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Abstract.  The boundary problem of light reflection and transmission 
by a film with chaotically distributed nanoinclusions is considered. 
Based on the proposed microscopic approach, analytic expressions 
are derived for distributions inside and outside the nanocomposite 
medium. Good agreement of the results with exact calculations and 
(at low concentrations of nanoparticles) with the integral Maxwell-
Garnett effective-medium theory is demonstrated. It is shown that 
at high nanoparticle concentrations, averaging the dielectric constant 
in volume as is done within the framework of the effective-medium 
theory yields overestimated values of the optical film density com-
pared to the values yielded by the proposed microscopic approach. 
We also studied the dependence of the reflectivity of a system of 
gold nanoparticles on their size, the size dependence of the plasmon 
resonance position along the wavelength scale, and demonstrated a 
good agreement with experimental data. 

Keywords: metamaterial, chaotic nanocomposite, scattering of light 
by small particles, effective-medium theory. 

1. Introduction 

At present, of great interest are investigations of different 
low-dimensional objects as well as systems consisting of these 
objects (colloids, composites, photonic crystals, etc. [1 – 4]) or 
systems with nano- and micro-inhomogeneities (micro- and 
mesoporous structures [5, 6]). Indeed, by varying material and 
geometrical parameters of such structures, it is possible to 
obtain, for example, a medium with a giant, superlow, nega-
tive, or unit refractive index [7 – 10] and to increase the optical 
transparency of metal films and layers [11 – 13]. Maxwell-
Garnett [14] was first to put forward the idea that nanoag-
gregates organised in a proper way can have unusual optical 
properties. This effect is explained by the presence of a field 
reradiated by ‘foreign’ inclusions [10, 15, 16], the field leading 
to additional polarisation of medium molecules, which affects 
the macroscopic optical properties of the medium itself. How
ever, the Maxwell-Garnett effective-medium method and its 
modifications (Bruggeman, Clausius – Mosotti, etc.) have a 
small applicability domain because they take into account 

only electrostatic interaction of nanoinclusions. As is shown 
in monographs [17, 18] such an approximation is insufficient 
to describe adequately the systems where the effects of coher-
ent scattering, interference of the field scattered by nanopar-
ticles, delay of electrodynamic interaction play a key role as 
well as when the field is inhomogeneous in the nanoparticle 
volume. In fact, effective-medium approximation is applicable 
only in a rather narrow interval of geometric and material 
parameters of a composite or colloid when the interparticle 
distance in the mentioned systems is sufficiently large to 
neglect the multipolar components of the field scattered by 
nanoparticles as well as the interaction of nonadjacent par
ticles. Nonetheless, it should be emphasised that these appro
aches, even beyond the mentioned restrictions, can be used 
for evaluative research [10]. For instance, Moiseev et al. [19] 
showed that away from the plasmon resonance of metal nan-
oclusters the Maxwell-Garnett theory (compared to the exact 
numerical calculations by the finite element method) describes 
well the optical properties of a single-layer ordered metal- 
dielectric nanocomposite representing a square lattice made 
of clusters. 

In this paper, we propose a method based on formalism 
of  integral equations, which we previously used to study 
different nanoaggregates (for example, dimers and chains of 
interacting nanoclusters [7, 20], an ordered single-layer of 
nanoparticles on a substrate surface [4, 21], an ordered nano
crystal composite [22]) as well as based on the quasi-regular 
approximation which we will describe below. The method 
allows one to investigate the optical properties of a colloid 
nanoaggregate in the interval of material and geometric 
parameters where the conventional effective-medium theories 
either yield a large error or become inapplicable. Because the 
proposed method uses a microscopic rather than a medium-
volume-averaged field, we can take into account the dimen
sional and structural factors of a system of nanoparticles, 
study quasi-ordered aggregates or aggregates with defective 
nanocrystal structures (both periodic and chaotic), etc. Note 
also that it is possible to examine the effective parameters of 
each particle. 

The advantage of this method compared to exact methods 
(finite element method [23], FDTD method   [24, 25], coupled 
dipole method [26], etc.) is its higher computation speed. 
Moreover, to employ the above methods requires a strictly spec-
ified geometry of the system; therefore, investigation of a cha-
otic aggregate necessitates averaging over a set of numerical 
experiments with different geometries [27], which complicates 
markedly the computation. In this connection, exact methods 
are rarely used to calculate the optical parameters of chaotic 
aggregates; therefore, the refinement of the effective-medium 
theory or development of an alternative ‘fast’ method is urgent. 
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2. Basic equations 

According to the integral equation method [28] which we used 
many times to study different nanoaggregates [7, 21, 22], the 
field produced by a composite medium at each point of the 
space can be written in the form: 
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where Ein(r, t) = E0 in exp (ik0 r – iwt) is an external wave at the 
observation point r; k0 is the wave vector; the first integral 
determines the field produced by the P-polarised medium-
matrix, proportional to the field incident on the medium sur-
face, and by the dielectric constant ~em; R = |r – r'|  is the dis-
tance from the integration point r' located inside the medium 
to the observation point; V is the medium volume; c is the 
speed of light in vacuum; the argument (t – R/c) characterises 
the delay of the corresponding quantity. The third term in the 
right hand part of (1) defines the field generated directly by J 
interacting nanoparticles of volume Vj consisting of atoms 
with polarisability aj and concentration Nj ; Rj = |r – r'j|; r'j is 
the point of integration inside the jth nanoparticle with respect 
to the coordinate origin. The field E'j eff in expression (1) dif-
fers from the field Ein of the incident plane wave and repre-
sents a wave affecting each point inside the jth nanoparticle 
with account for all the fields reradiated by the atoms of all 
nanoparticles. We will call this field effective. In this case, E'j eff 
has two components, according to [28]: external – acting from 
surroundings and internal – determining the interaction of 
atoms inside the nanoparticle and responsible for formation 
of the permittivity of the medium. Account for the internal 
field divides equation (1) into local and nonlocal (described in 
detail in [28]), the first one being reduced to the known 
Lorentz – Lorenz equation: 
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where ~ej  (r'j) is the complex dielectric constant of nanoparti-
cles. The formulated problem is thus reduced to the solution 
of nonlocal equations and to a search for effective fields Ej eff 
incident on nanoparticles from the surroundings. 

We will consider a composite consisting of identical homo-
geneous spherical nanoclusters (radii, aj = ai = a; dielectric 
constants, ~ej (r) = 

~ei (r) = 
~e ) and use the long-wave approxima-

tion [18] specified by the conditions 

k0a << 1,  k0na << 1	 (2)

(n =  eu  is the refractive index of a nanoparticle), which mean 
that the strengths Ein and Ej eff weakly change in the cluster 
volume. We will restrict our consideration within this work 
by the case when the vectors of the particle and medium 
polarisations are the linear functions of the field strength. 
Placing the observation point and the coordinate origin on 
the medium-matrix surface, we will write the effective field at 
the centre of the ith particle in the form (1): 
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where nm me=u u  is the refractive index of the medium-ma-
trix, and the first term in the right hand part is a superposition 
of the fields generated by aggregate nanoparticles at the centre 
of the ith nanocluster. In this case, we take into account that 
the waves produced by the particles propagate at a velocity 
c nm/ u . The second term with the tensor Gt  determines the field 
generated by the matrix atoms at a point corresponding to the 
centre of the ith particles when the medium-matrix is conti
nuous and does not contain nanoinclusions. In fact, the term 
responsible for the external field and the integral in (1) describ-
ing the field produced by a pure medium (in the absence of 
nanoparticles) are reduced (according to the extinction theorem) 
to a tensor of Fresnel transmission coefficients in the case of a 
semi-infinite medium and to a tensor of Airy coefficients for 
the fields inside the film in the case of a film [28].

Thus, having solved the system of J equations (3) in the 
general form, we obtain the values of the effective fields at 
the centre of each nanoparticle. The field reflected from the 
composite will take the form according to (1) – (3): 
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where Rt  is the tensor of the reflection coefficients; R is the 
radius vector of the observation point. In this case, we have 
с' = c nm/ u  on the interval where the wave scattered by a nano-
particles moves from the particle to the medium-matrix sur-
face, and с' = c on the interval from the surface to the obser-
vation point. 

3. Electromagnetic fields inside the composite

Consider a field generated by the jth nanoparticle at some 
observation point R outside its volume. The integral corre-
sponding to the strength in (1) can be easily found in the long-
wave approximation by the Ewald – Ozeen method [28], which 
was previously done in papers [15, 20]. As a result, we obtained 
the relations: 
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where the tensor f Rjt ^ h has the components corresponding to 
the parallel and perpendicular external-field polarisations with 
respect to R [18, 28]: 
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Note that it is necessary to take into account the higher-
order multipoles in expansion (6) only when the interparticle 
distance (distance between the particle centres) is shorter than 
2.1a or when condition (2) is violated because in the opposite 
case the multipolar components make an insignificant contri-
bution to the field scattered by interaction nanoparticles, this 
fact being confirmed by detailed research in paper [29]. The 
number of so closely packed clusters becomes statistically sig-
nificant only when their concentration is very high and close to 
that of densely packed nanoparticles, which are described by the 
methods developed in the theory of photonic crystals [17, 30]. 
In this paper, we will restrict our consideration to systems 
where the nanoparticle concentration is such that it allows 
one to limit expansion (6) by dipole components. 

After transforming the integral terms in (3), (4) in accor-
dance with (5), (6), we obtain a system of linear equations for 
the field incident on a cluster (3): 
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expression (4) is also linearised to the form 
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where f lt  depends on the above determined с'. 

4. Lattice sums. Quasi-regular approximation 

Solution of the system of equations (7) and calculation of (8) 
seem, at first sight, to be rather simple numerical problems, 
but they are difficult to realise. This is explained by the pres-
ence of long-range terms (~1/R) in the particle interaction 
tensor (6), which lead to poor convergence of mentioned sums 
as was repeatedly noticed by different authors [17, 31, 32]. 
Indeed, because the number J of particles in a macroscopic 
object tends to infinity and it is impossible to neglect the influ-
ence of remote particles in the limelight of the aforesaid, we will 
have an infinite number of equations in systems (3) and (7). 
However, there exist ways to overcome this difficulty. 

One of the most widely used methods for calculating lat-
tice sums is the so-called Lorentz method according to which 
nanoparticles in the vicinity of the observation point can be 
considered to be discretely distributed, while distant nanopar-
ticles can be considered to be continuously distributed and 
their effect can be taken into account iby integrating over the 
entire volume. This approach, as was shown in [10] leads to 
the Maxwell-Garnett effective-medium theory at small con-
centrations. 

On the other hand, as was noted in paper [33], in some 
cases the results obtained by the Lorentz method strongly dis-
agree with the exact calculations by the coupled dipole method 

[34]. In this connection, we suggest using the so-called quasi-
regular approximation [27], which allows one to employ the 
Ewald method to calculate the sums in crystal lattices [4, 31, 
35, 36]. The approximation implies that a chaotic aggregate 
can be presented in the form of some periodic (with a period 
d) structure (Fig. 1) consisting of identical domains with cha-
otically distributed nanoparticles. Thus, the entire composite 
is divided into two parts: chaotically distributed nanoparticles 
interacting within one domain and a periodic structure affect-
ing the nanoparticles: 
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where rb is the radius vector of the central point of the upper 
face of the bth domain (zero point of the bth domain, Fig. 1). 
The number of particles in the domain S and accordingly the 
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Figure 1.  Representation of a chaotic system in the form of a quasi-
regular aggregate by translating the domain with characteristic dimen-
sions h and d and a translation constant d. 
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number of domains is assumed equal to infinity. We also allow 
for the condition of parallel translation symmetry [35, 36] 

Einc(rb) = Einc(0) exp (iqrb),

taking into account the phase difference of the field that is 
incident on nanoparticles belonging to different domains, 
whether it be external wave or wave scattered by any particle. 
In this case, the vector q has components (qx, qy, 0), where 
qx = k0 

~nm sin qin cos j; qy = k0 
~nm sin qin sin j; qin is the angle of 

incidence; j is the angle between the coordinate axis x and the 
plance of incidence. Summation in j is performed inside one 
domain, and b is an index of summation in the domains. 
Because the domains are in identical conditions, |Ej eff| for 
different b are equal and the phase multiplier is determined by 
the principle of parallel translation symmetry. 

Thus, the number of equations decreases down to the 
number S of particles in the domain. In this case, the field of 
each of them corresponds to a wave generated by an ordered 
periodic infinite layer of nanoparticles rather than by one iso-
lated cluster. Because the position of nanoparticles in the 
domain is chaotic, the corresponding single-layers are ran-
domly displaced with respect to each other. 

Obviously, passage to an ordered nanoaggregate or a par-
tially ordered aggregate is not difficult here – it is only neces-
sary to approprietly specify the coordinates of the particle 
centres and domain parameters  based on the presumed geo-
metric parameters of the composite. This can be useful for the 
theory of photonic crystals and for studying the effect of nano
inclusions on the band-gap structure of the latter [30, 37]. 

We will use the Ewald method to calculate the lattice sums 
in (9), (10). 

Consider first the case when the observation point r is 
outside the single layer under study. Because the function 
describing the nanoparticle field is periodic with a period of 
domain location, it can be expanded in a Fourier series over 
the vectors of the inverse lattice. Derivation of the mentioned 
expressions can be found in papers [35, 36]. We will write here 
the result: 
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are the inverse lattice vectors; a1 = (d, 0, 0), a2 = (0, d, 0) are the 
direct-lattice translation vectors of the domains chosen from 
the considerations of their minimal length, and the vector 
n = (0, 0, 1) is perpendicular to the medium surface. 

Expression (11) is an expansion of the field (produced by 
a domain lattice) in a plane harmonic wave (p = q = 0) and in 
a series of exponentially decaying evanescent waves taking 
place at |q + gpq| > k0, when kpq is imaginary. 

Let us calculate now the lattice sum for the observation 
points inside the single layer, the sum describing mutual inter-
action of nanoparticles belonging to the layer. Following the 
Ewald method [32, 35], we will write the expression 
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The tensor lt is a symmetric tensor with zero components 
lxz, lyz, lzx, lzy and has the form: 
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where d mn is the Kronecker delta. 
In expression (16), the term – 2/3 ik03 takes into account the 

radiative decay, and 
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where m, n = x, y, z; anm = na1 + ma2; anm = |anm|; n, m are 
integers; 
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The convergence of sums in (16) is determined by the 
parameter F, which has the dimensionality of reciprocal 
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length. This parameter has no physical sense and should be a 
real positive quantity. Substituting F into (18), we can find the 
maximal values of subscripts m, n and p, q needed to calculate 
the lattice sums with the given accuracy. Taking into account 
the fact that at large arguments expErfc x x x2 p= - /^ ^ ^h h h, 
we obtain the condition: 

| |exp a a anm
2

1 2#p- /^ h » x,	 (19)

where x is a small quantity determining the calculation accu-
racy. An exact numerical calculation for a square lattice shows 
that a change in the subscripts m, n and p, q from –2 to 2 
ensures a relative accuracy of 10–6 in calculating the lattice 
sums, in agreement with the estimate from (19).

5. Optical characteristics of a composite system 

Substituting (11) and (15) into (9) and (10), as well as taking 
into account that the amplitudes Ej eff are equal at different b, 
for the effective fields inside the particles and for the field pro-
duced by the medium as a whole, we will write the final expres-
sions in the form: 

p
^CE r r r E r E r

,
eff p p eff effi i i j j j i i

j j i

S

1

a= -
!

!=

+At^ ^ ^ ^h h h h= G/

	 ,exp iG nE k r0in mi0+ t u^^ ^hh h 	 (20)

CE R R r E rrefl p p effj
j

S

j j
1

a= -+

=

lt^ ^ ^h h h6 @/

	 ,exp iRE k R0in 0+ t ^^ ^hh h 	 (21)

where Cp
+t  takes place when the observation point is ‘above’ 

the layer (the field radiates in the positive direction of the z 
axis), while Cp

-t  takes place when the observation point is 
‘below’ the layer (the field radiates in the negative direction of 
the z axis). 

Let us study the optical response of the system under con-
sideration. Note that each solution of the system of equations 
(20), (21) does not characterise the optical field of the chaotic 
system even if the coordinates of the particles within one 
domain are distributed chaotically, but allows one to find 
Erefl (R) for the given quasi-ordered structure. To eliminate this 

obstacle, we will average the results of some numerical experi
ments for different geometries of the system, generated by a 
random number generator. We will determine the necessary 
number of calculations based on the requirement of the sta-
bility of the mathematical expectation with an accuracy spec-
ified a priori. 

5.1. Comparison of the Maxwell-Garnett effective medium 
with the theory 

One of the most often used effective-medium theories is the 
Maxwell-Garnett theory [10, 14, 19], which allows the effective 
dielectric constant of the nanocomposite to be written in the 
form [10, 18, 38]: 
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where h is the factor of medium filling with particles (the ratio 
of the total volume of particles to the medium volume). As 
was mentioned above, this approach has some serious limita-
tions [38] resulting from the use of electrostatic approximation 
and from averaging of the parameters over the volume. 
Nevertheless, in the case of small concentrations of nanopar-
ticles, this approach yields results, in agreement with the 
experimental data. In this connection, it will be interesting to 
compare the optical response of a chaotic composite medium 
calculated within the approach proposed in this paper with 
the calculations obtained with the help of expression (22). 
Because the relationship derived by Maxwell-Garnett is inde-
pendent of the size of nanoaggregates composing a cluster 
and the effective dielectric constant of the medium is deter-
mined by the filling factor, we will average Erefl (R) from (21) 
not only over different geometries but also over different sizes 
of the particles, which meet, however, the long-wave condi-
tion (2). 

Figure 2 presents the results of calculations for glass films 
with different volume concentrations of the particles. Good 
agreement obtained within the framework of the proposed 
method and Maxwell-Garnett theory, as is expected, takes 
place at sufficiently small nanoparticle concentrations (see 
Fig. 2a) when only the terms proportional to k0

2/R [see (6)] are 
significant in the expansion of fields scattered by nanoparticles. 
The role of the terms proportional to ik0/R2 and 1/R3 increases 
with increasing h. Thus, for example, the distance between the 
centres of nanoinclusions in Fig. 2c amounts to (2.2 – 2.4)a, where 
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Figure 2.  Reflectivity R of the composite film of thickness h = 180 nm, calculated within the framework of the proposed theory (dots) and Maxwell-
Garnett theory (solid and dashed curves) at h = 0.01 (a), h = 0.15, h' = 177 nm (b) and h = 0.41, h' = 171 nm (c). The solid curves are the results of 
calculations for h, dashed curves – for h'. The medium-matrix is glass with ~nm = 1.5 and n = 2.5; the angle of incidence of an external wave is here-
after treated as normal. 
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a is the particle radius and the ratio (1/R3)/(k02/R) » 2 – 6 in the 
visible wavelength range. In this case, the discrepancy between 
the dependences increases and manifests itself in the change of 
the spectral position of the reflection minimum. 

The mentioned discrepancies can be however easily explained 
using the following assumptions. The position of the mini-
mum on the wavelength scale is determined (with account for 
the phase shift by p upon reflection from the upper boundary) 
by the interference quenching condition hneff = l/2, where h 
is the film thickness. To this end, the best agreement between 
the proposed method and effective-medium theory can be 
achieved if 

hneff 1 = hneff 2,	 (23)

where hneff 1,2 are the effective refractive indices of the film, 
the  indices being calculated with the help of the discussed 
methods. Varying the film thickness within the framework of 
the Maxwell-Garnett theory, we obtain the best agreement 
between the dependences at h' = 177 nm (Fig. 2b, dashed curves) 
and h' = 171 nm (Fig. 2c, dashed curves). It follows herefrom 
that the medium obtained by using the integral averaging of 
the parameters over the volume (within the framework of the 
Maxwell-Garnett theory – the effective medium) is more opti-
cally dense than the medium with chaotically distributed nano
inclusions, the difference being the higher the larger the filling 
factor. Indeed, it is known that reflection from a single nano-
particle layer is weaker than from a film of the same thickness 
having the dielectric constant calculated in accordance with 
(22) [39]. 

5.2. Comparison with the exact numerical calculation 

We will test the proposed approach by comparing it with the 
exact numerical solution of Maxwell’s equations with the help 
of the finite element method [23, 40]. To do this, we will con-
sider the reflection spectrum of the composite film with an 
ordered distribution of nanoparticles. Ordering the nanoin-
clusions necessitates from the complexity of the finite element 
method, which makes it of little use for simulation of a cha-
otic structure [23]. On the other hand, the correctness of 
derived expressions (20), (21) with allowance for all the intro-

duced approximations can be confirmed in an obvious way if 
we compare the results obtained for an ordered nanocomposite 
system once the latter is described by the same relations as the 
chaotic one. 

Figure 3 shows the calculated spectral dependences of the 
reflection coefficient for two glass films implanted with three 
single layers of ordered nanoparticles. Obviously, the obtained 
results are in good agreement with the rigorous solution; this 
confirms the applicability and accuracy of the proposed method 
for simulating the optical properties of nanocomposite films. 
Moreover, because within the framework of the finite element 
method nanoinclusions are characterised not by microscopic 
values, as is the case in equation (1), but by a macroscopic 
dielectric constant of the material used in films, the consistency 
of the calculation data also confirms the validity of transfor-
mation (5), which makes it possible to pass to macroscopic 
description of both dielectric and conducting nanoparticles. 

Note that the interparticle distance in the ordered aggre-
gates under study is such (see the caption to Fig. 3) that the 
terms proportional to ik0 /R2 and 1 /R3 as well as delayed elec-
trodynamic interaction play an important role in the expan-
sion of the field scattered by the particles (6); these terms and 
interaction, as follows from the results presented in Fig. 3, are 
adequately taken into account within the framework of the 
proposed model. Investigation of this composite (or chaotic 
composite with the same average interparticle distance) within 
the framework of the Maxwell-Garnett effective-medium the-
ory will inevitably yield an error because this theory does not 
take into account the mentioned effects. 

It should be emphasized that we mentioned in [21, 22] 
good agreement of calculated spectra of single layers of nano-
particles in vacuum or on the substrate surface with the exact 
results obtained by the finite element method. 

5.3. Size dependence of the optical properties of a chaotic 
nanoaggregate 

We will study the dependence of the optical response of the 
system under consideration on the nanoparticle size. As a 
material for the particles, we will use gold whose dispersion 
dependences ~e(w) are well known [41], and will take into 
account the size corrections to the dielectric constant of solid 
gold, which appear by limiting the mean free path of conduc-
tion electrons in a nanocluster [38]. To this end, we will use 
the Drude model [38, 42] for which the optical constants of a 
small metal particle can be written in the form: 
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where wpl = 1.297 ́  1016 rad s–1 is the plasma frequency; gb = 
1.297 ́  1016 s–1 is the decay constant of solid gold; uF is the 
Fermi velocity of free electrons. 

We will keep the filling factor constant (h = 0.2) and will 
vary the radius a of particles and their number S in the domain 
by using the explicit relation 
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As a medium-matrix, we will use vacuum for simplicity. 
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Figure 3.  Reflectivity R of the composite film implanted with three 
ordered layers of nanoparticles (the upper and lower layers are located 
close to the film boundaries). The points are the results of numerical 
calculations by the finite element method, the solid curves are the results 
of calculations by the proposed method. The parameters of the system: 
h = 100 nm, a = 15 nm, the interparticle distance inside the layer is 3a, 
the interlayer distance is 4a ( 1 ), and h = 180 nm, a = 15 nm, the interpar-
ticle distance inside the layer is 4a, the interlayer distance is 5a ( 2 ). The 
medium-matrix is glass with ~nm = 1.5 and n = 2.5. 
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Figure 4 presents the spectral dependences of the reflectiv-
ity of the composite structure made of nanoclusters with three 
different radii. It is obvious that apart from a quantitative 
change in the curves, which is caused by an increase in the 
absolute value of the reflectivity, we also deal with a qualita-
tive change, which manifests itself as a shift of a plasmon peak 
towards longer wavelengths when the particle radius increases 
(see Fig. 5). To explain this effect, we will use the effective 
polarisability formalism [21, 22]. 

We will write the explicit relation 

,d E Ep p eff p eff ina a= = t 	 (25)

where dp is the dipole moment of a nanocluster. At 
~nm = 1, 

expressions (20) and (25) allow us to obtain an expression for 
the effective polarisability of particles of the ith layer: 
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In this case, the frequency dependence of (~e – 1)/(~e + 2) 
[entering (5) and determining polarisability ap of the cluster] 
exhibits, according to experimental data [41], a markedly pro-
nounced resonance behaviour and can be approximated by the 

resonance frequency function. As a result, the polarisability 
takes the form: 
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where w0 is the resonance frequency; A and G are the ampli-
tude and relaxation constants. Thus, expression (26) trans-
forms to the form: 
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where w'0 = w0 – Aa3 Re[ ^Ap ] is the shifted resonance frequency; 
G '  = G – Aa3 Im [ ^Ap ]. Therefore, the plasmon resonance fre-
quency (and accordingly the wavelength) will change propor-
tionally to a change in the particle radius. An increase in the 
amplitude of the scattered field proportional to the effective 
polarisability of the particles is also obvious. 

Note that the exact shape of these dependences will depend 
on the solution of equations (20) – (28), the type of interpola-
tion function (27), and the contribution of the size correction 
(24); these presented assumptions are of explanatory character. 
It should be also emphasised that the most widely used effec-
tive-medium theories, such as the theories put forward by 
Maxwell-Garnett, Clausius – Mosotti, etc. [38], take into account 
only the filling factor and neglect the size of the particles. 

The dependence (repeatedly studied experimentally [38, 42, 
43], and in the case of a particle – theoretically) of the plas-
mon peak position on the cluster size was predicted within the 
known Mie theory [17, 18]. Figure 5 shows the dependence of 
the plasmon peak position, calculated by the proposed method 
(solid line) and obtained in experiments (points) in [42]. Note 
that the experimentally found wavelengths, which correspond 
to the position of plasmon peaks of gold particles with various 
radii, differ. For example, Khlebtsov [38] analysed dozens of 
papers devoted to this problem and showed that the particle 
diameter corresponding to the peak at one or other wavelength 
can vary by 1.5 – 1.8 times from paper to paper. According to 
Khlebtsov and some other works being analysed, this spread 
is caused by polydispersion and polymorphism of the clusters 
under study, which in turn results from specific character of 
production of nanoparticles of the required size. To this end, 
nanoparticles with a shape closest to spherical and with a high 
degree of monodispersion were obtained in paper [42]; there-
fore, it is reasonable to compare the calculated dependences 
with the results of paper [42]. Figure 5 also presents the inter-
polation dependence (dashed curve) obtained in [38] by aver-
aging the experimental results of 15 papers. This curve in view 
of the above-mentioned reasons (polydispersion of the col-
loids under study and deviation from the spherical shape of 
colloid particles) differs both from the results of [42] and from 
the calculated curve plotted within the framework of the pro-
posed model. Note that this discrepancy does not demon-
strate the invalidity of our approach because we performed 
calculations for monodisperse systems consisting of ideally 
spherical particles and, as is seen from Fig. 5, the theoretical 
results are in good agreement with experimental data [42], 
where (as was noted above) the effect of polymorphism and 
polydispersion was noticeably reduced. 
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Figure 4.  Reflectivity R of the composite film with chaotically distributed 
gold nanoparticles of radii a = 12, ( 1 ), 15 ( 2 ), and 20 nm ( 3 ). The 
aggregate parameters are h = 200 nm, h = 0.2, ~nm = 1. 
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Figure 5.  Position of the plasmon peak in a system of gold nanoparticles 
as a function of their diameter. The aggregate parameters are h = 200 nm, 
h = 0.2, ~nm = 1. The solid line is the calculation by the proposed method, 
the dashed curve is the calculations by the interpolation function from [38], 
and points are the experimental data [42].
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6. Conclusions 

Thus, we have proposed in this paper the microscopic effec-
tive-medium theory which allows us to study composite nano-
structures with a different degree of structural order. The pro-
posed approach makes it possible to calculate the optical 
parameters of dense aggregates where the effects of interac-
tion of nonadjacent particles are significant. Because the 
method interprets the heterogeneous medium microscopi-
cally, it is possible to take into account such peculiar features 
of nanoparticles as shape, size, etc. We have shown that at 
small concentrations of nanoparticles, the results of the 
Maxwell-Garnett theory well agree with the results of calcula-
tions performed within the proposed method (see Fig. 2a). The 
discrepancy between the results increases with increasing nano-
particle concentration because averaging the parameters 
within the integral theory yields overestimated values of the 
effective optical density of the film. Comparison of the results 
of the proposed approach with those of exact numerical calcu-
lations for an ordered nanoaggregate demonstrates their good 
agreement. The studied dependence of the optical response of 
the composite film on the size of implanted metal nanoparti-
cles is also consistent with the experimental data. 
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