
Abstract. Propagation of a guided mode (eigenmode) through
an integrated optical generalised waveguide Luneburg lens is
numerically simulated for the érst time in terms of the
previously obtained analytical solution of the vector electro-
dynamic problem in a smoothly irregular four-layer inte-
grated optical 3D waveguide. The dispersion relation for a
four-layer continuously irregular integrated optical 3D
waveguide is calculated within the approximations of the
asymptotic method of comparison waveguides and the method
of adiabatic modes, in particular, taking into account the shift
of the propagation constants of quasi-TE and quasi-TM
modes. A generalised waveguide Luneburg lens with a full
aperture is synthesised in the zero-order approximation. The
results of numerical simulation demonstrate, on the one hand,
a very good coincidence of the solution to the stated problem
obtained in the approximation of the method of comparison
waveguides with the previous results, and, on the other hand,
advantages of our method: more rigorous solution of the
problem, more complete consideration of its physical
peculiarities, and higher accuracy of calculations. Another
undoubted advantage of the analytical method proposed here
is that it can be used to analyse similar structures fabricated
of dielectrics, magnetics, and metamaterials, including non-
linear materials, in a wide range of electromagnetic wave-
lengths.

Keywords: irregular 3D waveguide, smooth irregularities, perturba-
tion method, asymptotic method, generalised waveguide Luneburg
lens, waveguide modes, dispersion relation.

1. Introduction

In our previous studies [1 ë 6] we obtained analytical
expressions for the éelds of distorted modes of a four-
layer smoothly irregular integrated optical 3D waveguide in

the zero- and érst-order approximations of the perturbation
theory using the asymptotic method and coupled-wave
analysis. As the theoretical analysis showed, the smoothly
irregular integrated optical waveguide has weakly hybrid
quasi-TE and quasi-TM modes. The canonical (for the
asymptotic method) form of the quasi-wave equations
describing the structure of quasi-TE and quasi-TM modes
in smoothly irregular four-layer integrated optical 3D
waveguide was reported in [3, 4].

Our consideration was based on the solution in the form
of a énite asymptotic series, known as the adiabatic
approximation. The quasi-wave equations derived within
the theoretical consideration were solved by the asymptotic
method in the zero- and érst-order approximations. In both
cases we obtained an explicit dependence of the érst-order
small contributions to the amplitudes of electric and
magnetic éelds of quasi-waveguide modes and explicit
expressions for the complex propagation constants of
quasi-TE and quasi-TM modes. For real permittivity and
permeability of the media in a smoothly irregular waveguide
these shifts were found to be purely imaginary and different
for different quasi-TE and quasi-TM modes [3].

There are at least two important problems in the
integrated optics, which require to take into account the
vector character of éelds [1 ë 13]. First, to implement
effective energy transfer through different conjugation
elements (lens, splitters, prisms, etc.), it is necessary to
take into account the vector character of éelds at all stages
of solution of the electrodynamic problem of propagation of
a plane monochromatic light wave in a multilayer integrated
optical structure. The conjugation eféciency is known to
depend strongly on the éeld matching before and after the
conjugation element. Second, in some cases it is necessary to
use an integrated optical device to perform an almost ideal
Fourier transform, for example, in a real-time integrated
optical high-frequency spectrum analyser operating on
plane board [13]. This spectrum analyser must perform
an instantaneous spectral analysis of the input radar signal
to determine, for example, the object that tracks this plane
(another plane, rocket, or ground-based radar). The signal
spectrum at the analyser output is compared with the
spectra stored in the board computer memory, due to which
the pilot can timely take a correct decision.

Note that when passing to the nanoscale range, the
requirements to the accuracy of calculating the parameters
of similar waveguide devices become much more severe in
view of the limitations imposed by diffraction effects
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[1 ë 5, 9, 10, 13]. The latter determine to a great extent the
accuracy of the Fourier transform performed by the lens
and, correspondingly, the spectrum analyser resolution.

The classic Luneburg lens ë a lens with a focal sphere
coinciding with its surface [7 ë 10] ë was proposed by
Luneburg in 1944. The dependence of the lens refractive
index n on the distance r from the centre has the form n(r) ��������������
2ÿ r 2
p

. The focal distance of the lens is unity, and the n
and r values are normalised to unity at the lens edge (r is
normalised to the lens radius R). The Luneburg lens has a
spherical or cylindrical shape; its distinction from conven-
tional lenses is that its refractive index is not constant but
depends on the distance to its centre or axis (spherical and
cylindrical Luneburg lenses, respectively). Generally the law
of change in the refractive index n is chosen so as to make
parallel rays passing through a classical Luneburg lens to
focus at one point on the lens surface and rays emitted by a
point source on the lens surface to form a parallel beam far
from the lens. Thus, the Luneburg lens performs a perfect
Fourier transform, whose time scale is determined by the
speed of light in the lens material.

Wide application of Luneburg lenses in optics and, all
the more, in integrated optics is hindered, on the one hand,
by serious diféculties in developing an adequate electro-
dynamic theory and the corresponding algorithms and
programs for calculating such lenses and, on the other
hand, by technological diféculties in fabricating lenses with
a variable refractive index, which generally determine their
high cost. To simplify calculations and production technol-
ogy, such lenses are sometimes composed of discrete
elements (for example, cubes with different refractive
indices).

The generalised Luneburg lens is a lens whose focal
surface does not coincide with its real surface and is located
at a distance r > R from the lens centre. In this study we
consider a thin-élm generalised waveguide Luneburg lens
(TGWLL), which is used, for example, as a part of
integrated optical high-frequency spectrum analyser. The
waveguide modes and their characteristics are analysed
within the adiabatic-mode model in the zero- and érst-
order approximations of the asymptotic method. To com-
pare our results with those of other researchers, we used a
rougher matrix model of comparison waveguides, which is
derived from the zero-order approximation of adiabatic-
mode model by replacing the tangential boundary con-
ditions on nonhorizontal portions of interfaces between the
layers of integrated optical waveguide with approximate
conditions, taking into account only the horizontal con-
tributions of the exact boundary conditions and neglecting
the vertical ones. We showed previously [4 ë 6] that this
model coincides with the model of comparison waveguides
[11, 12].

2. TGWLL eigenmodes

The éelds of adiabatic modes of a smoothly irregular
waveguide, which are solutions to the Maxwell equations,
have the form

~E�x; y; z; t� � exp�iot�E�x; y; z��������������
b�y; z�p exp�ÿik0j�y; z��;

(1)

~H�x; y; z; t� � exp�iot�H�x; y; z��������������
b�y; z�p exp�ÿik0j�y; z��;

where E and H are, respectively, the vectors of electric and
magnetic éelds (the tilde sign indicates their complex
character); o

�����
me
p � nk0; n is the refractive index of the

medium (layer); e � ere0 is the permittivity of the medium;
m � mrm0 is the magnetic permeability of the medium; er and
mr are, respectively, the relative permittivity and perme-
ability; e0 and m0 are, respectively, the dielectric and
magnetic constants; k0 � 2p=l � o=c is the modulus of
the wave vector k0; l is the monochromatic light wave-
length in vacuum; c is the speed of light in vacuum; and
b( y; z) � �b 2

y ( y; z)� b 2
z ( y; z)�1=2 is the length (norm) of the

2D vector éeld b( y; z) � (by( y; z); bz( y; z))
T, composed of

the partial derivatives of the eikonal by�y; z� � qj=qy,
bz�y; z� � qj=qz.

The eikonal (phase) j�y; z� � � y;z b�y 0; z 0�ds�y 0; z 0� in
(1) is found using integration along rays after solving the
dispersion relation and isolate calculation of the rays and
wavefronts in the horizontal plane [1, 5]; ds � (dy 2� dz 2)1=2

is the ray length element.
The object of our study is the integrated optical device

based on a three-layer regular planar waveguide (Fig. 1).
One or several additional waveguide layers with refractive
indices higher or lower than that of the main waveguide
layer are deposited on one or several individual portions of
this waveguide. First we consider the case where `ideal' TE
or TM modes propagate at regular portions of integrated
optical structure. When passing through an irregular
portion, these modes undergo deformations of different
kind: scale transformation of the standing wave structure in
the vertical direction, caused by a change in the waveguide
geometric parameters in the vertical direction; mode hybrid-
isation, caused by the 3D nature of irregular portions and,
correspondingly, the vector character of éelds; partial mode
injection into the substrate and coating layer, which is
caused by irregularities; etc.

By the example of TGWLL we will restrict ourselves to
consideration of small geometric irregularities of the addi-
tional waveguide layer (jqh=qyj5 1; jqh=qzj5 1) (see Fig. 1)
and eigenmode deformations of the érst two types and
estimate the power loss for leaky modes (see below).

TE and TM eigenmodes can propagate through a
regular waveguide portion along the z axis. The x �
h( y; z) � const interface between the waveguide layer and
air at the regular portion is horizontal, and the tangential
plane at any point (h( y; z); y; z)T coincides with the yz plane.
The tangential boundary conditions are satiséed separately
for the TE and TM modes:

Hzjhÿ0 � Hzjh�0; Eyjhÿ0 � Eyjh�0; (2)

and

Ezjhÿ0 � Ezjh�0; Hyjhÿ0 � Hyjh�0: (3)

respectively. At the interface x � h( y; z) of an irregular
waveguide portion at a point (h( y; z); y; z)T the tangential
plane is set by the equation dxÿ (qh=qy)dyÿ (qh=qz)dz � 0
and generally does not coincide with the horizontal plane
yz, set by the equation 1dxÿ 0dyÿ 0dz � 0. In this case,
the tangential boundary conditions
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Etjhÿ0 � Etjh�0; Htjhÿ0 � Htjh�0 (4)

are generally not satiséed separately for the TM and TE
modes. Thus, speciécally the boundary conditions relate
two independent waveguide modes (the so-called quasi-TE
and quasi-TM modes) into one weakly coupled hybrid
mode. This coupling is weak in view of the estimate
jqh=qyj; jqh=qzj5 1. The modes of a smoothly irregular
waveguide, as well as the modes of a regular one, exhibit
fast oscillations along the x axis; the number of these
oscillations is retained during mode propagation.

3. Hierarchy of the matrix models of eigenmodes
of an integrated optical multilayer smoothly
irregular dielectric waveguide

In the zero-order approximation of the asymptotic method
the quasi-wave equations for adiabatic modes [1] in each
homogeneous layer take the form

d2E �0�z

dx 2
� k 2

0 �ejmj ÿ b 2�E �0�z � 0;

(5)

d 2H �0�z

dx 2
� k 2

0 �ejmj ÿ b 2�H �0�z � 0:

The solutions to Eqns (5), with allowance for the
boundary conditions at inénity (jEt�0� jx!�1 < �1;
jHt�0� jx!�1 < �1), for the zero-order approximations of
the waveguide mode components can be explicitly expressed
in terms of the uncertain coefécients fAj;Bjg [3]. The
tangential boundary conditions form a homogeneous system
of linear algebraic equations for the amplitude coefécients
fAj;Bjg [1 ë 5], which has a nontrivial solution if the
determinant of the system matrix is zero.

Both the matrix M̂�b� and its determinant det (M̂(b))
depend on the real parameter b 2 �ns; nL�. The dispersion
equation det (M̂(b)) � 0 has the form of a nonlinear differ-
ential equation in partial derivatives with respect to h and an

algebraic equation with respect to the vector éeld b :
Fdisp(b; by; bz; h; qh=qy; qh=qz; ns; nf; nL; nc; d ) � 0.

The adiabatic-mode model in the zero-order asymptotic
approximation was used to study the TGWLL [7 ë 10] by
different authors with different success. Southwell's results
[9, 10] appear to be most adequate.

Despite the signiécant progress in the computational
technique and such numerical methods (used to solve many
electrodynamic problems) as the énite-difference time
domain (FDTD) method and its various modiécations,
up to now neither the problem of numerical simulation
of hybrid-mode transmission through a TGWLL nor the
problem of synthesising this lens even in the zero-order
vector approximation could be solved. For example, Vek-
shin et al. [14], as well as some other researchers, instead of
valuable analysis of the corresponding vector electrody-
namic problem with allowance for the leaky-mode
generation at the edges of the Luneburg lens, used the
modiéed FDTD method to solve this problem within the
formalism of TE and TM modes; i.e., did not take into
account the vector character of hybrid modes in the lens.

The solution of the Maxwell equations by the FDTD
method makes it possible to calculate eféciently the electro-
magnetic éeld in a limited region of space, for example, in a
prism, cavity, diffraction grating, etc. Although this method
is rather efécient and universal, it requires signiécant
computational resources to solve the above-mentioned
standard problems. When the problem is to calculate
electromagnetic éelds far from the object under study
(for example, lens), which emits or scatters the electro-
magnetic éeld, even the modiéed FDTD method requires a
very large amount of computations, as a result of which its
eféciency drastically decreases (see, for example, [15]). The
FDTD method also gives rise to such problems as the
`numerical dispersion' (which leads to errors in determining
the phase velocity) and `numerical anisotropy', at which
waves propagating in different directions in an isotropic
region have different wavenumbers in the grid model [15].
Note that there are no uniéed effective ways for calculating
éelds in the far zone based on the FDTD calculation of the
near-zone éeld. This also holds true for leaky waves. Only a
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Figure 1. Cross section of the integrated optical structure under consideration: ( 1 ) environmental medium or coating layer (air) with refractive index
nc; ( 2 ) the érst waveguide layer (regular part of the integrated optical structure) with refractive index nf; ( 3 ) substrate with refractive index ns; and ( 4 )
thin-élm waveguide Luneburg lens (irregular part of the integrated optical 3D structure) with refractive index nL (the second waveguide layer); h( y, z)
is the thickness of the Luneburg lens layer, R is the lens radius, and d is the thickness of the regular part of the waveguide integrated optical structure;
the propagation direction of the TM1 mode is shown by an arrow (on the left).
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limited class of problems that are of interest for the case
under study [1 ë 6, 9, 10, 13 ë 18] can be effectively solved by
the FDTD method.

In contrast to this technique, our method of adiabatic
modes for calculating the dispersion relations and éeld
distributions in smoothly irregular integrated optical 3D
waveguides requires the operating memory and amount of
computations several orders of magnitude smaller to obtain
the same accuracy. At the same time, our method is free of
such drawbacks as numerical dispersion and numerical
anisotropy. To compare it with Southwell's approach, we
used the matrix model of the method of comparison
waveguides. It can be constructed by replacing the tangen-
tial conditions with their horizontal approximations, in
which all terms containing the expressions (qh=qy) and
(qh=qz) become zero, and the dispersion relation
det (M̂(b)) � 0 becomes a transcendental algebraic equation
with respect to h and b � bz.

We established the advantage of the matrix model of our
method over its conventional formulation. Speciécally, we
obtained the dispersion relations for three- and four-layer
waveguides, which coincide with the dependences reported
by Adams, Tamir, Kogel'nik, and other researchers for
waveguides with coinciding parameters. The matrix model
allowed us to obtain the dispersion relation in the form of a
smooth continuous curve at a transition from three- to four-
layer waveguide (Figs 2a, 2b), which could not be obtained
within the conventional method of comparison waveguides.

An additional advantage of the matrix method of
comparison waveguides is that it allows one to calculate
the vertical distribution of the waveguide mode, which
numerically demonstrates the conservation of the structure
of a standing wave under its scale deformation. Note that
waveguide modes are not hybridised within this model. This
is quite natural, because the method of comparison wave-
guides uses not rigorous tangential boundary conditions but
their horizontal projections, i.e., approximate boundary
conditions, which make it possible to separately describe
TE and TM modes.

4. Dispersion relation for TGWLL. Vertical
distribution of the electromagnetic éeld
of eigenmodes

The algorithm for calculating the dispersion relation in the
matrix model of comparison waveguides was described in
[4, 5]. Substituting the known solutions for the éelds in
each waveguide layer into the boundary conditions (dis-
regarding the tilt of the additional layer surface), we obtain
a homogeneous system of linear algebraic equations with
respect to the amplitude coefécients, which determine the
éelds in the waveguide layers. The solvability condition for
this system is the equality of its determinant to zero. In this
case, the dispersion relation det (M̂(b)) � 0 is a tran-
scendental algebraic equation at any values of horizontal
coordinates ( y; z), which coincides with the dispersion
relation for a regular comparison waveguide at any ( y; z)
values. Using the calculated distributions of the phase lag
coefécient b(r), we calculate the corresponding h(r) values
of the thickness proéle for the additional waveguiding
TGWLL layer for all normalised radii r 2 �0; 1�.

The algorithm for calculating the dispersion relation in
the zero-order approximation of the adiabatic-mode model
was described in [4, 5]. The expressions for the longitudinal

éeld components Ez and Hz of the corresponding modes in
the zero-oder (with respect to d) approximation are used to
calculate the solutions for Ey, Hx and Ex, Hy in the same
approximation [1, 2, 5]. All these solutions contain the
amplitude coefécients fAjg and fBjg. In this approximation
the dispersion relation is an algebraic polynomial equation
with respect to the distribution of the lag coefécient
b �0�( y; z), which is also considered in the zero-order
approximation; therefore, b( y; z) � b �0�( y; z)�O(d).

Thus, all the components of the vertical distribution of
quasi-waveguide modes E(x; y; z) and H(x; y; z) are calcu-
lated in the zero-order (with respect to d) approximation at
any values of the horizontal coordinates ( y; z) with a
speciéed distribution (proéle) of the thickness h( y; z) and
for all vertical coordinates x. The algorithm for calculating
the vertical éeld distribution in the matrix model of
comparison waveguides and in the zero-order approxima-
tion of the adiabatic-mode model was described in [4, 5].
The consideration of the shift of the propagation constant
[3] allows one to approximately calculate the component of
the vertical distribution of quasi-waveguide modes E(x; y; z)
and H(x; y; z) in the érst-order (with respect to d) approx-
imation.

5. Results of numerical simulation

5.1 Calculation of the dispersion relations for a smoothly
irregular four-layer integrated optical waveguide

Figure 2 shows the dependences of the effective refractive
index (phase lag coefécient) b for the TM0 mode on the
thickness of waveguide layers for a four-layer integrated
optical structure, calculated according to the matrix model
of the method of comparison waveguides. This structure
consists of a three-layer regular planar waveguide and a
four-layer smoothly irregular waveguide (see Fig. 1), with
the following parameters: substrate (SiO2) refractive index
ns � 1:470; refractive index of the érst (regular) waveguide
layer (Corning 7059 glass) nf � 1:565; refractive index of
the second waveguide layer (Ta2O5 TGWLL) of variable
thickness h(y, z) nL � 2:100; and refractive index of the
coating layer (air) nc � 1:000.

In the dispersion relations b � b(d=l; h=l) the waveguide
layer thicknesses are given in relative units (d=l and h=l),
where l � 0:9 mm. Thus, the left part of Fig. 2a (the interval
on the abscissa axis approximately from 0 to 3) shows the
dispersion relation for the three-layer regular waveguide,
while the right part (the interval on the abscissa from 3.0 to
3.8) yields the dispersion relation for the four-layer
smoothly irregular waveguide, containing a TGWLL.

The dependence b(h=l) is shown in Fig. 2b. The portions
in the dispersion relation after d=l ' 3:0 and at h=l '
0ÿ 0:24 correspond to some transient regime in a TGWLL.
We obtained similar dispersion relations for modes of other
types.

Figure 2c shows the same dependence as in Fig. 2a but
for the TE3 mode. Our preliminary analysis showed that the
presence of steps in the dispersion relations, similar to those
in Fig. 2c, can be explained by the partial power redis-
tribution in the layers of the multilayer waveguide structure
with a smoothly varied thickness of the additional wave-
guide layer (i.e., the lens). To determine the propagation
constant and, correspondingly, b, one must solve the
dispersion (or characteristic) equation, which explicitly
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relates b and power distribution in a multilayer nonabsorb-
ing waveguide in the integral form [16]:

b �

�
S1

n 2�Ej �H �j �zdS�
S1

n 2jEjj 2dS
; (6)

where S1 is the area of inénite cross section; Ej amd Hj are
the amplitudes of the electric and magnetic éelds of the
mode; and z is the unit vector of the z axis; jEjj 2 � EjE

�
j .

The integral in the numerator contains the total mode
power, and the integral in the denominator contains in
essence the total time-averaged energy per unit length of the
waveguide structure for the jth mode, which propagates in
the forward direction.

As follows from (6), a redistribution in the energy êuxes
within one mode, propagating along the z axis, should affect
the b value, which is observed in Fig. 2c. Indeed, a change in
the parameters of the thin-élm layer where the éeld (and,
therefore, the power transferred through the waveguide) is
mainly concentrated, should decisively affect the dispersion
relation and the form of the éelds in the corresponding
regions of dispersion relations. A more detailed analysis of
these phenomena is beyond the scope of this study.

Note that plots similar to that in Fig. 2c were reported in
some publications but without explaining the mathematical
and physical nature of the step dispersion relations for
modes of order higher than TE0 or TM0 (see, for example,
[18]).

5.2 Synthesis of a thin-élm generalised waveguide
Luneburg lens

Figure 3 shows the result of TGWLL synthesis (within the
matrix method of comparison waveguides): the proéle
distribution h(r) (r is the normalised lens radius, ranging
from 0 to 1) was found for the normalised focal length
s � F=R (R is the radius of the TGWLL with a speciéed
focal length F ). This lens is described by the radial
distribution b(r;F ) at r 2 �0; 1� in dimensionless radii R.

To compare our results with Southwell's data, we
performed a calculation for a TGWLL with the following
parameters: focal length s � 2, lens radius R � 1, and
thickness of regular waveguide layer d � 1:0665. The other
structure parameters were as follows: substrate (SiO2)
refractive index ns � 1:470; refractive index of the érst
(regular) waveguide layer (Corning 7059 glass) nf � 1:565,,
refractive index of the second waveguide layer (Ta2O5

TM0

TE3

TM0

b

a

1.4

1.6

1.8

b

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

d=l; h=l (rel. units)

c

1.5

1.7

1.9

b

1 2 3 4 5 6

d=l; h=l (rel. units)

b

1.5

1.7

1.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

h=l (rel. units)

Figure 2. Dispersion relations of the integrated optical four-layer
structure (Fig. 1) for the (a) TM0 mode and (c) TM3 mode and the
dependence of b on the thickness of the second waveguide layer.
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Figure 3. (a) Thickness proéles of generalised integrated optical
Luneburg lenses with the focal length s � 5 (solid line indicates the
results of our calculation and circles are Southwell's data), (b) 3D
synthesised proéle, and (c) a 3D stereogrid of the synthesised TGWLL
thickness proéle.
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TGWLL) of variable thickness h(y; z) ë nL � 2:100; and
refractive index of the coating layer (air) nc � 1:000.

As can be seen in Fig. 3, the data obtained by us within
the matrix model of the method of comparison waveguides
practically coincide with Southwell's data. However, the
numerical calculation showed that our solution has a much
higher accuracy (at least, by three decimal places in
comparison with Southwell's result). This is especially
important for synthesising generalised Luneburg lenses,
which require to take into account the edge effects (inêuenc-
ing, for example, the accuracy of Fourier transform of the
lens).

5.3 Calculation of the vertical éeld distribution
in TGWLL

An analysis of the éeld proéles obtained in the matrix
model of comparison waveguides at closely located points
of the TGWLL under consideration showed that the
vertical distribution of the eigenmode electromagnetic
éeld is gradually transformed during the motion of the
mode phase front along a smoothly irregular TGWLL
portion [4, 5]. The main difference of the vertical éeld
distribution obtained in the zero-order vector approxima-
tion is that all amplitude coefécients fAjg and fBjg are
simultaneously involved in the calculations; i.e., the modes
are hybridised [1 ë 5].

Figure 4 shows the éeld amplitudes Ez(x) of the TM1

mode (which demonstrate more clearly their change) at close
points on the TGWLL dispersion curve (see also Fig. 1). It
can be seen in these égures that the vertical distribution of
the eigenmode electromagnetic éeld in the zero-order vector

approximation of the adiabatic-mode method is gradually
transformed during the motion of the eigenmode phase
front from point to point along a smoothly irregular portion
of a thin-élm generalised waveguide Luneburg lens.

To calculate the vertical distribution of the eigenmode
electromagnetic éeld in the érst-order approximation, one
must supplement the computational program with a pro-
cedure for calculating the érst-order additives with respect
to d. The results of these calculations will be reported
elsewhere.

Note that our estimation of the power loss for leaky
modes propagating in the above-considered TGWLL
showed good correspondence with the experimental data
[14, 17]: the loss for a lens with a 1-cm radius is about
0.9 dB, which corresponds to a power loss of about
0.22 cmÿ1 on this lens. At this damping coefécient the
power loss of waveguide modes on this full-aperture
TGWLL will not exceed 20%. A successive limitation of
the lens aperture (at the edges, where the contribution of
leaky modes is large) by 10% and 20% makes it possible to
reduce the power loss by 15% and 13%, respectively. These
estimates were obtained within the érst-order approxima-
tion of the asymptotic method [3] and characterise the
maximally possible power loss on such full-aperture
TGWLLs.

6. Conclusions

We have numerically simulated for the érst time prop-
agation of eigenmodes through a TGWLL within the
previously obtained analytical solution of the vector
electrodynamic problem for a smoothly irregular four-
layer 3D integrated optical waveguide.

The corresponding dispersion relation has been calcu-
lated, in particular, taking into account the shift of the
propagation constants of hybrid modes. The vertical dis-
tribution of the electromagnetic éeld of a smoothely
deformed mode in a TGWLL has been constructed. A
full-aperture TGWLL has been synthesised in the zero-order
vector approximation.

The methods considered here make it possible to
perform (in the design stage) high-precision computer
analysis of all features of operation of complex multilayer
smoothly irregular integrated optical 3D elements of the
TGWLL type that are most important for experimenters.

An undoubted advantage of the theoretical description,
methods, and algorithms proposed here is that they can be
generalised to smoothly irregular integral 3D structures
composed of layers of dielectric or magnetic materials,
materials with nonlinear properties, or metamaterials.
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