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Abstract.  Based on the generalised source method, a new method 
for calculating the light diffraction on one-dimensional dielectric 
diffraction gratings with an arbitrary profile is proposed. The 
method is an alternative to the widely used Fourier modal method 
because it possesses the same possibilities in defining different grat-
ing profiles; however, it has a significant advantage in calculating 
complex-shaped gratings because it requires many fewer mathe-
matical operations. The applicability of the method is shown by 
comparing the calculation results by this method with the results 
obtained by the conventional methods of light diffraction calcula-
tion on the gratings. 

Keywords: generalised source method, diffraction, diffraction grat-
ings, Fourier modal method. 

1. Introduction 

The possibility of exact diffraction simulation of periodic 
structures with different profiles is an extremely important 
task for many applied problems of modern optics [1]. In addi-
tion, the calculation methods of diffraction gratings has been 
recently used to study nonperiodic structures – separate ele-
ments of diffraction and integral optics [2 – 5]. The use of arti-
ficial periodicity in such problems seems justified because it 
allows one to evaluate the searched-for solutions in those 
regions where the conventional calculation methods of elec-
tromagnetic characteristics of separate nonperiodic elements 
having the dimensions comparable with the incident radia-
tion wavelength are inapplicable. 

Among numerical methods of different diffraction grat-
ings, the most popular today are the Fourier modal method 
(FMM) [6, 7], its American variant – rigorous coupled wave 
approach (RCWA) [8], and the finite-difference time-domain 
or frequency-domain methods [1]. The FMM has a number of 
unique features making it possible to specify different grating 
profiles, is simple in realisation and well adequate for study-
ing structures with the characteristic periods much smaller 
than the wavelength of radiation incident on them as well as 
comparable with this wavelength or slightly exceeding it. This 
method allows one to search for eigenmodes (diffraction 
orders) of the diffraction grating in the space of its inverse 

vectors. The main disadvantage of the method (inherent in all 
modal methods [9]) consists in the fact that its computational 
complexity (the number of operations needed to realise the 
algorithm) depends on the number N of the diffraction orders 
as N3. This means that the increase in the number of grating 
periods required for considering the nonperiodic structures, 
and hence the increase in the number of diffraction orders 
lead to the fact that the applicability limits of the method 
are rapidly achieved even when powerful computers are used. 
Nevertheless, this method often proves to be more preferable 
than finite-difference schemes, which hardly take into account 
the physical character of specific problems and require huge 
memory capacities to analyse complex-shaped gratings. 

Apart from the above approaches to diffraction grating 
calculations, note also the modal method [9, 10], Chandezon 
[9, 11] and Rayleigh [12] methods. The modal method, unlike 
the FMM, is used to search for the genuine grating modes 
but has the same disadvantage: the computational complexity 
increases with increasing the number of modes. In addition, 
the necessity of constructing the modal basis limits its appli-
cability, in fact, to gratings with a rectangular profile. 
Application of this method is justified, for example, when it is 
needed to calculate the local fields with a high accuracy and to 
study the accuracy of some general method by the example of 
rectangular gratings. The Chandezon and Rayleigh methods 
are based on the possibility of representing the field in the 
grating region with the help of plane waves. These methods 
make it possible to calculate accurately another specific prob-
lem, i.e., gratings whose profiles are represented by smooth 
functions. In this connection, the Chandezon and Rayleigh 
methods are often used to analyse sinusoidal gratings. 

Therefore, to study the optical properties of complex-
shaped nonperiodic elements of diffraction and integral optics 
by the periodic-structure calculation methods, it is necessary 
to overcome the above-mentioned computational complexity 
limit N 3. In this paper we propose an approach to calculation 
of light diffraction on the gratings, which is an alternative to 
the conventional FMM and allows one to decrease signifi-
cantly the computational complexity of the problem – down 
to N log N. The new method is based on the generalised source 
method (GSM) [13] and reduces the problem to a self-consis-
tent system of linear algebraic equations. This system of equa-
tions is solved with the help of the generalised minimal resid-
ual (GMRES) method [14], and the peculiar features of the 
matrices obtained by the GSM make it possible to perform 
matrix-vector multiplications in GMRES with the help of the 
fast Fourier transform (FFT) [15]. To model diffraction of 
2D objects, the authors of paper [16] proposed a similar fast 
algorithm in which the Fredholm integral equation of convo-
lution type is solved iteratively or with the help of the FFT. 
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2. Analytic solution 

Advantage is taken of the generalised source method [13] to 
derive analytic expressions which are used to construct the 
numerical solution of the problem. The method represents a 
scheme intended for solving the problems of electromagnetic 
radiation propagation in inhomogeneous media. It can be 
described as a sequence of two steps. Consider the function 
e(r) describing a spatially inhomogeneous permittivity which 
corresponds to the problem under study. First, the problem 
to be studied is replaced by another one whose geometry and 
permittivity distribution do not strongly differ from initial 
ones but which has an exact solution of Maxwell’s equations 
for any current distribution J(r): 

,E Jb b"= ^ h 	 (1)

where b"  is some linear operator. This solution will be called 
below basic and the function eb(r) corresponding to it will be 
called the basic permittivity distribution. 

The second step of the generalised source method is used 
to search for the desired solution for the problem with e(r) in 
the form 

.E E Jb gen0 "= + ^ h 	 (2)

Here, E0 is the radiation field incident on the radiating sys-
tem, and the generalised source is 

,i Ew eDJgen =- 	 (3)

where De = e – eb. Thus, relation (2) becomes an implicit self-
consistent equation for unknown fields E: 

.iE E Eb0 " w eD= + -^ h 	 (4)

In paper [17] the generalised source method was used to 
construct the numerical method for calculating light scatter-
ing from separate dielectric nanoparticles. In this paper, this 
method is used to calculate diffraction on one-dimensional 
plane gratings with the known profile. 

First, in accordance with the GSM logics, we should 
choose the basic medium, the basic solution, and to obtain the 
explicit form of equation (2). To do this, we will consider a 
plane one-dimensional grating of depth h with a period L, 
located in the xy plane and periodic along the x axis. Assume 
first of all that the grating under study is located in a homoge-
neous isotropic medium with the permittivity eb, which will be 
used as basic one (changes induced by the presence of two dif-
ferent media from both sides of the grating are discussed 
below). Then, the solution of Helmholtz equation for the vec-
tor potential A under assumption that the Lorentz gauge is 
used, has the form of a convolution [18]: 

GA J
V

0 0m= =* ( ) ( )dG VJ r r rm -l l l
l
y ,	 (5)

where integration is performed over the region of the current 
existence; 

( )
4 | |

| |exp i
G

k
r

r
rb

p=
^ h

	 (6)

is the Green function of the scalar Helmholtz equation [18]; 
kb b 0w e m= . Hereafter, the factor exp i tw-^ h is omitted to 
save room.

To obtain the explicit form of (2) with the help of (5), we 
should take into account that the current in the one-dimen-
sional periodic structure can be expanded in a sum of spatial 
harmonics: 

, , ,exp i ix y z z k x k yJ jn
n

xn y0= +
3

3

=-

^ ^ ^h h h/ 	 (7)

where k k nK k n2xn x x0 0 p L= + = + ; kx0 and ky0 are the wave 
vector components of an incident wave exciting the current 
(7). Substituting (7) into (5) and expressing the electric field 
components by the potential, we derive the desired relation 
for spatial harmonics of the electric field components: 
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Here, a, b = x, y, z; k k k kbzn xn y
2 2

0
2

= - - ; Y k k= -
! ! !

n nn a bab ^

k k2b zn
2d- abh . The wave vectors k k kk T

n xn y zn0 !=
!  corre-

spond to the waves in the positive and negative directions 
along the z axis. Note that apart from the plane harmonics in 
the entire space, field (8) of source (7) contains the correction 
in the source region and physically corresponds to the discon-
tinuity of the normal field component in the planes perpen-
dicular to the z axis. 

For convenience of further considerations, we will intro-
duce the modified field which, unlike (8), is expressed every-
where by the superposition of the plane waves: 

, , , , ,E k k z E k k z, ,x yn xn y x yn xn y0 0=u ^ ^h h 	
(9)

, , , ,
( )
.

i
E k k z E k k z

j z
b

zn xn y zn xn y
zn

0 0 we= -u ^ ^h h

In this case, in accordance with (3) 

,E E E E
b b

z z
z

ze
e

e
eD

= + =u 	 (10)

i.e., the z-component of the modified field coincides with the 
electric induction with an accuracy to a constant, and hence is 
continuous on any plane parallel to xy. 

Since the plane waves in the structures under study are the 
basic solutions in terms of the GSM, it is convenient to start 
considering TE- and TM-polarised harmonics instead of the 
electric and magnetic field components. Let us introduce the 
amplitude vectors of TE waves an

e± and TM waves an
h± 

,a aa e h T
n n n=
! ! ! 	 (11)

where the sign ‘±’ shows the direction of their propagation 
along the z axis. Then, denoting the amplitude vectors of 
plane harmonics of the incident by ( )za inc

!  and taking into 
account (9) and (11), we will rewrite expression (8) in the form: 

3

( ) ( ) , ( ) .dz z P R z z z za a jincn n n n n0d= +
! ! ! !

3-

l l l^ hy 	 (12)
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, ;exp iR z z z z k z zn zn! !q= - -
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dnm is the Kronecker symbol; k kn xn y
2

0
2g = + . 

The obtained relation (12) determines the basic solution 
of the generalised source method. Now we should derive 
expression (3) in the form suitable for further use. To do this, 
we will expand both sides of (3) in Fourier harmonics: 

( ) , , ,iz x z x y zj Ebn nw e e=- -^ ^h h6 @" ,
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The convolution in (16) is represented in the form of a product 
of a Toeplitz matrix (i.e. a matrix whose elements only depend 
on the index difference) Dnm(z) consisting of the Fourier har-
monics of the permittivity and harmonics of the electric field 
components Eam(z). Expressing in (16) the vector Em(z) via 
(11), we obtain 
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	 a = x, y, z,

where Q± is the transfer matrix from the amplitudes of TE- 
and TM-polarised waves to the amplitudes of the electric field 
components, 
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and the components of the block-diagonal matrix V are 
expressed as 
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Here, D  is the Toeplitz matrix with the coefficients expressed 
by the Fourier transforms of the inverse permittivity: 

( ) ( ),z zbnm nm n md e eD = - - 	 (20)
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As a result, substituting (17) into (12), we obtain 
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Expression (22) is an analogue of equation (4) of the gen-
eralised source method, as applied to the problem of electro-
magnetic radiation diffraction on a one-dimensional periodic 
plane structure. The implicit self-consistent equation (22), as 
will be shown in Section 3, allows one to construct the numer-
ical algorithm in the form of a solution of the algebraic system 
of linear equations for which powerful and well-developed 
methods of linear algebra can be used. 

Note that in deriving relation (19) for the V matrix, it was 
implicitly assumed that the index corresponding to diffrac-
tion orders ranges over an infinite number of values. However, 
in the course of numerical solution of the diffraction problem, 
only the finite number of the diffraction orders can be taken 
into account. The order number, on which the series of the 
finite sum is replaced, will be denoted by NO. Then, for the 
case of diffraction gratings characterised by the discontinu-
ous function e(x, z) (i.e., for profiled gratings), the function 
E(x, y, z) is also discontinuous in the spatial layer occupied by 
the grating, and the V matrix has the from different from (19) 
because the Fourier transform from the product of two dis-
continuous functions with the common points of discontinu-
ity [see (16)] is not determined [19]. From these facts it tran-
spires that if the points of discontinuity of two piecewise con-
tinuous functions ( f and g) do not coincide, the series of 
products of their harmonics f gm n nn N

N
-

=-
/  is reduced to 

3
f gm n nn 3 -

=-
/  at N"3. However, if some points of dis
continuity of the functions f and g coincide, it is necessary to 
calculate f g1 m n nn N

N 1
-

-

=-
6 @/  in order to correctly approxi-

mate the product fg by the Fourier series. Note that these 
rules should be also applied to the FMM. For quite a long 
time, this method neglected this rule, which was the reason for 
bad convergence of solutions for the TM-polarised wave dif-
fraction. This fact was found experimentally in [7] and studied 
in [20, 21], as applied to the diffraction calculation on two-
dimensional gratings. 

To apply these rules, we will consider the fields at the grat-
ing profile interface separating different media. As is known, 
the tangential components of the electric field at this interface 
are continuous. Fourier series approximation of the product 
of the functions for these components does not require the 
matrix inversion and, hence, 

N

.i iJ D D Eb bn n nm m
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O
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=- O

^ ^ ^h h h/ 	 (23)

The normal vector component D on the grating surface is 
continuous; however, the corresponding component E has a 
discontinuity. Substituting E1 m n n

1e
-

-^ h  into (16) yields for the 
normal component of the generalised current J^ the expres-
sions: 
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To use the relation between the generalised current and 
field (23) and (24), we should define the transformation of the 
coordinates, which expresses normal field and current com-
ponents by their x-, y-, and z-components. Let the new coor-
dinate system at each point of the interface between two 
media be introduced with the help of the inclination angle y 
to the z axis (Fig. 1). We will denote the axes of the new basis 
by p, y, q, the axis p being perpendicular to the interface 
between the media, while the axes y and q – parallel. 

We will assume below that the angle y is a smooth func-
tion. This is not a strong restriction because this function is in 
fact determined at some points on the x axis and thus can be 
extrapolated by a smooth function with a narrow spectrum. 
In this case, the Fourier transforms of the trigonometric func-
tions of the angle y always exist, and the Toeplitz matrices 
corresponding to them are commutated with the matrices 
nmD  and Dnm . Thus, using (23), (24), and the matrix of rota-

tion to the new coordinate system, we can obtain the relation 
between the field and the generalised current: 
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we d D=-
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6// 	
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where the tensor Gab has four nonzero Toeplitz components: 
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Substitution of (25) into (10) yields 
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where 
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Thus, using (25) and (27), for matrices Vnm
ab  we obtain instead 

of (19) a new expression: 
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Therefore, by applying the generalised source method, we 
have obtained equation (22) with the matrix Vnm

ab  in the form 
of (19) for the case of continuously changing permittivity and 
in the form of (29) for the case of presence of an interface 
between different media. 

3. Numerical solution 

We will calculate the integral in equation (22) by dividing the 
plane layer with the diffraction grating into many sublayers. 
Let us denote their number by NL. We assume that all the 
sublayers have the same thickness h h NLT = , and the ampli-
tudes of plane harmonics have the values a ,e h

nq
!  at central 

points of the sublayers zq, where the subscript n, as before, 
labels the diffraction orders and the subscript q – the sub
layers: q = 1, 2, ..., NL, so that 

.z z q N h
2
1L

q 0 T= + -
+c m 	 (30)

In addition, as was shown in the previous section, we will take 
into account the finite (from –NO to NO) number of diffrac-
tion orders. Then, equation (22) with the matrix V selected 
correspondingly will be reduced to a system of linear alge-
braic equations, making it possible to find the amplitudes of 
TE and TM harmonics in each sublayer: 

A anmpq mq
mq

!! !// 	

	 R P V Q a
, ,, ,

nmpq npq n nmq m
x y zx y z

mq
mq

=
!! ! ! ! !

a
ab

b
ba ==

I -c m////

	 ,a incn np0d=
! 	 (31)

where Inmpq nm pq ehd d d=
!!

!  is a unit matrix. Matrices Inmpq
!!  and 

Anmpq
!!  can be treated as quadratic block matrices with NL ´ NL 

blocks, each of them containing (2NO + 1) ´ (2NO + 1) blocks 
of size 4 ´ 4. 

The solution of the system of linear equations (31) allows 
one to directly calculate the amplitudes of diffraction har-
monics on the plane layer and grating boundaries. Let us 
denote the z coordinates of the upper and lower boundaries 
of this layer by z h 21=-  and z h 22 = , respectively. Then, 
from (22) and (31) we obtain 

, ,z z z za a incn n n1 2 0 1 2d=
! !^ ^h h	

	 T P V Q A
, ,, ,

nq n nmq m nmpq
x y zx y zmq

1
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a
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b
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-

==

^ h//// 	

	 , ,z za incm nq0 1 2# d !^ h 	 (32)

where ,z zan 1 2
!^ h is the amplitude vector of TE and TM har-

monics at the layer boundaries; ,z za inc0 1 2
!^ h is an analogous 

amplitude vector of the incident field; the matrix T describes 
the propagation of plane harmonics from each sublayer to the 

z

p

q

y

x

z'

x'

Figure 1.  Local coordinate system on the grating surface. 
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boundaries of the entire layer z1, 2. Its explicit form depends 
on the media surrounding the layer with a grating. 

Recall that relations (31) and (32) are introduced under 
the following assumption: on both sides of the grating there is 
a medium with the permittivity eb. In this case, the matrix T 
has a simple form and its components can be written as 

,exp iT h k h N q1 2Lnq znT T= + -+ ^ h6 @ 	
(33)

.exp iT h k h q 1 2nq znT T= -- ^ h6 @

If the layer under study is between two different media with 
the permittivities e1,2, it is necessary to take into account addi-
tional waves emerging due to re-reflection from the layer 
boundaries. In this case, as is seen from the structure of the 
matrices entering equations (31) and (32), only the matrices 
R and T change. Let us denote the reflection and refraction 
coefficients for the waves incident from within the layer at the 
interface z = z1 between the homogeneous media with the per-
mittivities e1 and eb by r

,e h
n1  and t ,e hn1  and at the interface z = z2 

by r ,e h
n2  and t ,e hn2 . Then, instead of expression (33) we should 

use expressions 

,
exp

exp i
T h

r r k h

k h N q

1 2

1 2,
, ,

e h
e h e h

L
nq

n n nz

nz

1 2

T
T

=
-

+ -++

^

^^ ^

h

hh h 6 @

,
exp

exp i
T h

r r k h

r k h N q

1 2

2 1 2,
, ,

,
e h

e h e h

e h
L

nq
n n nz

n nz

1 2

1T
T

=
-

+ -+-

^

^^ ^

h

hh h 6 @

	 (34)

,
exp

exp i
T h

r r k h

r k h N q

1 2

1 2,
, ,

,
e h

e h e h

e h
L

nq
n n nz

n nz

1 2

2T
T

=
-

+ --+

^

^^ ^

h

hh h 6 @

.
exp

exp i
T h

r r k h

k h q

1 2

1 2,
, ,

e h
e h e hnq
n n nz

nz

1 2

T
T

=
-

---

^

^^ ^

h

hh h 6 @

The new expressions for the components of the R matrix 
describing the harmonic propagation between different sub-
layers take the form: 
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Thus, after determining all the matrices in expressions 
(31) and (32), it is necessary to construct an algorithm of their 
numerical solution. Note at once that the matrix size A can be 
very large (for example, at NO, NLµ103 the matrix size is 
µ106), which eliminates the possibility of its direct inversion. 
We solve the linear system (31) in this paper using the GMRES 
method because it has the best convergence among all the 

methods used to solve linear systems [14], which is critical in 
studying rather complex distributions e(x, z). 

Each GMRES iteration contains one matrix-vector multi-
plication, which is the most time consuming part of the algo-
rithm. In the general case, this operation requires O(N 2) mul-
tiplication operations (N is the matrix size); however, expres-
sions (31), (32) are constructed in such a way that it is possible 
to accelerate the execution of this operation. We used here 
the fact that the product of any Toeplitz matrix by the vector 
can be calculated with the help of the FFT during the time 
O(N log N) by ‘stretching’ the corresponding Toeplitz matrix 
into a circulant matrix [15]. Let us show that the matrix A is 
the product of only block-diagonal and Toeplitz matrices. 
The matrices P and Q are block-diagonal, which follows from 
(13) and (18). The matrix V is the Toeplitz matrix with respect 
to the subscripts pq because it consists of Fourier transforms 
of the permittivity and of the trigonometric functions of the 
angle y [see (19) and (29)]. The matrix R in the form (14) is 
also the Toeplitz matrix with respect to the spatial subscripts 
pq, which follows from its definition. In expressions for the 
modified matrix R (35), the first and the last submatrices have 
the Toeplitz structure. The second and the third matrices 
depend on the sum of the subscripts p and q but their product 
by the vector also can be represented in the form of a convolu-
tion by replacing the sign of one of the subscripts (in this case, 
the order of the elements should be inversed in the corre-
sponding vectors and after multiplication they should be 
transformed backward). 

Therefore, we obtain an iterative numerical algorithm 
based on the GMRES method in which the matrix-vector 
multiplications are calculated with the FFT. The method is 
fast and has a good convergence. For ( 2NO + 1 ) diffraction 
orders and NL sublayers, the algorithm complexity can be 
estimated as O{(2NO + 1)NL log [(2NO + 1)NL]} [for large NO 
and NL, it can be treated as arbitrary close to linear with respect 
to the product (2NO + 1)NL]. Thus, the complexity of the method 
under study is significantly lower than that of the algorithm 
with the direct vector-matrix multiplication O[(2NO + 1)2NL

2 ] 
or than the FMM complexity O[(2NO + 1)3NL]. 

4. Numerical examples 

As was mentioned in Introduction, there exist now several 
well-developed and widely used methods for calculating dif-
fraction gratings. Therefore, within the framework of this 
paper we compare it with the FMM for diffraction on holo-
graphic and rectangular gratings and with the Rayleigh 
method for diffraction on sinusoidal gratings. All calculations 
were performed on a personal computer (2 GHz, 8 GB RAM). 
In comparisons, we studied the convergence of the solution 
while changing the number of layers into which the grating is 
divided. In this case, the number of diffraction orders is an 
additional parameter. 

For all the calculations performed below, we used a grat-
ing with a period 1 mm and depth 0.5 mm, the wavelength of 
radiation incident at the angle 30° was 0.6238 mm. The error 
was determined as averaged absolute difference of the com-
plex amplitudes of diffracted waves in the orders from –5 to 5. 
Figure 2 shows the solution convergence and its difference 
from the FMM solution during diffraction on the holo-
graphic  grating specified by the dependence of the permit
tivity . . sinx Kx6 25 1 0 1e = +^ ^h h on the x coordinate. These 
dependences are almost unaffected by the number of the dif-
fraction orders, which means that the solution obtained by 
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the proposed method coincides with the FMM solution in the 
limit of an infinite number of layers. A similar conclusion can 
be drawn by comparing the calculation results of diffraction 
on a rectangular grating (Fig. 3). 

In the case of a sinusoidal grating, as is seen from Figs 4 – 6, 
the solution convergence weakly reflects the pure error. The 
comparison here was performed using the Rayleigh method, 
which gives an exact solution [12]. At each fixed number of 

diffraction orders and a sufficiently larger number of layers, 
the proposed method introduced some constant error, which 
decreases with decreasing the number of orders. Therefore, in 
the case of complex-shaped gratings, the accuracy, sufficient 
for practical use of the results, can be obtained when the num-
ber of diffraction orders exceeds 100. 

The approximate number of GMRES iterations for a 
holographic grating is equal to 20, for a rectangular profile 
grating – to 50, and for a sinusoidal grating – to 150. The sav-
ing of the computation time compared to FMM for the above 
sinusoidal grating started with the matrix size for the GSM of 
the order of 105, the accuracy of both methods being 10–4. 
This corresponds to approximately 50 diffraction orders and 
the grating division into 30 layers for the computation time 
~15 s and 50 s for the TE- and TM-polarised diffractions, 
respectively. In the course of numerical simulation, we also 
found the following properties. At a sufficiently large number 
of diffraction orders, the number of layers should exceed the 
number of orders by 5 – 10 times to obtain the required accu-
racy. The thickness of one layer is, in this case tens, tens of a 
subnanometer or less. The required number of diffraction 
orders strongly depends on the grating period and the permit-
tivity contrast; it increases with increasing these parameters. 
As a result, with the configuration similar to the above-men-
tioned, the personal computer can be used for calculating dif-
fraction of the gratings whose depth and period are equal to 
several wavelengths and the contrast is approximately equal 
to that presented in the examples. 
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10–6
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1/NL

relative error, TM polarisation
relative error, TE polarisation
absolute error, TM polarisation
absolute error, TE polarisation

Figure 2.  Convergence of the GSM (relative error) and its comparison 
with the FMM (absolute error) with increasing the number of layers in 
the grating. The permittivity of the substrate is equal to 6.25 and of the 
coating – to 1. 
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Figure 3.  Same as in Fig. 2 but for a grating with a rectangular profile, 
the filling factor 0.5, and the permittivity 6.25. 
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Figure 4.  Convergence of the method in calculating the diffraction on a 
sinusoidal grating. The calculation parameters are the same as in the 
case of a rectangular grating (Fig. 3). 
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Figure 5.  Comparison of the proposed method with the Rayleigh meth-
od during diffraction of a TE-polarised wave on a sinusoidal grating. 
Dependence of the averaged difference of solutions is presented for dif-
ferent numbers of diffraction orders used in calculations. The calcula-
tion parameters are the same as in the previous cases. 
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Figure 6.  Same as in Fig. 5 but for TM polarisation.
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5. Conclusions 

Thus, we have developed a new numerical method for calcu-
lating diffraction on dielectric gratings. The method can be 
treated as an alternative to the widely used FMM intended 
for calculating complex-shaped gratings. The FMM proves 
more preferable when the permittivity distribution is indepen-
dent of the z coordinate because in this case the division of the 
grating into layers is not required. However, in the general 
case when this division is necessary, the efficiency of the pro-
posed method increases with increasing the grating depth and 
period. Indeed, an increase in the grating depth requires an 
increase in NL, and the increase in the periods – an increase in 
NO; therefore, due to a smaller computational complexity 
the new method allows one to consider larger values of these 
parameters and thus gratings with a greater depth, period, 
and more complicated permittivity distribution. Provided the 
geometrical parameters of the gratings are decreasing, the 
proposed method, as the FMM, works the better the thinner 
the grating and the smaller the period and the contrast. 
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