
Abstract. An approach based on the description of
competition of quadratic processes of merging and decom-
position of quanta resulting in the formation of cnoidal waves
on an effective cascade cubic Kerr-type nonlinearity is used to
optimise the scheme of a single-cavity optical parametric
oscillator. It is shown that the use of a feedback circuit
(cavity) decreases the period of cnoidal waves produced in a
nonlinear crystal, while the optimisation procedure of the
transfer constant of this circuit (reêectivity of the output
mirror of the cavity) is reduced to matching this period with
the nonlinear crystal length.

Keywords: quadratic and cascade cubic nonlinearities, optical
parametric oscillator, period of cnoidal waves, nonlinear crystal
length, optimisation of the transfer constant of the feedback circuit.

1. Introduction

The authors of paper [1] showed that periodic solutions of
the nonlinear Schr�odinger equation (NSE) ë cnoidal waves
ë play a key role in one of the classical problems of
nonlinear optics, namely, in describing the parametric
frequency conversion on a quadratic nonlinearity [2]. It was
established that the problem of interaction of three plane
monochromatic waves, modes with the frequencies o1, o2

and o3 � o1 � o2 is conveniently solved by increasing the
order of the system of truncated equations, which is
reduced, in this case, to three independent NSEs coupled by
boundary conditions. This corresponds to the description of
competition of quadratic processes of quantum merging
(o1 � o2 ! o3) and decomposition (o3 ! o1� o2) by the
effective cascade cubic Kerr-type nonlinearity [3]. In paper
[4], the same approach was used to consider cascade
parametric processes. Papers [5, 6] presented the solutions
describing the parametric generation (including cascade
generation) in a scheme of a travelling-wave generator in
which the feedback (cavity) is absent and, therefore, a weak
input noise is parametrically ampliéed in a nonlinear
crystal.

Below, we will use a similar approach to solve the

problem of optimisation of a single-cavity optical para-
metric oscillator (OPO) scheme [2]. We will show that in this
case the use of the feedback circuit (cavity) in the oscillator
decreases the period of the cnoidal waves being produced
and the optimisation procedure of the transfer constant of
this circuit (reêectivity of the output mirror of the cavity) is
reduced to matching this period with the nonlinear crystal
length.

2. Parametric conversion and NSE

As in paper [1], consider collinear interaction of three plane
monochromatic waves: two waves ë at the fundamental
frequency (amplitudes A1;2, frequencies o1;2 � o, wave
vectors k1;2) and one wave ë at the second harmonic
frequency (amplitude A3, frequency o3 � 2o, wave vector
k3), propagating from the plane z � 0 along the z axis in a
medium with a quadratic nonlinearity, i.e., in a nonlinear
crystal. Neglecting anisotropy and absorption, we assume
érst of all that the nonlinear crystal occupies the half-space
z5 0 and realises nondegenerate (due to orthogonal linear
polarisations of modes at frequencies o1;2) parametric
process of the so-called II type (oee interaction), which is
described by the well-known system of equations for the
amplitudes of three coupled éelds ë modes [2]:

dA1

dz
� ÿibA�2A3 exp�ÿiDz�; (1a)

dA2

dz
� ÿibA�1A3 exp�ÿiDz�; (1b)

dA3

dz
� ÿi2bA1A2 exp��iDz�; (1c)

where b is the nonlinear coupling constant; D � k1�
k2 ÿ k3 is the wave detuning. System (1) has two second-
order integrals of motion:

I1 z� � � I2 z� � � I3 z� � � I10 � I20 � I30;
(2)

I1 z� � ÿ I2 z� � � I10 ÿ I20;

describing the law of conservation of the energy êux density
and Manly ëRow relations [2]. Here, Ii(z) � Ai(z)A

�
i (z) is a

variable proportional to the intensity of the ith (i � 1ÿ 3)
wave, which we will call below the intensity; Ii 0 � Ii(z � 0).

After substituting Ai(z)! ~Ai(z) exp (ÿiaiz) and selecting
such constants ai so that
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a1 � a2 ÿ a3 ÿ D � 0; (3)

system (1) is reduced to three closed second-order equations
having the form of a NSE:

d 2 ~A1

dz 2
ÿ b 2

�
4I10 ÿ 2I20 � I30ÿ

D 2

4b 2
ÿ 4A1A

�
1

�
~A1 � 0; (4a)

d 2 ~A2

dz 2
ÿ b 2

�
ÿ2I10 � 4I20 � I30ÿ

D 2

4b 2
ÿ 4A2A

�
2

�
~A2 � 0; (4b)

d 2 ~A3

dz 2
� 2b 2

�
I10 � I20 � I30 �

D 2

8b 2
ÿ ~A3

~A�3

�
~A3 � 0 (4c)

with boundary conditions supplemented by the values of
the érst derivatives ~Ai at z � 0

~A10 � A10;
d ~A1

dz

����
z�0
� i

D
2

~A10 ÿ ib ~A�20 ~A30, (5a)

~A20 � A20;
d ~A2

dz

����
z�0
� i

D
2

~A20 ÿ ib ~A�10 ~A30, (5b)

~A30 � A30;
d ~A3

dz

����
z�0
� ÿiD

2
~A30 ÿ i2b ~A10

~A20, (5c)

which follow from system (1). The set of constants ai in
equations (4a), (4b), and (4c) is different:

a1 � D=2; a2 ÿ a3 � D=2, (6a)

a1 ÿ a3 � D=2; a2 � D=2; (6b)

a1 � a2 � D=2; a3 � ÿD=2; (6c)

and can be combined only in pairs [7].

3. Nondegenerate parametric generation
in the absence of feedback

System (4) can be conveniently solved by selecting
preliminary the real amplitudes Xi and phases ji of the
modes interacting in the nonlinear crystal with the help of
substitution of the variables ~Ai ! Xi exp (iji). Then, it
would be logical to assume that I10;20 � 0 and I30 6� 0.
However, taking (6) into account the required solutions of
(4) will be trivial in this case ( ~A1;2 � 0 and ~A3 � ~A30) and
unstable with respect to êuctuations A10;20. Therefore, we
will have to consider below a more complicated situation
when seed radiation with the frequency o1 and intensity
I30 � X 2

30 4 I10 � X 2
10 6� 0 is present at the nonlinear crystal

input, where Xi 0 � Xi (z � 0). Then, the waves at the
frequencies o1 and o2 will be conditionally (due to the
symmetry of subscript permutation 1$ 2) called idle and
signal waves, respectively.

Taking into account the fact that ~A20 � 0, the phase ~A2

is a constant and j2 � j20 [8]. In this case, the maximal
initial (at point z � 0) growth rate of I2 is realised under the
condition j20 � j30 ÿ j10 ÿ p=2, which we will consider
fulélled. Then,

dX2

dz

����
z�0
� bX10X30: (7)

The phases j1;3 of the amplitudes ~A1;3 of two other waves
experience nonlinear oscillations:

dj1;3

dz

����
z�0
� �D

2
; (8)

therefore, we will seek the required solution of the initial
problem by analysing equation (4b), which, taking into
account the condition j2 � j20, has now the form

d 2X2

dz 2
ÿ b 2

�
ÿ2I10 � I30 ÿ

D 2

4b 2
ÿ 4X 2

2

�
X2 � 0; (9a)

X20 � 0;
dX2

dz

����
z�0
� b

�����������
I10I30

p
: (9b)

To this end, the evolution of the idle-wave and pump-wave
intensities I1;3(z) will be determined by the second-order
integrals (2) of system (1).

Because equation (9a) represents a NSE with the Kerr
nonlinearity of focusing type and boundary conditions (9b)
are fulélled, the desired solution should be [9] proportional
to the function cn(gz; k) shifted by a quarter of its period,
equal to K(k), along the z axis, i.e. [10]

X2�z� �
�����������
I2max

p
k 0

sn�gz; k�
dn�gz; k� : (10)

Here, sn(gz; k), cn(gz; k) and dn(gz; k) are elliptic Jacobi
functions with the modulus k; K(k) is the complete normal
elliptic Legendre integral of the érst kind; k 0 �

��������������
1ÿ k 2
p

[10]; the maximal intensity of the signal wave, I2max, as well
as the constants g and k are the parameters, which should
be determined. Therefore, substituting (10) into (9), we énd

I2max �

2I10I30

f8I10I30 � �I30 ÿ 2I10 ÿ D 2=�4b 2��2g1=2 ÿ �I30 ÿ 2I10 ÿ D 2=�4b 2��
;

(11a)

g 2 � b 2

�
8I10I30 �

�
I30 ÿ 2I10 ÿ

D 2

4b 2

�2 �1=2
; (11b)

k 2 � 1

2
�

f8I10I30 � �I30 ÿ 2I10 ÿ D 2=�4b 2��2g1=2 � �I30 ÿ 2I10 ÿ D 2=�4b 2��
f8I10I30 � �I30 ÿ 2I10 ÿ D 2=�4b 2��2g1=2

:

(11c)

In this case, it follows from (2) that the dependences I1;3(z)
have the same period 2K(k) as the dependences I2(z) and
are described by expressions

I1�z� � I10 � I2max�1ÿ k 2� sn
2�gz; k�

dn 2�gz; k�; (12a)

I3�z� � I30 ÿ 2I2max�1ÿ k 2� sn
2�gz; k�

dn 2�gz; k�: (12b)
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In the case D � 0 (the most interesting from the point of
view of practical OPO realisation), the above presented
relations (11) are more simpliéed and have the form

I2max �
1

2
I30; (13a)

g 2 � b 2�I30 � 2I10�; k 2 � I30
I30 � 2I10

: (13b)

These expressions show that in the absence of the wave
detuning the change in the seed intensity I10, without
changing the limiting conversion eféciency of pump
radiation into radiation at the signal frequency [see
(13a)] allows one in essence to control the periodicity of
the energy exchange processes in the nonlinear crystal
[change in K(k) due to the change in the parameters g and
k, see (13b)]. Because at I10 ! 0, the parameters k 2 ! 1
and g 2 ! b 2I30 (i.e. g remains énite), the desired solution of
the problem in this limit becomes solitary (soliton-like) and
its maximum is localised on inénity. Therefore, the limiting
conversion eféciency can be realised only asymptotically (at
z!1).

4. Nondegenerate parametric generation
and optimal feedback

Let us introduce now the feedback only in the idle wave
(so-called single-cavity OPO scheme). We will assume that
the nonlinear crystal has the énite length L and some part
jRj2 of the output (the plane z � L) idle-wave intensity
I1(L) again returns to the converter input (in the plane
z � 0). Here, R is the complex transfer constant of the éeld
A1 from the output to the input. When the frequencies are
equal (o1 � o2), this means that the feedback circuit is
polarisation selective. Assuming that due to the optimal
choice of the phase incursion in the feedback circuit (phases
of the transfer constant R), the condition j20 � j30ÿ
j10 ÿ p=2 is still fulélled, and taking (12a) into account, we
derive the relation

I10 �
jRj2

1ÿ jRj2 I2max�1ÿ k 2� sn
2�gL; k�

dn 2�gL; k�: (14)

Let the parameter jRj have the optimal value jRjopt at
which

sn 2�g�jRjopt�L; k�jRjopt�� � 1; (15)

i.e., so that

I10 �
jRj2opt

1ÿ jRj2opt
I2max; I1�L� �

I2max

1ÿ jRj2opt
;

(16a)

I1out � �1ÿ jRj2opt�I1�L� � I2max,

I2�L� � I2max; (16b)

I3�L� � I30 ÿ 2I2max: (16c)

Here, Iout is the radiation intensity at the frequency o1 at
the cavity output. In this case, it follows from (11), taking
into account (16), that in the general case

I2max �
1

2

�
I30 ÿ �1ÿ jRj2opt�

D 2

4b 2

�
, (17a)

g 2 � b 2

1ÿ jRj2opt

�
I30 ÿ �1ÿ jRj2opt�

2 D 2

4b 2

�
; (17b)

k 2 � �1ÿ jRj2opt�
I30 ÿ �1ÿ jRj2opt�D 2=�4b 2�
I30 ÿ �1ÿ jRj2opt�

2
D 2=�4b 2�

; (17c)

where Ropt is determined by the transcendental equation

g�jRjopt�L � K �k�jRjopt��: (18)

Note that in the stationary regime, the idle-wave intensities
both at the nonlinear crystal input (I10) and at its output
[I1(L)] can signiécantly exceed I2max due to accumulation of
the energy in the cavity, which is taken away from the
pump wave during the transient process.

In the same most interesting case D � 0, expressions (17)
and (18) are simpliéed:

I2max �
1

2
I30; g

2 � b 2I30

1ÿ jRj2opt
; k 2 � 1ÿ jRj2opt; (19)

where the optimal reêectivity of the coupling mirror is
determined by the solution of the expression

�1ÿ jRj2opt�1=2K ��1ÿ jRj2opt�1=2� � b
������
I30

p
L: (20)

Because �1ÿ jRj2opt�1=2 � k and the dependence K(k) is
tabulated, the solution of (20) could be sought for
graphically, which is illustrated in Fig. 1. However, at
k5 1 �jRj2opt � 1) and k � 1 (jRj2opt 5 1), we can make use
of the expansions of K(k) into series [10].

y; y1; y2
4

3

2

1

0 0.25 0.50 0.75 1.00

jRj2opt

Figure 1. Graphical solution of equation (20). Dependence y�jRj2opt� �
�1ÿ jRj2opt�1=2K ��1ÿ jRj2opt�1=2] is shown by a solid curve, dependence
y1�jRj2opt� � b

�������
I30

p
L � const (or y2�jRj2opt� � �2 �j g1j2 ÿ 2 j g2j2�I30�1=2

�L � const) is shown by the dash-and-dot line. The optimal reêectivity
of the feedback mirror jRj 2opt is determined by the abscissa of the point of
intersection of solid and dash-and-dot lines.
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5. Cascade parametric generation and optimal
feedback

In analysing the cascade parametric generation, we will
restrict our consideration to only one of two possible
situations, which were previously discussed [6]. Consider the
collinear interaction of four (i � 1ÿ 4) modes with multiple
frequencies o1, o2 � 2o1, o3 � o1 � o2 � 3o1 and o4 �
o1 � o3 � 4o1, the wave vectors ki and amplitudes Ai �
Xi exp (iji). Let the nonlinear processes o3 $ o1 � o2 and
o1 � o3 $ o4 with wave detunings D1;2 � k1 � k2;3 ÿ k3;4
and nonlinear coupling constants b1;2, respectively, proceed
in a medium. We will also assume that a structure is created
in the nonlinear crystal in which the signs b1;2 alternate
along the z axis with a period multiple of the coherent
lengths 2p=D1;2 (the quasi-phase-matching condition is
fulélled). We will also introduce the constants
g1;2 � hb1;2(z) exp (ÿiD1;2z)iz describing the averaged non-
linear coupling. It was shown in [6] that in this case, the
passage from the initial truncated érst-order equations to
second-order equations yields a closed system of two NSEs
for the mode amplitudes A1;3 and that when the travelling-
wave OPO is pumped by the mode at the frequency o3 and
the seed at the frequency o1 is present, in the case of the
optimal relation of the initial phases ji 0 speciéed by the
conditions

j10 � j20 ÿ j30 ÿ jg1
� p

2
� 0;

(21)

j10 � j30 ÿ j40 ÿ jg2
ÿ p

2
� 0;

the maximal initial (at point z � 0) growth rate of X2;4 is
provided. Here, jg1;2 are determined by the relations g1;2 �
jg1;2j exp (ijg1;2 ). At jg1j2 > 2jg2j2 and I20 � I40 � 0, the
cascade parametric generation with up conversion core-
sponds to the solution

X1 �
������
I10

p 1

dn�gz; k� ; X3 �
������
I30

p cn�gz; k�
dn�gz; k� ; (22a)

I2 �
1ÿ dn 2�gz; k�
dn 2�gz; k� I10 �

1

3

dn 2�gz; k� ÿ cn 2�gz; k�
dn 2�gz; k� I30;

(22b)

I4 � ÿ2
1ÿ dn 2�gz; k�
dn 2�gz; k� I10 �

2

3

dn 2�gz; k� ÿ cn 2�gz; k�
dn 2�gz; k� I30;

in which the dependences I2;4(z) are found from the law of
conservation of the energy êux density and Manly ëRow
relations, and

k 2 � �jg1j 2 ÿ 2jg2j 2�I30
3�jg1j 2 � 2jg2j 2�I10 � �jg1j 2 ÿ 2jg2j 2�I30

;

(23)

g 2 � 2�3�jg1j 2 � 2jg2j 2�I10 � �jg1j 2 ÿ 2jg2j 2�I30�:

It was found in [6] that localisation of the maxima of the
dependence I4(z) at z � zmax corresponds to the condition
jsn�gzmax; k�j2 � 1 and that

I4max � I4�zmax� �
8

3

jg2j2
jg1j 2 � 2jg2j2

I30 (24)

does not change with I10. At points z � zmax, the pump
wave is completely depleted and the remaining part of its
energy êux is redistributed between two other modes:

I1�zmax� � I10 �
1

3

jg1j2 ÿ 2jg2j2
jg1j2 � 2jg2j2

I30;

(25)

I2�zmax� �
2

3

jg1j2
jg1j2 � 2jg2j2

I30; I3�zmax� � 0:

It means that as in the previously considered case, the
change in I10, without changing the limiting conversion
eféciency of pump radiation into radiation at the signal
wave [see (24)], allows one to control the periodicity of the
energy exchange processes in the nonlinear crystal [the
change in K(k) due to a change in the parameters g and
k)]. Because at I10 ! 0, the parameters k 2 ! 1 and
g 2 ! 2(jg1j 2 ÿ 2jg2j 2)I30 (i.e., g remains énite), the solution
of the problem in this limit also becomes solitary, its
maximum is localised on inénity and the limiting eféciency
can be realised asymptotically (at z!1).

Let us assume now that unlike [6] and in accordance
with the above-considered procedure, the seed I10 is pro-
duced by a part jRj 2 of the output (plane z � zmax � L)
intensity I1(L), which returns to the converter input (z � 0).
Here, R is the complex transfer constant of the éeld A1 from
the output to the input. Assuming that conditions (21) are
still fulélled due to the optimal choice of the phase of the
transfer constant R, when selecting the optimal value
jRj � jRjopt, satisfying the same condition (18), we, taking
into account (24) and (25), obtain the relations

I1�L� �
1

3

1

1ÿ jRj2
jg1j2 ÿ 2jg2j2
jg1j2 � 2jg2j2

I30;

(26a)

I1out�L� � �1ÿ jRj2�I1�L� �
1

3

jg1j2 ÿ 2jg2j2
jg1j2 � 2jg2j2

I30;

I2�L� �
2

3

jg1j2
jg1j2 � 2jg2j2

I30; I3�L� � 0;

(26b)

I4�L� �
8

3

jg2j2
jg1j2 � 2jg2j2

I30;

k 2 � 1ÿ jRj2; g 2 � 2
jg1j2 ÿ 2jg2j2
1ÿ jRj2 I30: (26c)

Here, I1out is the radiation intensity at the frequency o1 at
the cavity output.

It is easy to see that optimisation of the feedback-circuit
transfer constant allowed us again to realise the limiting
conversion eféciency of the pump energy êux I30 into
radiation at the frequency o4 at the énite length of the
nonlinear crystal, this limiting eféciency also depending only
on the nonlinear coupling constants jg1;2j2 and Manly ëRow
relations. The optimal jRj2 can be still determined from
Fig. 1; however, the value of g should be now found from
relation (26c).
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6. Conclusions

We have shown that in the case of nondegenerate para-
metric generation neglecting the losses, the use of a positive
feedback circuit (cavity) for one of the generated modes
allows one to make the period of cnoidal waves produced in
the nonlinear crystal énite (to change the periodicity of the
energy exchange processes). In this case, the optimisation
procedure of the transfer constant of this circuit (in fact, the
reêectivity of the output mirror of the cavity) is reduced to
matching this period with the nonlinear crystal length and
to localisation of the plane, in which the conversion
eféciency is maximal, at the output face of the nonlinear
crystal. The limiting conversion eféciency does not change
and remains the same as in the case of a travelling-wave
OPO [5, 6] (i.e., determined either by the Manly ëRow
relations only [5], or in addition by two constants
describing the cascade nonlinear interaction [6]).

Note that the both requirements should be valid in the
case of two-cavity OPOs (including degenerate type-I
generation [2] in a single-cavity scheme). However, the
optimisation procedure in this case can prove to be more
complicated. First, the position of the plane, where the wave
intensities through which the feedback is closed are minimal,
is shifted with respect to the input face of the nonlinear
crystal (the érst derivatives of the wave intensities at z � 0
are not zeroed) [5]. Therefore, the optimal period of cnoidal
waves should be matched with the nonlinear crystal length
but will not be equal to it as was the case in two situations
considered above. In principle, even an exotic situation is
possible when the both the period and the afore-mentioned
shift are inénite but the maximum of the output-wave
intensity is localised at the back face of the nonlinear
crystal (at z � L). Second, in two-cavity OPO schemes,
the transfer constants of both feedback circuits (reêectivities
of the output mirrors of two cavities) should be matched
with each other.
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