiA

�
i jz�0.

It follows from (3) that within the framework of the
formulated problem, it is sufécient to consider only the
situation in which the mode at the frequency o3 plays the
role of the pump, i.e. the case I30 6� 0 and I10;20;40 � 0 (more
exact, I10;20;40 4 I30). Indeed, this role cannot be assigned to
the modes at the frequencies o1;2, because I2 4 0 at I10 6� 0,
I20 � I30 � I40 � 0 and I4 4 0 at I20 6� 0, I10 � I30 � I40 � 0
respectively. If the highest-frequency mode (with the fre-
quency o4) is the pump, the increase in its frequency due to
two above-mentioned nonlinear processes is impossible.

Further passage from (1) to second-order equations
yields, in analogy with [4], a closed system of equations
for A1;3 in the form

d2A1

dz 2
� ÿ3G�jA1j2A1 � 3sjGÿjjA3j2A1 � 3J13A1; (4a)

d2A3

dz 2
� ÿ9G�jA1j2A3 � sjGÿjjA3j2A3 � 3J13A3 (4b)

with the boundary conditions

A1jz�0 � A10;
dA1

dz

����
z�0
� ÿig1A�20A30 ÿ ig2A

�
30A40; (5a)

A3jz�0 � A30;
dA3

dz

����
z�0
� ÿi3g�1A10A20 ÿ i3g2A

�
10A40; (5b)

where G� � jg1j2 � 2jg2j2; J13 � jg1j2J1 � 2jg2j2J3; s �
sign(Gÿ) is a sign-alternating function taking the values
�1 at jg1j2 > 2jg2j2 and jg1j2 < 2jg2j2, respectively. In this

case, the wave intensities I2;4 can be found from relations
(3).

It is easy to verify that in the situation of interest to us,
when I30 6� 0, I10 � I20 � I40 � 0, 3J13 � ÿsjGÿjI30, and
taking into account the boundary conditions

A1jz�0 � 0;
dA1

dz

����
z�0
� 0; (6a)

A3jz�0 � A30;
dA3

dz

����
z�0
� 0 (6b)

system (4) has the only trivial solution:

A1�z� � 0; A3�z� � A30. (7)

However, this solution is unstable with respect to small
perturbations. We will assume below that small
(I30 4 I10;20;40 6� 0) noise (see below) seeds A10;20;40 6� 0 for
the amplitudes A1;2;4 of those modes, which should be
énally generated in a nonlinear medium, play the role of
such perturbations. As will be shown below, this allows one
to realise efécient cascade parametric generation with up-
conversion.

Below, we will restrict our consideration to the analysis
of constant and optimal (from the point of view of the
generation development rate) initial phases ji � ji0 (see
below) of all the four interacting modes. In fact, this is
equivalent to the assumption that the source of the seeds
ensuring the development of generation is the input noise in
which the necessary spectral components with such optimal
initial phases are always present. In this case, selecting by
the substitution

Ai�z� � Xi�z� exp�iji0) (8)

real and non-negative [in the input plane (Xijz�0 � Xi0 5 0)]
amplitudes Xi of the interacting modes for the optimal
relation for ji0, speciéed by the conditions

j10 � j20;30 ÿ j30;40 ÿ jg1 ;g2 �
p
2
� 0; (9)

which provide the maximum growth rate of X2;4 due to
transformation of equations (1b) and (1d) into relations

dX2

dz
� 2jg1jX1X3;

dX4

dz
� 4jg2jX1X3; (10)

we will reduce problem (4) to the system

d2X1

dz 2
� ÿ3G�X 3

1 � 3sjGÿjX 2
3X1 � 3J13X1; (11a)

d2X3

dz 2
� ÿ9G�X 2

1X3 � sjGÿjX 3
3 � 3J13X3 (11b)

with the boundary conditions

X1jz�0 � X10;
dX1

dz

����
z�0
� �jg1jX20X30 ÿ jg2jX30X40; (12a)

X3jz�0 � X30;
dX3

dz

����
z�0
� ÿ3jg1jX10X20 ÿ 3jg2jX10X40: (12b)
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In (9), the phases j1;2 are determined by the relations
g1;2 � jg1;2j exp (ijg1;2 ):

It is easy to check that the further analysis can be
restricted by two situations only in which either I30 6� 0,
I10 6� 0, I20 � I40 � 0 (case I), or I30 6� 0, I20 6� 0,
I10 � I40 � 0 (case II). Indeed, at I30 6� 0, I10 � I20 � 0
the trivial solution of (7) proves stable with respect to
small êuctuations of I40 (at least, in the érst approximation)
because

X10;20 �
dX1;2

dz

����
z�0
� 0; X3;4jz�0 � X30;40; and

dX3;4

dz

����
z�0
� 0:

3. Exact analytic solutions

Consider érst case I when X30 6� 0, X10 6� 0, X20 � X40 � 0:
In this case, 3J13 � 3G�I10 ÿ sjGÿjI30, and system (11) has
the boundary conditions

X1;3jz�0 � X10;30 �
����������
I10;30

p
;
dX1;3

dz

����
z�0
� 0: (13)

Although the authors of paper [4] did not consider the
situation with the boundary conditions of type (13), the
exact solutions for this case can be found by using the same
method of separation of variables. At s � ÿ1 (i.e. jg1j2 <
2jg2j2) system (11), by using substitutions Y1(z) �
X1(z)� X2(z) and Y2(z) � X1(z)� X2(z), is still reduced
to two identical independent NSEs with the nonlinearity
of focusing type. Therefore, Y1;2(z) should be proportional
to the same fundamental solution of the NSE [4, 9] (i.e. one
of two possible elliptic Jacobi functions: cn(gz; k) or
dn(gz; k) [10]) but with the arguments shifted relative to
each other (see [4]). The proportionality coefécient, param-
eter g, and modulus 15 k5 0 of this elliptic Jacobi function
are determined by the coefécients of the NSE obtained in
this way, and the shift of the arguments Y1;2(z), taking into
account (13), should be set by the conditions

Y1;2jz�0 � Y10;20 6� 0; Y10 6� Y20 and
dY1;2

dz

����
z�0
� 0:

These three conditions can be fulélled only when
Y1;2(z) / dn(gz; k), and Y2;1(z) / dn(gz� K; k) � k 0�
dnÿ1(gz; k), where k 0 �

��������������
1ÿ k 2
p

; K(k) is the complete
elliptic integral of the érst kind [10]. Therefore, at
jg1j2 < 2jg2j2, system (11) with boundary conditions (13)
has two types of solutions, which will be written by using
the identities dn(z; k)� dn(z� K; k) � (1� k 0)dn(~z; ~k) and
dn(z; k)ÿ dn(z� K; k) � (1ÿ k 0)cn(~z; ~k�, which follow from
the so-called ascending Landen transformation [11]. Here,
~z � (1� k 0)z, ~k � (1ÿ k 0)=(1� k 0).

Taking into account the above assumptions, at

jg1j2 < 2jg2j2 and I10 <
1

3

2jg2j2 ÿ jg1j2
2jg2j2 � jg1j2

I30

system (11) has the solution

X1 �
������
I10

p
cn�gz; k�; X3 �

������
I30

p
dn�gz; k�; (14a)

I2 �
1

3
I30�1ÿ dn2�gz; k�� ÿ I10sn

2�gz; k�;
(14b)

I4 �
2

3
I30�1ÿ dn2�gz; k�� � 2I10sn

2�gz; k�:

Here, the values of the parameters k and g are determined
by the relations

k 2g 2 � 6�2jg2j2 � jg1j2�I10; g 2 � 2�2jg2j 2 ÿ jg1j2�I30: (15)

It is easy to verify that the positions of the maxima z � zmax

on the dependence I4(z) correspond to the condition
cn(gzmax; k) � 0; from whence,

zmax � �2mÿ 1�gÿ1K�k�; (16)

where m � 1; 2; . . . is an arbitrary positive integer. In this
case,

I4max � I4�zmax� � 8
jg2j2

2jg2j2 ÿ jg1j2
I10 ! 0 for I10 ! 0; (17)

which is unsuitable for creating an efécient generator
operating in the soft excitation regime.

At

jg1j2 < 2jg2j2 and I10 >
1

3

2jg2j2 ÿ jg1j2
2jg2j2 � jg1j2

I30

the functions, which are fulélled by the modes with the
frequencies o1 and o3, in fact interchange their places. This
yields at once

X1 �
������
I10

p
dn�gz; k�; X3 �

������
I30

p
cn�gz; k�; (18a)

I2 �
1

3
I30�1ÿ dn2�gz; k�� ÿ I10sn

2�gz; k�;
(18b)

I4 �
2

3
I30�1ÿ dn2�gz; k�� � 2I10sn

2�gz; k�:

Here, the values of the parameters k and g are determined
by the relations

k 2g 2 � 2�2jg2j2 ÿ jg1j2�I30; g 2 � 6�2jg2j2 � jg1j2�I10: (19)

In this case, solution (18) corresponds to the hard excitation
regime of the system because the seed intensity I10 at the
nonlinear medium input should be large. Moreover,
analysing the character of the dependences of I1(z) speciéed
in (14a) and (18a), we can conclude that in these two
solutions the noise seed itself, I10, in fact plays the role of
the second component of the pump because I1(z)4 I10:

At érst glance, solutions (14) and (18) are new and were
not derived in paper [4]. However, this is not so and at
sn(b~z0; k

0) � (1� k 0)ÿ1 (b~z0 � K=2, see notations in [4]),
both these solutions, taking into account the possible
permutation of subscripts 1$ 3, can be obtained from
the relations similar to expressions (33) from paper [4] with
the help of the Landen transformation [11] and the shift of
the transformation result by a quarter of the period K along
the z axis. Moreover, by all appearances, many stationary
solutions of a system consisting of two NSEs, known from
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the literature, can be presented due to the Landen trans-
formation and the mentioned identities in a simpler form.

At s � �1 (i.e. at jg1j2 > 2jg2j2), the only possible
solution of system (11) is also determined by the expressions
(47) [4] shifted along z axis by K at sn(2b~z0; k

0) � 0
(b~z0 � K=2, see notations in [4]), which allows one to write
it in the form

X1 �
������
I10

p 1

dn�gz; k� ; X3 �
������
I30

p cn�gz; k�
dn�gz; k� ; (20a)

I2 �
1ÿ dn2�gz; k�
dn2�gz; k� I10 �

1

3

dn2�gz; k� ÿ cn2�gz; k�
dn2�gz; k� I30;

(20b)

I4 � ÿ2
1ÿ dn2�gz; k�
dn2�gz; k� I10 �

2

3

dn2�gz; k� ÿ cn2�gz; k�
dn2�gz; k� I30:

Here, the values of the parameters k and g are determined
by the relations

k 2g 2 � 2�jg1j2 ÿ 2jg2j2�I30;
(21)

g 2 � 2�3�jg1j2 � 2jg2j2�I10 � �jg1j2 ÿ 2jg2j2�I30�:
In this case, localisation of the maxima z � zmax on the
dependence I4(z) corresponds to the condition
cn(gzmax; k) � 0, i.e. is set by expression (16) in which g
and k are determined by relations (21). It is easy to see that
now

I4max � I4�zmax� �
8

3

jg2j2
jg1j2 � 2jg2j2

I30 (22)

does not change with varying the seed intensity I10 at the
nonlinear medium input and, hence, at I10 ! 0 the quantity
I4maxj2jg2 j2!jg1j2 ! 2

3
I30 can be large.

Note that, unlike numerical calculations [7] performed
for the case of the degenerate decay (photons at the
frequencies o1;2 are indiscernible), the conversion of the
pump energy êux into radiation at the frequency o4 in non-
degenerate situations is never complete. At points z � zmax,
where the pump wave is completely depleted, a part of its
energy êux J0 ÿ I4max is redistributed between two other
generated modes

I1�zmax� � I10 �
1

3

jg1j2 ÿ 2jg2j2
jg1j2 � 2jg2j2

I30;

(23)

I2�zmax� �
2

3

jg1j2
jg1j2 � 2jg2j2

I30; I3�zmax� � 0:

Note also that although in the case under study I4max is
independent of I10, the presence of the seed for the
generation process is crucial. The matter is that the position
of those points z � zmax, at which the maximum energy
eféciency is realised, depends on I10 and, because

k 2 � 1ÿ 3
jg1j2 � 2jg2j2
jg1j2 ÿ 2jg2j2

I10
I30
! 1;

(24)

g 2 ! 2�jg1j2 ÿ 2jg2j2�I30 for I10 ! 0;

zmax and the nonlinear medium length L � zmax required for
efécient conversion grow inénitely at I10 ! 0.

Consider now case II when X30 6� 0, X20 6� 0, X10 �
X40 � 0. In this case, 3J13 � ÿ3jg1j2I20 ÿ sjGÿjI30, and
system (11) has the boundary conditions

X1jz�0 � 0;
dX1

dz

����
z�0
� jg1jX20X30 � jg1j

�����������
I20I30

p
; (25a)

X3jz�0 � X30 �
������
I30

p
;

dX3

dz

����
z�0
� 0; (25b)

corresponding to the situations considered previously in [4].
Therefore, all the searched-for solutions are reduced to
expressions (32), (33), and (44) from paper [4] corrected
taking into account the concrete choice of relations between
the frequencies o1ÿ4 of the interacting modes.

At

jg1j2 < 2jg2j2 and I20 <
1

24

�jg1j2 ÿ 2jg2j2�2
jg1j2jg2j2

I30

the form of the solution of system (11) corresponds to
expressions (33) from paper [4] and

X1 �
2g

��������������������
jg1j2I20I30

q
sn�gz; k�cn�gz; k�

2g 2 ÿ �g 2k 2 ÿ 3jg1j2I20�sn2�gz; k�
;

(26a)

X3 �
2g 2

������
I30

p
dn�gz; k�

2g 2 ÿ �g 2k 2 ÿ 3jg1j2I20�sn2�gz; k�
;

I2 � I20

�
1� 2jg1j2I30sn2�gz; k�

2g 2 ÿ �g 2k 2 ÿ 3jg1j2I20�sn2�gz; k�

�2
;

(26b)

I4 �
16jg1j2jg2j2I20I 2

30sn
4�gz; k�

�2g 2 ÿ �g 2k 2 ÿ 3jg1j2I20�sn2�gz; k��2
:

Here, the values of the parameters k and g are determined
by the relations

k 2g 2 �
�����������������
3jg1j2I20

q ������������������������������������������������������������
3jg1j2I20 � 2�jg1j2 � 2jg2j2�I30

q
;

g 2 � 1

2

�
�2jg2j2 ÿ jg1j2�I30 �

�����������������
3jg1j2I20

q
(27)

�
� ������������������������������������������������������������

3jg1j2I20 � 2�jg1j2 � 2jg2j2�I30
q

ÿ
�����������������
3jg1j2I20

q ��
:

It is easy to check that the positions of the maxima z � zmax

on the dependence I4(z) still correspond to condition (16) at
g and k speciéed by expressions (27). In this case,

I4max � I4�zmax�

� 16
jg1j2jg2j2

�2jg2j2 ÿ jg1j2�2
I20 ! 0 for I20 ! 0; (28)

which, as in the previously considered case of solution (14),
is not suitable for realising an efécient generator operating
in the soft excitation regime.

The case when
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I20 >
1

24

�jg1j2 ÿ 2jg2j2�2
jg1j2jg2j2

I30

at any relation jg1j2 and 2jg2j2 is reduced, in the form, to
solution (32) from paper [4], and

X1 �
2g

��������������������
jg1j2I20I30

q
sn�gz; k�dn�gz; k�

g 2 � 3jg1j2I20 � �g 2 ÿ 3jg1j2I20�cn2�gz; k�
;

(29a)

X3 �
2g 2

������
I30

p
cn�gz; k�

g 2 � 3jg1j2I20 � �g 2 ÿ 3jg1j2I20�cn2�gz; k�
;

I2 � I20

�
1� 2jg1j2I30sn2�gz; k�

g 2 � 3jg1j2I20 � �g 2 ÿ 3jg1j2I20�cn2�gz; k�

�2
;

(29b)

I4 �
16jg1j2jg2j2I30sn4�gz; k�

�g 2 � 3jg1j2I20 � �g 2 ÿ 3jg1j2I20�cn2�gz; k��2
:

The values of the parameters k and g are set by the relations

k 2g 2 � 1

2
�g 2 ÿ 3jg1j2I20 ÿ �jg1j2 ÿ 2jg2j2�I30�;

(30)

g 2 �
�������������������������������������������������������������������������������
3jg1j2I20�3jg1j2I20 � 2�jg1j2 � 2jg2j2�I30�

q
:

It is obvious that solution (29) also corresponds to the hard
excitation regime of the system because the seed intensity
I20 at the nonlinear medium input should be large.

And énally, at

jg1j2 > 2jg2j2 and I20 <
1

24

�jg1j2 ÿ 2jg2j2�2
jg1j2jg2j2

I30

system (11) has one more solution, which is reduced to
expressions (44) from paper [4]. This solution, as solution
(20) considered above, provides the possibility of realising
an efécient cascade generator operating in the soft
excitation regime,

X1 �
2

�������������������������
g 2jg1j2I20I30

q
sn�gz; k�

2g 2 ÿ �jg1j2 ÿ 2jg2j2�I30sn2�gz; k�
;

(31a)

X3 �
������
I30

p 2g 2cn�gz; k�dn�gz; k�
2g 2 ÿ �jg1j2 ÿ 2jg2j2�I30sn2�gz; k�

;

I2 � I20
�2g 2 � �jg1j2 � 2jg2j2�I30sn2�gz; k��2
�2g 2 ÿ �jg1j2 ÿ 2jg2j2�I30sn2�gz; k��2

;

(31b)

I4 �
16jg1j2jg2j2I20I230sn4�gz; k�

�2g 2 ÿ �jg1j2 ÿ 2jg2j2�I30sn2�gz; k��2
.

The values of the parameters k and g are determined here
by the relations

k 2g 2 � 1

2

�
�jg1j2 ÿ 2jg2j2�I30 ÿ

�����������������
3jg1j2I20

q

�
� ������������������������������������������������������������

3jg1j2I20 � 2�jg1j2 � 2jg2j2�I30
q

ÿ
�����������������
3jg1j2I20

q ��
;

(32)

g 2 � 1

2

�
�jg1j2 ÿ 2jg2j2�I30 �

�����������������
3jg1j2I20

q

�
� ������������������������������������������������������������

3jg1j2I20 � 2�jg1j2 � 2jg2j2�I30
q

�
�����������������
3jg1j2I20

q ��
:

In this case, the condition cn(gzmax; k) � 0 also corre-
sponds to localisation of the maxima z � zmax; therefore
their positions are still determined by expression (16) into
which we should substitute g and k speciéed by relations
(32). It is easy to verify that although

I4max � I4�zmax� �
16

3

� jg2j2I 2
30h ������������������������������������������������������������

3jg1j2I20 � 2�jg1j2 � 2jg2j2�I30
q

ÿ
�����������������
3jg1j2I20

q i2 (33)

and depends on the seed intensity I20 at the nonlinear
medium input, all the limiting (I20 ! 0) characteristics of
the converter remain the same as those for solution (20).
Retained in this case is both limiting (I20 ! 0) conversion
eféciency (20) and those fraction in which, unlike the
numerical results [7], the remaining part of the pump energy
êux J0 ÿ I4max is redistributed between other generated
modes (23).

As in the case of solution (20), the presence of the seed at
the nonlinear medium input is also crucial because the
position of those points on the z axis, at which the maximum
conversion eféciency is realised, depends on I20, and because
at I20 ! 0

k 2 � 1ÿ
��������������������������������

6jg1j2
jg1j2 � 2jg2j2

I20
I30

s
! 1;

(34)

g 2 ! 1

2
�jg1j2 ÿ 2jg2j2�I30;

zmax and the nonlinear medium length L � zmax required for
efécient conversion also grow inénitely at I20 ! 0.

4. Conclusions

By using the approach of paper [4], we have considered
analytically the problem of realisation of the efécient
cascade (simultaneous processes of the decay o3 ! o1 � o2

of the pump quanta at the frequency o3 and up-conversion
o1;2 � o3 ! o4 > o3 of one of the waves generated in
quadratic nonlinear medium at the frequency o1;2) quasi-
synchronous parametric generation with up-conversion
(ampliécation) (with respect to the pump wave frequency).

Unlike the numerical calculations performed in [7] for
the case of the degenerate decay (a singularity of the system
phase space at which photons at the frequencies o1;2 are
indiscernible and the possibility of taking into account only
degenerate mode in the problem of the generation type casts
some doubts), we have shown that in non-degenerate cases
(o1 6� o2) the conversion of the pump energy êux into
radiation at the frequency o4 cannot be complete. We have
found that the necessary condition for realising the `soft'
excitation regime of the system is the requirement j g1j2 >
(o2=o1) j g2j2: If this requirement is fulélled, the plane

Efécient cascade quasi-synchronous parametric generation 333



monochromatic pump wave is completely depleted, and the
limiting (the noise seed intensity I10;20 ! 0 at the nonlinear
medium input) eféciency of conversion of its energy êux
into radiation at the frequency o4 is independent of I10;20
and determined only by the relations between the nonlinear
coupling constants g1;2 and the frequencies of the interacting
waves. It is these parameters that determine those fraction in
which the pump energy êux is redistributed between the
waves I1;2;4 generated in the nonlinear medium. At the same
time, the presence of the noise seeds at the nonlinear
medium input is obligatory because the nonlinear medium
length (required to realise efécient conversion), which
depends on I10;20 and at I10;20 ! 0 tends to inénity.

Note that the solutions, describing the ordinary para-
metric generation on a nonlinear medium (i.e. the process
o3 ! o1 �o2) [2], which can be obtained from the above
expressions at jg2j2 ! 0, behave in this manner.
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