
Abstract. It is shown that the use of two feedback circuits
with matched transfer constants and optimal phase incursions
in a nondegenerate optical parametric oscillator (OPO)
makes it possible to localise the extremes of intensity
distributions of interacting waves on the output face of a
nonlinear crystal, which provides maximum possible con-
version eféciency of pump energy. The optimisation procedure
in this case is rather êexible because it is reduced to
ambiguous matching of the period and shift of the extremes of
exact analytic solutions of the corresponding problem in the
form of cnoidal waves with respect to the nonlinear crystal
position. Unlike the single-cavity OPO scheme, both these
parameters can substantially exceed the nonlinear crystal
length and even tend to inénity, which corresponds to solitary
soliton-like solutions.

Keywords: double-cavity optical parametric oscillator, period and
shift of the extremes of cnoidal waves, optimisation of transfer
constants of feedback circuits.

1. Introduction

The authors of paper [1] showed that the problem of
nonlinear interaction of three collinear plane monochro-
matic waves ë modes with the frequencies o1, o2 and
o3 � o1 � o2 ë in a quadratic-nonlinear medium [2] can be
solved by increasing the order of the system of truncated
equations. In this case, the problem is reduced to three
independent ordinary differential second-order equations
coupled only by boundary conditions and coinciding in
form with the stationary nonlinear Schr�odinger equations.
This allows one to describe the competition of processes of
quantum merging (o1 � o2 ! o3) and decomposition
(o3 ! o1� o2) in terms of the effective cascade cubic
Kerr-type nonlinearity [3]. In paper [4], the same approach
was used to analyse the processes proceeding in the case of
cascade parametric frequency conversion. Papers [5, 6]
present the solutions describing the parametric generation
of light (including cascade generation) in a scheme of a
travelling-wave generator in which the feedback is absent

and, therefore, a weak input noise is parametrically
ampliéed in a nonlinear crystal. In paper [7], this approach
was used to optimise the scheme of a single-cavity optical
parametric oscillator (OPO) [8]. It was shown that within
the framework of this description the use of a feedback
decreases the period of cnoidal waves being produced in a
nonlinear crystal [1, 4, 9] and optimisation of its transfer
constant (reêectivity of the output mirror of the cavity) is
reduced to matching the period of cnoidal waves with the
nonlinear crystal length.

Below, we will consider the problem of optimisation of
double-cavity OPOs. To our knowledge, an exact (from the
viewpoint of abandonment of approximation of the given
pump éeld) analytic solution of such problems was pre-
sented only for the case of generation of so-called sub-
harmonics [8], i.e., for situations in which o1 � o2 and the
photons generated in a nonlinear crystal are indiscernible.
Using the above-described approach, we will show that in
the absence of absorption the use of two feedback loops
with matched transfer coefécients makes it possible to
localise the cnoidal wave extremes produced on the output
face of a nonlinear crystal, which provides realisation of
maximally achievable eféciency. The optimisation proce-
dure in this case is rather êexible because it is reduced to
matching the period of cnoidal waves and shift of cnoidal
wave extremes with respect to the nonlinear crystal position.
Both these parameters can markedly exceed the nonlinear
crystal length and even tend to inénity (in the regime of
formation of solitary soliton-like solutions).

2. Basic equations

As in paper [7], consider collinear interaction of plane
monochromatic waves: two waves ë at the fundamental
frequency (amplitudes A1;2, frequencies o1;2 � o, wave
vectors k1;2) and one wave ë at the second harmonic
frequency (amplitude A3, frequency o3 � 2o, wave vector
k3), propagating along the z axis. Neglecting absorption, we
assume that the nonlinear crystal occupies the region
04 z4L (L is the nonlinear crystal length) and realises
nondegenerate (due to orthogonal linear polarisations of
modes at frequencies o1;2) parametric process of the so-
called II type. As was shown in [1], this interaction can be
described by independent ordinary differential second-order
equations, which, in the case D � k1 � k2 ÿ k3 � 0 most
interesting for OPO realisation, take the form [7]

d2A1;2

dz 2
ÿ b 2�4I10;20 ÿ 2I20;10 � I30 ÿ 4A1;2A

�
1;2�A1;2 � 0; (1a)
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d 2A3

dz 2
� 2b 2�I10 � I20 � I30 ÿ A3A

�
3�A3 � 0; (1b)

with boundary conditions

A1;2jz�0 � A10;20;
dA1;2

dz

����
z�0
� ÿibA�20;10A30; (2a)

A3jz�0 � A30;
dA3

dz

����
z�0
� ÿi2bA10A20: (2b)

Here b is the same nonlinear coupling constant as in the
initial system of truncated equations in papers [1, 7]; Ii(z) �
Ai(z)A

�
i (z) is a variable proportional to the intensity of the

ith (i � 1ÿ 3) mode, which will be called below the
intensity; Ii 0 � Ii(z � 0).

Because equations (1) are independent, the desired
intensities I1ÿ3(z) can be found by solving any equation
from (1). However, taking into account the requirement of
complete pump depletion (I3jz�L � 0), optimisation can
conveniently be performed by determining I3(z) from
(1b), (2b) and by writing with allowance for two integrals
[7] (conservation of the energy êux density and Manly ë
Row relations [2]) the expression

I1;2�z� � I10;20 �
1

2

�
I30 ÿ I3�z�

�
: (3)

If generation develops from noises at D � 0 and I3jz�L � 0,
information about real amplitudes of the three modes
Xi(z) �

���������
Ii(z)

p
is complete because their phases ji � ji 0

should be constants [1] corresponding to maximal initial (at
point z � 0) increments of growth I1;2 (decrease I3).
Therefore, for ji 0 after the substitution Ai ! Xi exp (iji),
as in [7], it is easy to obtain the condition j30 �
j10 � j20 � p=2, which we consider below fulélled although
now (unlike [7]) solely due to the optimal choice of phase
incursions in feedback circuits. Taking this expression into
account, (1b) and (2b) can be written in the énal form:

d 2X3

dz 2
� 2b 2�I10 � I20 � I30 ÿ X 2

3 �X3 � 0, (4Â)

X3jz�0 � X30 �
������
I30

p
;

(4b)

dX3

dz

����
z�0
� ÿ2bX10X20 � ÿ2b

�����������
I10I20

p
:

3. Pump depletion and optimal feedback

Providing ampliécation of noise seeds A10 and A20 sufécient
for efécient conversion of pump radiation into radiation at
the frequencies o1;2 at reasonable values of the parameters
b, L and I30 is usually impossible. For this reason,
additional feedback circuits are embedded in OPOs [8].
Optimisation of a single-cavity OPO scheme, in which the
feedback loop closes only for one of the generated waves,
was dealt with in [7] within the framework of the described
approach. Below we will consider the peculiarities of
double-cavity OPOs [8] and will introduce, unlike [7],
two independent (with account for the equality o1 � o2 ë
polarisation-selective) feedback circuits by assuming that

some fractions jR1;2j2 of output (at point z � L) intensities
I1;2(L) of the waves generated in the nonlinear crystal return
again to its input (to plane z � 0, Fig. 1). Here, R1;2 are the
complex transfer constants of the éelds A1;2 from the
nonlinear crystal output to its input. Recall that the phase
incursions in both circuits are assumed optimal and,
therefore, the introduced feedback is positive. Note also
that the ring cavity scheme best suits the approximations
employed because the interaction of modes at the fre-
quencies o1;2, which would appear during the backward
trip for radiation through the nonlinear crystal in a linear
cavity [8], is neglected here.

It is natural to assume that under optimal conditions the
pump wave is completely depleted and I3(L) � X 2

3 (L) � 0
for the nonlinear crystal length L. Therefore, taking into
account the above deénitions, jR1;2j 2 � I10;20=I1;2(L); we
énd from (3) that under these conditions

I10;20 �
1

2

jR1;2j2
1ÿ jR1;2j2

I30; I1;2�L� �
1

2

1

1ÿ jR1;2j2
I30; (5)

and the output intensities I1out and I2out of the signal and
idle waves, respectively, after the cavity mirrors prove
identical

I1out;2out � �1ÿ jR1;2j2�I1;2�L� �
1

2
I30; (6)

and speciéed by the law of conservation of the total energy
êux and Manly ëRow relations.

Because equation (4a) coincides in form with the non-
linear Schr�odinger equation for Kerr nonlinearity of
defocusing type and X3(L) � 0, the required solution
X3(z) should [9] be proportional to elliptic Jacobi function
sn(gz; k) [10] shifted along the z axis so that the zero of this
function be localised at point z � L, i.e.,

X3 � X3maxsn�g�Lÿ z�; k�; I3 � I3maxsn
2�g�Lÿ z�; k�: (7)

Boundary conditions (4b), taking (5) into account, are
rewritten in the form

X3maxsn�gL; k� �
������
I30

p
;

Nonlinear crystalI10

I20
jR2j2

0 L z

I30

I1�L� jR1j2

I3�L� � 0

I2�L� I2out

I1out

Figure 1. Scheme for calculating a double-cavity OPO.
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gX3maxcn�gL; k�dn�gL; k� (8)

� b
� jR1j 2jR2j 2
�1ÿ jR1j 2��1ÿ jR2j 2�

�1=2
I30:

Here, k is the modulus of the elliptic Jacobi functions
sn(gz; k), cn(gz; k) and dn(gz; k) [10], and the numerical
values of the parameters g, k, X3max �

�����������
I3max

p
and jR1;2j 2

should be chosen as to satisfy equation (4a) and boundary
conditions (8).

The above requirements with allowance for (3) deter-
mine three types of possible solutions of the problem. At
jR1j 2 < jR2j 2, we obtain the solution

I1�z� �
1

2

I30

1ÿ jR1j2
cn 2�g�Lÿ z�; k�;

(9)

I2�z� �
1

2

I30

1ÿ jR2j2
dn 2�g�Lÿ z�; k�;

where

g 2 � b 2I30

1ÿ jR2j2
; k 2 � 1ÿ jR2j2

1ÿ jR1j2
;

(10)

I3max �
I30

1ÿ jR1j2
; sn 2�gL; k� � 1ÿ jR1j2:

At jR1j2 > jR2j2, subscripts 1 and 2 in (9) exchange places.
The point jR1j2 � jR2j2 � jRj2 is a singularity because
periodic solutions (7) and (9) become solitary (k � 1):

I3 � I3maxtanh
2�g�Lÿ z��;

(11)

I1;2�z� �
1

2

I30

1ÿ jRj 2 cosh
ÿ2�g�Lÿ z��,

where

g 2 � b 2I30

1ÿ jRj 2 ; I3max �
I30

1ÿ jRj 2 ;

(12)

tanh 2�gL� � 1ÿ jRj2,

which coincides with the degenerate case (sub-harmonic
generation) considered in [8].

4. Optimal ratio of transfer constants

It follows from (10) that at jR1j2 6� jR2j2 the condition of
complete pump-wave depletion [I

3
(L) � 0] relates the

optimal transfer constants jR1j2 and jR2j2 of two feedback
circuits by a transcendental equation

sn

�
b
�

I30

1ÿ jRmaxj2
�1=2

L;

�
1ÿ jRmaxj2
1ÿ jRminj2

�1=2 �

� �1ÿ jRminj2 �1=2; (13)

where jRmax;minj2 � max;min jR1;2j2. Solutions (13) can be
conveniently analysed graphically (Fig. 2). To this end, we

will solve equation (13) with respect to the parameter
b

������
I30

p
L, whose value is given only by the characteristics of

the nonlinear crystal (bL) and pump (I30), by writing an
equality

b
������
I30

p
L � F�jR1j2; jR2j2� � �1ÿ jRmaxj 2�1=2

�
��1ÿjRminj 2�1=2

0

�
1ÿ 1ÿ jRmaxj 2

1ÿ jRminj 2
x 2

�ÿ1
dx

1ÿ x 2
; (14)

where F(x; y) is some `standard' (because it is proportional
to the incomplete elliptic integral of the érst kind) function,
which is symmetric with respect to the permutation of the
arguments x$ y. It means that equation (14) determines
the standard surface in the space (jR1j2; jR2j2; b

������
I30

p
L), and

the array of points (jR1j2; jR2j2) localised on the line of
intersection of this surface with the plane b

������
I30

p
L � const,

speciées a set of pairs of optimal transfer constants jR1j2
and jR2j2 � fb

����
I30
p

L
(jR1j 2) of feedback circuits. Here, fa(y) is

the function which is the solution of the equation
a � F (x; y). Obviously, all these pairs are matched both
with each other (jR2j2 is the function of jR1j2 and vice
versa) and with the parameters of the converter and its

b
������
I30

p
L � 0:25

a

b

F; b
������
I30

p
L
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F �jR1j2; jR2j2)

Figure 2. Graphical solution of equation (14): the surface F �jR1j2; jR2j2�
and lines of its intersection with the planes b

������
I30

p
L � const (a) as well as

the dependences jR2j2 � fb
�����
I30
p

L
�jR1j2� (dash-and-dot curves) and the

same surface in the form of a map in the shades of gray (b).
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pump (the character of these functions depends on the
parameter b

������
I30

p
L).

Figure 2a presents the mentioned surface F (jR1j 2; jR2j 2)
and lines of its intersection with the planes b

������
I30
p

L � 0:25,
0.5, 0.75, 1.0, 1.25, and 1.5. Figure 2b shows the character
of the dependences jR2j2 � fb

����
I30
p

L
(jR1j 2) for the same (as in

Fig. 2a) values of the parameter b
������
I30

p
L and the same

surface in the form of a map in shades of gray.
Taking into account that ÚÕÑ o1 � o2, in the limiting

case jR1j2 � jR2j2 � jRj2, the problem being solved becomes
degenerate and expression (13) is reduced to the relation
known from [8]

tanh

�
b
�

I30

1ÿ jRj 2
�1=2

L

�
� �1ÿ jRj 2�1=2; (15)

which is easily solved with respect to b
������
I30

p
L:

b
������
I30

p
L � F1�jRj 2�

� 1

2

�
1ÿ jRj 2

�1=2
ln
1� �1ÿ jRj 2�1=2
1ÿ �1ÿ jRj 2�1=2

: (16)

Here, F1(jRj 2) � F (jRj 2; jRj 2) is also a standard function
shown in Fig. 3 by a solid curve. The dashed curve in this
égure is the function F2(jRj 2) � F (jRj 2; 0) corresponding to
another limiting situation ë single-cavity OPO scheme. One
can easily see that in this case expression (13) is trans-
formed into the equation

sn

�
b
�

I30

1ÿ jRj 2
�1=2

L; �1ÿ jRj2 �1=2
�
� 1; (17)

whose solution

b
������
I30

p
L � F2�jRj2� � �1ÿ jRj2 �1=2K��1ÿ jRj 2 �1=2� (18)

has been already previously derived and analysed in [7].
Here, K (k) is the complete normal elliptic Legendre integral
of the érst kind [10].

The optimal transfer constants in these two limiting
cases can be also found graphically (Fig. 3). At the given
b
������
I30

p
L, the same maximal OPO eféciency (6), as in the

single-cavity scheme, can be realised by using two feedback
circuits with identical (jR1j2 � jR2j2 ) but signiécantly
smaller transfer constants (Fig. 3). This circumstance is a
matter of principle. The fact is that elsewhere previously, as
in [7], the stationary problem was solved, i.e., the regime of
the established generation was analysed. In practice, during
some time after switching on the pump, the feedback is not
optimal because of a transient process proceeding in the
system, which is caused by the formation of optimal input
éelds ë seeds (I10;20).

The dynamics of this process in the case of instantaneous
[I30(t) � 0 at t < 0 and I30(t) � I30 at t5 0] switching on of
the pump, calculated by the method of successive time steps
[8], is illustrated in Fig. 4. One can see that in this example
the duration of the transient process in the case of the
optimal double-cavity OPO scheme is approximately three
times smaller than in the case of the optimal single-cavity
scheme. In both situations we can well observe the time
interval during which Iout(t) < 1 and the pump-wave energy
is stored in the cavity (cavities). One more characteristic
feature of the optimal single-cavity OPO scheme is its
pronounced asymmetry due to which I1out(t) > I2out(t)
during the entire transient process.

F1;2; b
������
I30

p
L

2.0

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 jR1j2

jR2j2 � jR1j2

jR2j2 � 0

Figure 3. Graphical solution of equations (16) and (18): the dependence
F1�jRj2� � F �jRj2; jRj 2� for a double-cavity OPO scheme (solid curve)
and the dependence F2 �jRj2� � F �jRj2; 0� for a single-cavity OPO
scheme (dashed curve). The optimal values of the transfer constants in
feedback circuits are determined by the abscissa of points of intersection
of the dash-and-dot line b

������
I30

p
L � const with the two mentioned

dependences.

I1out; 2out

I3�L� I3�L�

I1out I2out

I1out;2out=I30; Iout=I30; I3�L�=I30
1.0

0.8

0.6

0.4

0.2

0

0 50 150 200 t

Iout Iout

Figure 4. Transient process after instantaneous switching on of the
pump: the dependences I1out�t� (dash-and-dot curves),, I2out�t� (dashed
curves), I3�L; t� (solid curves) and total energy êux density from the
cavity Iout�t� � I1out�t�� I2out�t� � I3�L; t� (dotted curves) normalised to
I30. The right side of the égure (1304 t4 250) corresponds to the
optimal single-cavity OPO scheme (jR1j2 � 0:87 and jR2j2 � 0), and the
left side (04 t4 100) ë to the optimal double-cavity OPO scheme
(jR1j2 � jR2j2 � 0:52) at b

������
I30

p
L � 0:6 (see Fig. 3). Time t is normalised

to the round-trip transit time for radiation in the cavity, the relative level
of input noises is I10;20�t � 0�=I30 � 10ÿ16.
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5. Conclusions

We have shown that in the case of nondegenerate para-
metric generation in the absence of losses, the use of two
feedback circuits with matched transfer constants and
optimal phase incursions makes it possible to localise the
extremes of spatial (with respect to the longitudinal
coordinate) intensity distributions of interacting waves on
the output face of the nonlinear crystal. The optimisation
procedure is rather êexible in this case because it is reduced
to one from a set of possible matching of the period and
shift of the extremes of analytic solutions of the corre-
sponding problem in the form of cnoidal waves with respect
to the nonlinear crystal position. Unlike the single-cavity
OPO scheme, both these parameters can signiécantly exceed
the nonlinear crystal length and even tend to inénity, which
corresponds to realisation of solitary soliton-like solutions.

During some time after switching on the pump, such a
feedback is not optimal because of a transient process
proceeding in the system, which is caused by the formation
of the required input éelds ë seeds. The duration of the
transient process in the optimal double-cavity OPO scheme
proves much shorter than in the single-cavity scheme.

Note that as far as we know, the exact (from the
viewpoint of abandonment of approximation of the given
pump éeld) analytic solution of such problems was pre-
sented only for the degenerate case of generation of sub-
harmonics [8], i.e., for situations in which the photons
generated at the frequencies o1;2 in a nonlinear crystal
are indiscernible. Note also that in the absence of dispersion,
a simple change of variables [8] in the synchronous
interaction under study can easily take into account the
distributed losses introduced by the nonlinear crystal.
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