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Abstract. It is shown that the angular phase-matching bandwidths 
in biaxial nonlinear crystals in the general case must be calculated 
in the coordinate system in which the angular deviations of the crys-
tal and the laser beam divergence are determined consistently. The 
angular phase-matching bandwidths in this coordinate system may 
considerably differ from the conventionally determined values. The 
optimum orientation of the coordinate system for determining the 
angular phase-matching bandwidths is found. It is established that, 
in the general case in biaxial crystals, as in uniaxial ones, phase 
matching is always angle-critical along one coordinate and non-
critical along the other and that it is possible to realise angle-non-
critical phase matching of the fourth order.

Keywords: biaxial crystals, frequency conversion, phase matching, 
angular phase-matching bandwidths, noncritical phase matching.

1. Introduction

The nonlinear and phase-matching parameters are very 
important for the problems of nonlinear-optical frequency 
conversion in crystals [1]. While the nonlinear parameters 
(effective nonlinearity coefficient) determine the nonlinear 
response at each point of the medium length, the phase-
matching parameters determine both the phase-matching 
(coherent accumulation) condition and the limitations of the 
conversion efficiency. In particular, the frequency and spatial 
dispersion, as well as the temperature dependence of refrac-
tive indices, determine the spectral, angular, and temperature 
widths of phase matching. The method of determining the 
angular phase-matching bandwidths, which was initially 
developed and used for uniaxial crystals, was completely 
transferred to biaxial crystals. Some specific features of biax-
ial crystals show that this method cannot correctly describe 
the properties of crystals for nonlinear optical frequency con-
version. In the present work, we choose a coordinate system 
in which the angular phase-matching bandwidths, laser beam 
divergence, and the angular misalignment of the crystal are 
determined consistently. It is shown that the angular phase-
matching bandwidths in this coordinate system differs from 
those determined conventionally. It is also demonstrated that, 
in the most general case, the phase matching in a biaxial crys-

tal is always critical along one angular coordinate and non-
critical (both of the second and higher orders) along the 
other.

2. Coordinate systems for description   
of the crystal and radiation properties

The phase-matching direction in all types of crystals is deter-
mined in the polar coordinate system (crystal-optic) by two 
angles, j and q (Fig. 1). The angle j determines the rotation 
of plane II with respect to the initial position – basic plane I 
(xz plane), while the angle q determines the direction of wave 
vectors ki of interacting waves in plane II which satisfy the 
phase-matching condition Dk = k3 – k2 – k1 = 0. Hereinafter, 
we restrict ourselves to the consideration of scalar phase 
matching.

For uniaxial crystals, the angle q, which determines the 
phase-matching direction, is the cone angle of the cone of 
phase-matching directions, whose axis is the z axis. For biaxial 
crystals, the phase-matching directions form conical surfaces 
of the fourth order [2 – 5], whose axis is one of the crystal axes.

The angular phase-matching bandwidths 2Dq and 2Dj are 
determined on a unit length (traditionally, L = 10 mm) of the 
crystal as an allowable deviation from the phase-matching 
direction at which the frequency conversion efficiency decreases 
by a given factor. In the existing method of describing the 
crystal properties, one of the angles determining the angular 
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Figure 1. Crystal coordinate system.
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phase-matching bandwidths is the angle q corresponding to 
the allowable deviation in plane II, in which the radiation 
beam axis lies. The angle j (at a fixed angle q) determines the 
allowable deviation on the surface of the cone whose rotation 
axis is the z axis (Fig. 1).

The laser beam divergence in the general case is deter-
mined in two mutually orthogonal planes which intersect 
along a line coinciding with the direction of axes of the inter-
acting beams. Let us call this coordinate system the laser beam 
coordinate system. In this case, only the deviation Dq from 
the angle q in plane II (angular phase-matching bandwidth 
2Dq) (Fig. 2) can be correlated with the beam divergence. The 
deviation Dj from the angle j does not correspond to the 
divergence along the other coordinate. This was not impor-
tant for uniaxial crystals (except for the case when a beam was 
focused into a crystal by a cylindrical lens), in which the phase 
matching is noncritical with respect to the angle j and has an 
angular width much larger than the angular width 2Dq of 
critical phase matching. The situation in biaxial crystals is dif-
ferent and, as will be shown below, there is a considerable 
difference in the angular phase-matching bandwidths, which 
can lead to considerable errors in subsequent calculations.

To consistently describe the variations in the crystal prop-
erties and laser beam divergence, it is necessary to consider 
detuning in the plane orthogonal to plane II (plane III in 
Fig.  2). The line of intersection of planes II and III coincides 
with the laser beam axis. We will denote the angular deviation 
from the phase-matching direction in plane II as Dy, i.e., pass 
to the Euler coordinate system. While the angle j does not 
change with changing the angle q, a change in the angle y 
leads to simultaneous change in q and j.

There is no point in passing to the description of the crys-
tal properties and phase-matching directions in the laser beam 
coordinate system. It is sufficient to determine the relation 
between y and the angles q, j and continue to describe the 
crystal properties in the crystal optic coordinate system. The 
expressions describing this relation have the form

,cos cos cos0q q y=  (1)

.cos
cos cos

cos sin cos sin sin

1 2
0

2

0 0 0j
q y

j q y j y
=

-

-
 (2)

Here, j0 and q0 are the initial values of the angles j and q 
characterising the phase matching direction.

At q0 = 90°, from (2) one can find the obvious relation 
j = j0 + y, while at q0 = 0 in the general case (y ¹ 0) we have 
j = j0 ± 90°.

The difference in the angular phase-matching bandwidths 
2Dj and 2Dy  is caused by the nonlinear dependence of j on 
y. The dependence of angles q and j on y is nonlinear and 
determined by the angle q0. Figure 3 shows the dependences 
of angles j and q on y at different angles q0. In the region of 
small y (corresponding to typical angular phase-matching 
bandwidths of crystals), the value dj/dy changes from 1.0 (at 
q0 = 90°) to infinity (at q0 = 0). In a particular case of q0 = 90°, 
the relation between j and y is linear, which yields 2Dj = 
2Dy. It can be assumed that this relation is also valid at q0 ³ 
70°. The angular phase-matching bandwidth 2Dy is deter-
mined by the character of the angular distribution of the cone 
of phase-matching directions, which is described for biaxial 
crystals by a fourth-order equation, and by the birefringence.

All the said in this section is true for biaxial crystals of all 
point symmetry groups.
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Figure 2. Laser-beam coordinate system.
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3. Phase-matching properties of LBO crystal

Let us consider the said above on the example of the third 
harmonic generation (THG) in an LBO crystals in the case 
of incident radiation with the wavelength l = 1.064 mm (the 
process w + 2w), which allows us to demonstrate all the main 
regularities and specific features of determining the angular 
phase-matching bandwidths in different coordinate systems. 
The diagram of phase-matching directions for this case is 
shown in Fig. 4 (curves AB and CD). In this frequency con-
version regime, two interaction types are realised, ssf (slow-
slow-fast) and fsf (fast-slow-fast). Points A, B, C, and D 
denote the phase-matching directions in the main crystal 
planes.

Figure 4 also presents the projections of the coordi-
nate systems on the phase-matching directions in the xz 
plane (point A), in which the angles j (at the AM arc in the 
plane parallel to the xy plane) and y (at the AP arc in the 
plane perpendicular to the xz plane at j = 0) are determined.

At the point j0 = 0, q0 = 17° 37' 12'' (point A), the plane in 
the laser beam coordinate system in which the y angle is mea-
sured (plane III in Fig. 2) is a tangent to the cone of phase-
matching directions, which allows us to expect a larger angu-
lar phase-matching bandwidth in this plane. However, due to 
the large value dj/dy = 3.3, a small deviation in the angle y 
from the phase-matching direction leads to significant 
changes in the angle j and, as a result, to a large deviation 
from the phase-matching direction. Some values of angles y 
measured from the initial direction j0 = 0, q0 = 17° 37' 12'' in 
the laser beam coordinate system are given in Fig. 4 on the AP 
arc.

Figure 5 shows the dependences of the angular phase-
matching bandwidths 2Dj (determined conventionally and 
given in the reference literature) and 2Dy along the phase-
matching direction on the angle j for ssf and fsf interactions 
in an LBO crystal upon THG of radiation with l = 1.0642 
mm. Herein after, all the angular phase-matching bandwidths 
are determined inside a 10-mm-long crystal at the half-inten-
sity level. At j0 = 0, 2Dj and 2Dy for the ssf interactions differ 

by a factor of two (2Dj = 5° 56' 24'' and 2Dy = 2° 57' 7'' ), and 
these difference monotonically decreases with increasing the 
angle q. Similar dependences for the ssf interaction in the 
region of q0 = 90° are shown in Fig. 6. The loop-like behav-
iour of the dependences corresponds to the two branches of 
the phase-matching curve (AF and FB arcs in Fig. 4). Here, 
one also observes a considerable difference between the widths 
2Dj and 2Dy. At q0 = 90° (in the xy plane), we have 2Dj = 
2Dy. A similar relation is also valid for the fsf interaction 
(Fig. 5). However, the large q0 in the yz plane (q0 = 42° 11' 19'' ) 
compared to the value in the xz plane results in a smaller dif-
ference between the 2Dj and 2Dy widths. In the yz plane, the 
angular widths are 2Dj  =  3° 53' 47'' and 2Dy = 2° 55' 12''.

In uniaxial crystals, it is impossible to obtain phase-
matching at q0 = 0 (along the z axis), which can occur only in 
the case of zero dispersion of the medium. In biaxial crystals, 
an analogue of this situation is the impossibility of phase 
matching along the optical axes, while phase matching at q0 = 0 
occurs both in the general case of sum-frequency generation 
and in the case of second harmonic generation, which is clearly 
seen from generalised diagrams of phase-matching directions 
[3 – 5]. One can easily see that, when the phase-matching angle 
is q0 = 0, the conventionally determined angular phase-match-
ing bandwidth is 2Dj = 360° and 2Dq depends on the angle j. 
Figure 7 shows the relative conversion efficiency distribution 

q/deg

j/deg

20

40

60

0 20 40 60 80

80

x
y

z

A

F

E

B D P

C

M

ssf

fsf

y = 5°

15°
10°

20°
25°

30°
35°

40°
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suring the angular deviations.
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(in the given field approximation) for the ssf interaction in the 
case of THG of radiation with l = 0.9731 mm (the phase-
matching condition direction coincides with the direction of 
the z axis). For this case, the angular phase-matching band-
widths in the main planes are 2Dy = 3° 28' 54' and 2Dq = 
2° 5' 41''. In these planes, one observes noncritical second-or-
der phase matching (dDk/dq = 0 and d2Dk/dq2 ¹ 0).

4. Minimum and maximum angular  
phase-matching bandwidths

When choosing the crystal length, one compares the angular 
phase-matching bandwidths with the beam divergence. For 
axially symmetric beams, the minimum of the two angular 
phase-matching bandwidths should be chosen for this com-
parison. The widths 2Dq and 2Dy (or 2Dj) determined for 
biaxial crystals show that, in the general case (which is usually 
called the critical phase matching), the phase-matching cone 
in the considered direction (j0, q0) is oriented at an angle g to 

the coordinate system q j. As an example, Fig. 8 shows the 
relative frequency conversion efficiency for the ssf interaction 
in the laser beam coordinate system (y q) in the direction j0 = 
40.1°, q0 = 71.52° (point E in Fig. 4) for THG of radiation 
with l = 1.0642 mm. It is seen that the angular phase-matching 
bandwidths must be determined in the laser beam coordinate 
system rotated by the angle g [tan g = (dDk/dy)/(dDk/dq)] 
around the axis coinciding with the phase-matching direction. 
Then, the angular detuning y will be determined in the plain 
tangent to the phase-matching cone. The initial laser beam 
coordinate system (y q) is transformed to the y' q' coordinate 
system using the standard procedure of coordinate system 
rotation. In this case, we can determine the minimum and 
maximum angular phase-matching bandwidths. It is the min-
imum found angular phase-matching bandwidth that must be 
compared with the beam divergence. The dependences of the 
optimal rotation angle g along the phase-matching curve on j 
for the ssf and fsf interactions are shown in Fig. 9. The zero 
angle g corresponds to the orientation parallel to the z axis. 
For the positive direction, we take the clockwise rotation (for 
an observer in the coordinate system centre). The points 
depicted in Fig. 9 correspond to phase matching in the xy plane 
(q0 = 90°). The angle g also changes correspondingly to the 
behaviour of the phase-matching curve. In the considered 
case, this angle takes both positive and negative values for the 
ssf interaction and only negative values for the fsf interaction. 
Figure 9 also shows the dependences of the orientation angle 
of intrinsic polarisations d along the phase-matching curve on 
j (these dependences are given for the second-harmonic 
wavelength). It is seen that the angles g and d do not coincide 
and vary within different ranges. In particular, for the fsf 
interaction, the angle d does not exceed 10° and the angle g 
changes from 0 to –90°.

Figure 10 shows the dependences of the angular phase-
matching bandwidths on j for both interaction types – the mini-
mum and maximum phase-matching bandwidths (2Dq' and 
2Dy' ) for each phase-matching direction. The loop shape of 
dependences for the ssf interaction corresponds to the two 
branches of the phase-matching curve (arcs AF and FB in 
Fig. 4). Along the phase-matching curve, the angular width of 
angle-critical phase matching 2Dy' lies within the range of 
2.9' – 4.2' for the ssf interaction and within the range of 
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5.7' – 10.8' for the fsf interaction. The angular width of angle-
noncritical phase matching 2Dq' lies within the range 3° – 11.5° 
for the ssf interaction and within the range of 3° – 7° for the fsf 
interaction. For both interaction types, the maximum angular 
phase-matching bandwidths 2Dq' are reached out of the main 
planes of the crystal.

These results show that phase matching in biaxial crystals 
in the most general case is always critical along one angular 
coordinate and noncritical along the other. This is necessary 
to emphasise because phase matching in numerous works is 
traditionally determined as noncritical only in the main planes.

5. Angle-critical and noncritical phase matching 
of different orders

In uniaxial crystals, the normal surfaces for refractive indices 
of interacting waves are described by a second-order equa-
tion, and phase matching in the general case is critical with 
respect to the angle q (dDk/dq ¹ 0) and noncritical at q0 = 90° 
(dDk/dq = 0 and d2Dk/dq2 ¹ 0). The width of angle-noncritical 
phase matching depends on the crystal length as 2Dq µ 1/ L . 
This width is larger than for critical phase matching.

In biaxial crystals, the normal surfaces for the refractive 
indices for interacting waves ns and nf in the general case are 
described by fourth-order equations [1]. Therefore, as will be 
shown below, it is in principle possible to obtain angle-non-
critical phase matching up to the fourth order inclusive, i. e., 
when dnDk/dan = 0 (n = 1 – 3), d4Dk/da4 ¹ 0, where a = q' or 
a = y' . In the main planes of a biaxial crystal, the ns and nf 
components are described by second-order equations. Hence, 
at small angular deviations from the main planes, the angle-non-
critical phase matching will have the second order (dDk/da = 
d3Dk/da3 = d4Dk/da4 = 0, d2Dk/da2 ¹ 0).

According to the standard determination, in the case of 
angle-noncritical phase matching, the first-order derivative is 
equal to zero and the main contribution is made by the second-
order derivative. In biaxial crystals, in the general case, the 
second-order and higher derivatives can made comparable 
contributions.

In particular, the phase matching along the main axes of 
the crystal (for example, along the z axis, Fig. 7) is an angle-
noncritical process of the second order in the main crystal 
planes and of the fourth order along the phase-matching 
curves. For the example given in Fig. 7, the directions of phase-
matching distributions make angles of ±60° with the xz plane. 

Along these directions, the angular phase-matching band-
widths are 2Dy' = 25° 18' 26''.

Angle-noncritical fourth-order phase matching also occurs 
for most general crystal cuts. For example, at j0 = 40.1°, q0 = 
71.48°, and g = 76.7° for THG of radiation with l = 1.0642 mm 
(point E in Fig. 4), the relative conversion efficiency distribu-
tion can be seen in Fig. 11. The solid curve in Fig. 12 shows 
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the dependence of the angular phase-matching bandwidth on 
the crystal length for this case. For comparison, the dashed 
curves in Fig. 12 show the dependences 2Dq' µ 1/ Ln  (n = 
1 – 5) corresponding to critical and noncritical phase match-
ings of different orders. This behaviour of the angular width 
corresponds to comparable contributions of all derivatives 
with the dominant contribution from the fourth-order deriva-
tive. Figure 13 shows the relative conversion efficiency distri-
butions at different initial wave detunings, which demonstrate 
variations in contributions from derivatives of different 
orders.

6. Conclusions

Thus, the angular phase-matching bandwidths for biaxial 
crystals must be calculated in a coordinate system that deter-
mines the laser beam divergence and the angular deviations of 
the crystal. The angular phase-matching bandwidths deter-
mined in the traditionally used crystal coordinate system, in 
the general case, are overestimated for angle-noncritical phase 
matching and do not allow one to find the angular phase-
matching bandwidths along the z axis of the crystal at small 
phase-matching angles q0. In biaxial crystals, phase matching 
is always noncritical along one angular coordinate and criti-
cal along the other. In contrast to uniaxial crystals, in biaxial 
crystals it is possible to obtain angle-noncritical phase match-
ing of a higher order (up to the fourth order), whose angular 
width (for example, for THG of radiation with l = 1.0642 mm 
in an LBO crystal) exceeds 25° inside a 10-mm-long crystal.

All the above said refers not only to the determination of 
angular phase-matching bandwidths. The problem of fre-
quency conversion of laser radiation in nonlinear crystals 
should be solved in the coordinate system of intrinsic polari-
sations of radiation in order to minimise the number of equa-
tions and to ensure the solution stability. In the general case 
of phase-matching directions, the conventional method of 
determination of phase-matching bandwidths in the crystal 
and laser beam coordinate systems will yield phase matching 
critical in both angles. Taking into account only the linear 
angular dependence of refractive indices, one will lose data on 
the finite phase-matching bandwidth in the directions lying 
out of the main planes. This is especially important for the 
problems of frequency conversion when the beam is focused 
into a crystals by a cylindrical lens. It is necessary to deter-
mine the angular phase-matching bandwidth and the optimal 
orientation of the focusing plane, which does not coincide 
with the main planes of the crystal. All this is also important 
for the problems of formation of femtosecond laser beams 
(whose high intensity frequently allows one to dismiss the 
question of the finite angular phase-matching bandwidth) 
and for problems of parametric generation (from the view-
point of the spectral width of the formed radiation).

All the calculations were performed using the LID-FC 
program set (Laser Investigator & Designer – Frequency con-
version) [6].
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