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Abstract.  The possibility of unique reconstruction of the spatial 
profile of the cubic nonlinear susceptibility tensor component  
 ĉ(
yy
3)
yy(z, w, – w, w, w) of a one-dimensionally inhomogeneous plate 

whose medium has a symmetry plane my perpendicular to its sur-
face is proved for the first time and the unique reconstruction algo-
rithm is proposed. The amplitude complex coefficients of reflection 
and transmission (measured in some range of angles of incidence) 
as well as of conversion of an s-polarised plane signal monochro-
matic wave into two waves propagating on both sides of the plate 
make it possible to reconstruct the profile. These two waves result 
from nonlinear interaction of a signal wave with an intense plane 
wave incident normally on the plate. All the waves under consider-
ation have the same frequency w, and so its variation helps study 
the frequency dispersion of the cubic nonlinear susceptibility tensor 
component ĉ(

yy
3)
yy(z, w, – w, w, w). For media with additional symme-

try axes 2z, 4z, 6z, or ¥¥z that are perpendicular to the plate surface, 
the proposed method can be used to reconstruct the profile and to 
examine the frequency dispersion of about one third of all indepen-
dent complex components of the tensor ĉ(3). 

Keywords: dielectric constant, reflection coefficient, transmission 
coefficient, cubic susceptibility, inverse problem, one-dimensionally 
inhomogeneous medium. 

Identification and control of the dielectric properties of one-
dimensionally inhomogeneous structures, including multi-
layer systems, are becoming a popular practical problem [1]. 
Different methods exist to solve this problem in linear media 
[1 – 8]. However, most these methods are either inapplicable in 
optics due to some reasons (neglect of absorption [2] or fre-
quency dispersion in a broad frequency range [3], use of 
extremely simple models of this dispersion [4], etc.) or can be 
used only for weakly inhomogeneous media [1, 5]. For non-
linear media, the solution of these problems is at the initial 
stage [9 – 14]. 

In papers [6, 7] we proposed and tested a method for deter-
mining the coordinate dependences of the complex tensor 
components of the dielectric constant of a one-dimensionally 

inhomogeneous plate in linear media, the method being free 
from the above drawbacks. In this paper, we first generalise 
this method to nonlinear media. As a result, we pay main 
attention to the method of unique reconstruction of the coor-
dinate dependence of some complex cubic susceptibility tensor 
components ĉ(3)(z, w, – w, w, w) of a nonlinear medium whose 
dielectric properties change along the z axis that is perpen-
dicular to its two parallel flat surfaces, and arbitrary depend 
on the frequency. 

Let the layer of this medium adjoin the homogeneous iso-
tropic linear nonabsorbing media with a real dielectric con-
stant e0 (w) along the planes z = z1 and z = z2 (z2 > z1). We 
assume that the point group symmetry of the medium pro-
ducing the plate is such that one of its symmetry elements is 
the symmetry plane perpendicular to the plate surface. We 
will direct the axis x^z along this plane and assume that an 
s-polarised plane signal low-intensity wave propagating in 
the direction positive or negative to the z axis is incident on 
this plate at a nonzero angle a. In the first case, the electric 
field strength of this wave is equal to E+ey exp{i [ wt – kx x – 
kz (z – z1)]} + c.c. (at z < z1), while in the second case, 
E– ey exp{i [ wt – kx x + kz (z – z2)]} + c.c. (at z > z2). Here, ey is 
the unit vector perpendicular to the symmetry plane of the 
medium; w is the wave frequency; kx = k0 sin a; kz = k0 cos a; 
k0 = w c0e ; c is the speed of light in vacuum. In addition, let 
an intense fundamental-radiation plane wave with the electric 
field strength equal to E0 ey exp{i [ wt – k0 (z – z1)]} + c.c. at 
z < z1 be incident on a plate perpendicular to its surface in the 
positive direction of the z axis. In other words, we simultane-
ously consider in this paper two independent problems. In the 
first problem, the intense and signal waves fall onto the same 
side of the plate under study (the subscript ‘plus’), while in the 
second – onto the opposite sides (the subscript ‘minus’). 

We assume that as the phase-matching condition is violated, 
harmonics are not generated in the plane. As a result, only 
three waves [one intense (Ef (z) ey exp(iwt) + c.c.) wave and two 
weak waves: the initial signal (Es±(z) ey exp [ i (wt – kx x)] + c.c.) 
wave and a new (Eg±(z) ey exp [ i (wt + kx x)] + c.c.) wave pro-
duced in the nonlinear medium] with the frequency w can effi-
ciently interact. Because the medium is inhomogeneous, each 
of these waves in the plate is a superposition of two counter-
propagating variable-amplitude travelling waves. To describe 
their propagation, we can use both a system of six exact first-
order equations for travelling-wave amplitudes and a system 
of three second-order wave equations for the total electric 
field of each wave. For the problem under study, using the 
second-order equations is more preferable, because it allows 
one to simplify the presentation. 

The new wave Eg±(z) ey exp [ i (wt + kx x)] + c.c. appears 
during the nonlinear interaction of intense and signal waves 
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and, in turn, can affect propagation of the latter. This non
linear interaction takes place because the plate medium has a 
nonlinearity that is characterised by a symmetric (with respect 
to permutation of the last two subscripts) cubic susceptibility 
tensor ĉ(3)(z, w, – w, w, w). Because the medium has a plane of 
local symmetry my perpendicular to the y axis, in the case 
of the chosen polarisation of incident waves, the expression 
for the electric induction vector in the plate at the frequency w 
can be written in the form [15] 

D±(x, z, t) = eyy (z)E0± 

	 + 4pc(3)yyyy (z)(E *
0±E0±)E0± + c.c.	 (1)

Here, E0±(x, z, t) = [Ef (z) + Es±(z) exp (– ikx x) + Eg±(z) exp (ikx x)] 
´ ey exp (i wt) is the spectral component of the electric field 
strength in a nonlinear medium at the frequency w; eyy (z) is 
the tensor component of the linear dielectric constant of the 
medium under consideration. In (1) and some subsequent 
expressions, the frequency arguments at the tensor compo-
nents ê(z, w) and ĉ(3)(z, w, – w, w, w) are omitted for brevity. 

In the case of a relatively weak signal wave, expression (1) 
can use only the terms that are linear in Es±(z) and Eg±(z). 
Then, we have 

D± = {eyy (z)[Ef + Es± exp (–ikx x) + Eg±exp (ikx x)]  

	 + 4pc(3)yyyy (z) [|Ef|2Ef + (2|Ef|2Es± + E f
2E*

g±)

	 ´ exp (–ikx x) + (2|Ef|2Eg± + E f
2E*

s±) exp (ikx x)]}

	 ´ ey exp (i wt) + c.c.	 (2)

It follows from (1) that in the used geometry, all the waves 
under study are transverse due to the presence of the my sym-
metry in the medium plane. Using (2), we can easily derive the 
equations for wave propagation: 

0.5 ( ) ( ) 0,d dE z z z E cf n fyy
2 2 2 2w e e+ + =6 @ 	 (3)

[ ( ) ] ( ) 0,d dE z z c E r z Es n s g
2 2 2 2w e l+ - + =! ! !

* 	
(4)

[ ( ) ] ( ) 0,d dE z z c E r z Eg n g s
2 2 2 2w e l+ - + =! ! !

* * * *

where l = kx
2; ( ) ( ) 8 ( ) ( )z z z E z( )

n yy yyyy f
3 2e e pc= + ; ( )r z = 

( ) ( )z E z c4 ( )
fyyyy

2 3 2 2pw c / .
Because of Maxwell’s boundary conditions on the layer 

surface, we have 

( ) (1 ) , | (1 ) ,d d iE z R E E z k R Ef f z z1 0 0 01= + =- -= 	
(5)

( ) , | ,d d iE z TE E z k TEf f z z2 0 0 02= =-=

where R and T are the amplitude complex coefficients of 
intense light wave reflection by the plate and transmission 
through the plate, respectively. In addition, 

( ) (1 ) , | (1 ) ,d d iE z R E E z k R Es s z z z1 1= + =- -+ + + + = + +

( ) , | ,d d iE z T E E z k T Es s z z z2 2= =-+ + + + = + + 	
(6)

( ) (1 ) , | (1 ) ,d d iE z R E E z k R Es s z z z2 2= + = -- - - - = - -

( ) , | .d d iE z T E E z k T Es s z z z1 1= =- - - - = - -

Here, R± are the amplitude complex reflectivities of signal 
waves by the plate, the waves propagating respectively in the 
positive and negative directions to the z axis; and T± are 
the amplitude complex transmittivities of the corresponding 
waves through the plate. Recall that the subscript ‘plus’ is 
used when an intense and signal waves are incident on one 
side of the plate under study, while the subscript ‘minus’ is 
used when these waves are incident on the opposite sides of 
the plate. In the experiment we can use any of these measure-
ment schemes or, if necessary, both these schemes to obtain 
more accurate data. 

The new wave Eg±(z) appearing in the plate during 
the nonlinear interaction propagates in homogeneous linear 
media adjacent to nonlinear medium in the form of a wave 
Eg1±ey exp{i [ wt + kx x + kz (z – z1)]} + c.c. at z < z1 and in the 
form Eg2±ey exp{i [ wt + kx x – kz (z – z2)]} + c.c. at z > z2. In 
this case, Eg1±, Eg2± and Eg±(z) meet Maxwell’s boundary 
conditions 

( ) , | ,d iE z E E dz k Eg g g gz z z1 1 11= =! ! ! !=

( ) , | .d iE z E E dz k Eg g g gz z z2 2 22= =-! ! ! != 	
(7)

It follows from equations (4), (6), and (7) that E*
g1± and 

E*
g2± are proportional to E± for these en(z) and r (z). It means 

that we can introduce E±-independent signal-wave conver-
sion coefficients G±

(1) = E*
g1±/E± and G±

(2) = E*
g2±/E± charac-

terising the conversion efficiency of the signal wave incident 
on the plate into the waves of the same frequency, propagat-
ing away from the plate. In this case, the propagation direc-
tion of the latter ones differs from the propagation direction 
of reflected and transmitted signal waves. Using these coeffi-
cients, boundary conditions (7) can be conveniently rewritten 
in the form 

( ) , | ,d iE z G E E dz k G E( ) ( )
g g z z z1

1 1
1= =-! ! ! ! ! !=

* *

( ) , | .d iE z G E E dz k G E( ) ( )
g g z z z2

2 2
2= =! ! ! ! ! !=

* * 	
(8)

If the dependences en(z) and r (z) are known, having solved 
equations (4), (6), and (8), we can unambiguously calculate 
R±, T±, G±

(1), G±
(2) for any angles of incidence of a plane signal 

wave. 
In Appendix 1 we show for the first time that the converse 

is also true. If in some interval of angles of the plane signal 
wave incidence we have measured the amplitude complex 
transmission, reflection, and conversion coefficients in the 
presence of an intense fundamental-radiation wave [T+, R+, 
G+
(1),(2) or T– , R– , G–

(1),(2)], the dependences en(z) and r (z) for a 
layer of the given thickness can be unambiguously found with 
the help of the obtained data. The linear dielectric constant 
profile eyy (z) can be also uniquely reconstructed, as follows 
from papers [6, 7], by the amplitude reflectivities and trans-
mittivities of the signal wave in the absence of an intense fun-
damental-radiation wave. 

If the dependences en(z), r (z) and eyy (z) are found, 
c(3)yyyy (z, w, – w, w, w) can be uniquely reconstructed with the 
help of one of two equivalent expressions: 

( , , , , ) [ ( ) ( )] [8 ( ) ]z z z E z( )
n fyyyy yy

3 2c w w w w e e p- = - /

	 ( ) / [4 ( )],c r z E zf
2 2 2pw= 	 (9)
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which follow from the definitions of the quantities en(z) and 
r (z) presented after the system of equations (4). The strength 
Ef (z) entering into (9) is unambiguously found from the linear 
differential equation (3) with the known coefficients and 
boundary conditions 

| ( ) 2 ,d d i iE z k E z k Ef fz z 0 1 0 01- =-=

| ( ) 0,d d iE z k E zf fz z 0 22+ == 	
(10)

that follow directly from (5). 
Thus, we have obtained the following result. Let the pro-

file of the linear dielectric constant of the plate, eyy (z, w), be 
known and, the amplitude complex reflection, transmission, 
and conversion coefficients [T+, R+, G+

(1),(2) or T– , R– , G–
(1),(2)] 

of the signal wave in some interval of angles of the plane sig-
nal wave incidence be measured in the presence of the intense 
fundamental-radiation wave with the known amplitude E0. 
These data will be sufficient to find unambiguously the cubic 
nonlinear susceptibility c(3)yyyy (z, w, – w, w, w) of the plate under 
consideration. 

In practice, c(3)yyyy (z, w, – w, w, w) can be reconstructed, for 
example, with algorithm generalising the method used to find 
the coordinate dependence of the tensor components of the 
dielectric constant of a linear medium to the nonlinear medium, 
the method being proposed in [6] and realised in a numerical 
experiment [7]. This method is based on determination of the 
unique zero minimum of a specially constructed functional 
from the probe functions describing the coordinate dependence 
of the dielectric properties of the plate under study [6, 7]. This 
functional can be constructed differently but the main require-
ment to it is that it vanishes only for the probe profile of the 
linear dielectric constant to which there correspond signal-
wave reflection and transmission coefficients known from 
the experiments and calculated on its basis in some specified 
interval of angles of incidence. 

The basic principles of construction of the functional which 
we suggest using to uniquely determine c(3)yyyy (z, w, – w, w, w) 
and for more symmetric media considered below and other 
tensor components of the cubic nonlinear susceptibility of the 
tested plate, do not undergo any noticeable changes as com-
pared to those in [6, 7] and consist in the following. Having 
replaced en(z) by an arbitrary probe profile q(z) in (3) and 
solved the resultant equation with boundary conditions (10), 
we will find the electric field distribution of an intense wave, 
Efq (z), corresponding to the selected probe profile. With the 
known amplitude reflection, transmission, and conversion 
coefficients of the signal wave, we will find, by virtue of Maxwell’s 
boundary conditions (6) and (8), the electric field strengths 
and the first signal-wave derivative on both surfaces of the plate 
for two weak waves propagating inside it. We will use these 
values on one of the plate surfaces as boundary conditions 
and solve system (4) describing a change in the electric field of 
weak waves inside the plate, by replacing in it en(z) by q (z) 
and r (z) by ( ) [ ( ) ( )]q z q z zyy1

2w e= - ( ) [2 ( ) ]E z c E zf fq q
2 2 2/ . 

As a result, we will find the electric field strengths of weak 
waves and their first derivatives on the opposite surface of the 
plate. In the general case, they will naturally differ from those 
that are known to us from the measured signal-wave trans-
mission, reflection, and conversion coefficients. The func-
tional Gn[q(z)] is constructed in such a way that it is a measure 
of the difference between these calculated values of the elec-
tric field strength and its derivative from those we know from 

the measured signal-wave transmission, reflection, and conver-
sion coefficients. In Appendix 2 we present a specific example 
of such a functional. Finding its unique zero minimum allows 
us to reconstruct unambiguously not only  c(3)yyyy (z, w, – w, w, w) 
but also the corresponding distribution of the electric field 
strength of an intense wave, Ef0 (z), inside the plate. 

So far we have assumed that the medium forming the layer 
has only the symmetry plane my perpendicular to its surface. 
We will consider now briefly the media additionally having the 
symmetry axis 2z, 4z, 6z, or ¥z. Without changing the polarisa-
tion of the intense fundamental-radiation wave, we will rotate 
the plane of incidence and the signal-wave polarisation vector 
by 90°. Then, the latter will be specified by one of two formu-
lae: E+ex exp{i [ wt – ky y – kz (z – z1)]}+c.c. when the intense 
and signal waves are incident on the same side of the studied 
plate in the positive direction to the z axis or E–ex exp{i [ wt – 
ky y + kz (z – z2)]} + c.c. when these waves are incident on 
opposite sides of the plate. Here, ky = k0 sin a and ex is the unit 
vector directed along the x axis. In this case, the expressions 
for the nonzero components of the electric induction vector in 
the above approximations will have the form [15]: 

D±x = {{[ exx (z) + 8pc(3)xyxy (z)|Ef|2 ] Es± + 4pc(3)xxyy (z)E f
2E*

g±}

´ exp (– iky y) + {[ exx (z) + 8pc(3)xyxy (z)|Ef|2 ] Eg± 

+ 4pc(3)xxyy (z)E f
2E*

s±}exp (iky y)}exp (i wt) + c.c. 

D±y = [ eyy (z) + 4pc(3)yyyy (z)|Ef|2 ] Ef  exp (i wt) + c.c.

Recall that the used tensor ĉ(3) is symmetric to permuta-
tion of the last two subscripts. With the fundamental-radia-
tion wave as powerful as before, equation (3), boundary con-
ditions (10), and the dependence Ef 0 (z) will not change and 
the system of equations for Es± and E*

g± will retain the form (4) 
with an accuracy of substitution of the parameter l by ky

2l =  
and the functions en(z) and r (z) by 

–en(z) = exx (z) + 8pc(3)xyxy (z)|Ef 0 (z)|2, 

–r (z) = 4pw2 c(3)xxyy (z)E 2f 0(z)/c2.	
(11)

Because the system of equations for Es± and E*
g± retains the 

form (4), all the results obtained in Appendices 1 and 2 can be 
applied to it. In particular, knowing the four new coefficients 
of signal-wave transmission, reflection, and conversion in 
some interval of angles of incidence, we can unambiguously 
reconstruct the profiles –en(z) and 

–r (z) in the medium under 
study. To this end, we should find the only zero minimum of 
the functional G [q(z), q1(z)] constructed similarly to the func-
tional Gn [q(z)] described in Appendix 2. The only difference 
consists in the fact that now the functions q(z) and q1(z), 
which are probe for the profiles –en(z) and 

–r (z), respectively, 
and enter into auxiliary equation (A2.1), are not related in 
any way. We already know the function Ef 0(z) and the depen-
dence exx (z, w) is either known (exx = eyy for all the studied 
media except those with the mm2 symmetry) or can be recon-
structed [6, 7]. Thus, having found the functions –q(z) and –q1(z) 
corresponding  to the only zero minimum of the functional 
G [q(z), q1(z)] and, consequently, coinciding with the desired 
functions –en(z) and 

–r (z), we can calculate the spatial profiles of 
two new components of the cubic nonlinear tensor with the 
help of the expressions 
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c(3)xyxy (z) = [ 
–q(z) – exx (z)] [8p|Ef 0(z)|2 ],

c(3)xxyy (z) = c 2 –q1(z) [4pw2E 2
f 0(z) ],

which follow from (11). 
For media with the symmetry axis 2z, we can also obtain 

the dependences of the components c(3)xxxx, c(3)yxyx and c(3)yyxx of the 
tensor ̂c(3)(z, w, – w, w, w) on the coordinate z except the above-
mentioned three components. To do this, we should fully 
repeat all the measurements described in this paper, by rotating 
the plate by 90° around the z axis, and then, perform all the 
calculations again. For media with the symmetry axis 4z, 6z, 
or ¥z, these additional measurements and calculations are not 
necessary because in these media c(3)xxxx = c(3)yyyy, c(3)yxyx = c(3)xyxy 
and c(3)xxyy = c(3)yyxx [15]. In addition, in media with the symmetry 
axis 6z and ¥z, the equality c(3)yyyy = c(3)xxyy + 2 c(3)xyxy is valid [15]. 

As is known, the surface layer properties of any medium 
can noticeably differ from the layer properties in the bulk. 
The surface layer, in particular, cannot have a three-dimen-
sional inversion centre as well as symmetry plane parallel to the 
surface, i.e., cannot be three-dimensionally isotropic. However, 
the flat boundary between the inhomogeneous media is a spe-
cial case of a one-dimensionally inhomogeneous system. As a 
result, the one-dimensionally inhomogeneous medium, strictly 
speaking, cannot be isotropic. It does not have a three-dimen-
sional inversion centre and the symmetry plane perpendicular 
to the direction where the nonuniformity of the properties 
takes place. As a result, out of 32 classes and 7 limiting sym-
metry groups, that are possible for homogeneous media [15], 
in the case of one-dimensionally inhomogeneous media, only 
10 classes (1, 2, m, mm2, 3, 4, 6, 3m, 4mm, 6mm) and 2 limiting 
groups (¥, ¥m) where the above-mentioned inversion center 
and symmetry plane perpendicular to the inhomogeneity direc-
tion are absent. 

The symmetry of the given one-dimensionally inhomoge-
neous plate depends both on the medium the plate is made of 
and on orientation of its surfaces perpendicular to the direc-
tion of the inhomogeneity with respect to the crystallographic 
axes X1, X2, X3 [15] of this medium. Unfortunately, our method 
does not allow one to determine and control the cubic nonlin-
earity of one-dimensionally inhomogeneous media with the 
class symmetry 1, 2, 3, 4, 6, and ¥. For the remaining 6 sym-
metry classes of one-dimensionally inhomogeneous media, 
Table 1 illustrates the specific features of the proposed 
method. In particular, in studying inhomogeneous mm2-sym-

metry plates, it is possible to reconstruct six of fifteen inde-
pendent tensor components ĉ(3)(z, w, – w, w, w) and all the 
three tensor components of the dielectric constant ê(z, w) {the 
profile of the component ezz (z, w) for classes mm2, 3, 3m, 4, 
4mm, 6, ¥, 6mm, ¥m can be reconstructed by using the results 
of paper [8]}. 

Note also that varying the frequency w of the intense and 
signal waves, we can reconstruct the profiles of the cubic non-
linear susceptibility tensor components listed in Table 1 at 
different frequencies and study the frequency dispersion of 
the medium nonlinearity. 

Acknowledgements.  The authors thank S.G. Grechin for valu-
able criticism and constructive suggestions made during the 
discussion of the obtained results. 

Appendix 1 

The system of equations (4) and boundary conditions (6), (8) 
have the physical sense when the values of kz Î (0, k0) are real 
(the value kz = k0 corresponds to the normal incidence of the 
signal wave for which the signal and intense waves are physi-
cally indiscernible). However, equations (4), (6), (8) and the 
quantities entering into them can be formally considered at 
any (including complex) values kz and l º k

2
x = k

2
0 – k

2
z, which 

is done in this Appendix. 
Recall that for a broad class of the functions en(z) and r (z) 

(piecewise continuous and bounded or even only integrated 
[16] functions), system (4) has continuously differentiable 
solutions which we will write for brevity as a column: 

( )
( )
( )

( )
( )

.z
z
z

E z
E z

s

g

s

g
j

j
j

= = *d dn n

Let the columns ( , )z lmj  where m = 1, 2, 3, 4, be the solutions 
of system (4) with the boundary conditions 

1 1( , ) , ( , ) | ,d dz z z
1
0

0
0z z1 1j l j l= ==e eo o

2 2( , ) , ( , ) | ,d dz z z
0
1

0
0z z1 1j l j l= ==e eo o 	

(A1.1)

3 3( , ) , ( , ) | ,d dz z z
0
0

1
0z z1 1j l j l= ==e eo o

4 4( , ) , ( , ) | .d dz z z
0
0

0
1z z1 1j l j l= ==e eo o

Then, ( , )z lmj  at any, including complex, value of l produce 
a fundamental system of solutions of system (4), and the  
general solution of problem (4), (6), (8) can be written in 
the form 

! ( , ) [ ( , ) ( , )z C z C z1 1 2 2j l j l j l= +! !

	 3 4( , ) ( , )] .C z C z E3 4j l j l+ +! ! ! 	      (A1.2)

Note that due to the symmetry of system (4) and boundary 
conditions (A1.1), the elements of the columns ( , )z lmj  at 
real values of l are related by the expressions 

js2 (z, l) = j*g1 (z, l),	 jg2 (z, l) = j*s1 (z, l),

js4 (z, l) = j*g3 (z, l),	 jg4 (z, l) = j*s3 (z, l).	
(A1.3)

Table 1.  Number of independent components of the ĉ(3)(z, w, – w, w, w) 
and ê(z, w) tensors of one-dimensional inhomogeneous media of dif
ferent symmetry classes and their components, whose spatial profiles 
can be reconstructed using the suggested procedure.

Symmetry	 ê tensor	 ĉ(3) tensor
class
	 Number of	 Reconstructed	 Number of	 Reconstructed
	 independent	 components	 independent	 components 
	 components		  components

m (my)	 4	 eyy	 28	 c(3)yyyy

mm2	 3	 exx, eyy , ezz	 15	 c(3)yyyy , c
(3)
xyxy ,

				    c(3)xxyy , c
(3)
xxxx ,

				    c(3)yxyx , c
(3)
yyxx

3m			   10	 c(3)yyyy

4mm	
2	 eyy = exx , ezz

	 8	 c(3)yyyy , c
(3)
xyxy ,

				    c(3)xxyy

6mm, ¥m			   7	 c(3)yyyy , c
(3)
xxyy
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Substituting the relations for the functions ( , )z lj!  from 
(A1.2) into (6), (8) at real l and taking into account boundary 
conditions (A1.1) and equalities (A1.3), we obtain the expres-
sions for the coefficients Cm±: 

C1+ = 1 + R+ , C1– = T– , C2± = G±
(1), 

C3+ = – ikz(1 – R+), C3– = ikzT– , C4± = – ikzG±
(1),

and eight linear equations relating the elements of the columns 
( , )z lmj  and their derivatives at point z = z2 with the coeffi-

cients R±, T±, G±
(1) and G±

(2): 

( ) ( ) 1 ,T f k G f k R( )
z z1

1
2+ = +- - -

( ) ( ) ,G f k T f k G(1) (2)
z z1 2+ =- - -

* * * 	
(A1.4)

( ) ( ) (1 ),iT f k G f k k R( )
z z z3

1
4+ = -- - -

( ) ( ) ,iG f k T f k k G(1) (2)
z z z3 4+ =-- - -

* * * 	
(A1.5)

( ) ( ) ( ) ,R f k G f k f k T( )
z z z1

1
2 5+ + =+ + +

( ) ( ) ( ) ,G f k R f k f k G( ) * (2)
z z z

1
1 2 6+ + =+ + +

* * 	
(A1.6)

( ) ( ) ( ) ,iR f k G f k f k k T( )
z z z z3

1
4 7+ + =-+ + +

( ) ( ) ( ) .iG f k R f k f k k G( ) ( )
z z z z

1
3 4 8

2
+ + =-+ + +

* * *

In (A1.4) – (A1.6) we used the notations 

( ) ( ) ( ),if k k, 1, 2 3, 4s s s sz z1 2 !/ l lY Y

( ) ( ) ( ),if k k, 1 , 2 3 , 4s s s sz z z z z z3 4 !/ l lY Y 	
(A1.7)

( ) ( ) ( ),if k k, 1, 2 3, 4s s s sz z5 6 "/ l lY Y

( ) ( ) ( ),if k k, 1 , 2 3 , 4s s s sz z z z z z7 8 "/ l lY Y

where ( ) ( , )zs sm m 2l j lY = ; ( ) ( , ) |d dz zs smz m z z2l j lY = = . Re- 
call that m takes the values from one to four. Equations 
(A1.4) – (A1.6) and the Wronskian constancy of system (4) 
allow one to obtain, in particular, that |T+|2 – |G+

(2)|2 = 
|T–|2 – |G–

(1)|2. 
In addition, it follows from (A1.4), (A1.5) that at kz ¹ 0  

the inequality |T–| ¹ |G–
(1)| is valid. Thus, the functions f1(kz) 

and f2(kz) can be found from the equations (A1.4), at least for 
the parameters kz Î (0, k0) most interesting from the physical 
point of view: 

( )
| | | |

( )
,f k

T G

T R G G1
( )

* ( ) ( )*

z1 2 1 2

1 2

=
-

+ -

- -

- - - -

( )
| | | |

( )
.f k

T G

T G R G1
( )

( )* ( )*

z2 2 1 2

2 1

=
-

- +

- -

- - - - 	

(A1.8)

Besides, at each fixed z Î [z1, z2], the quantities jsm (z, l) 
and jgm (z, l) are known to be single-valued analytic functions 
l without singularities in the final part of the plane, i.e., integer 
functions [16, 17]. Thus, Ysm ( l) and Ygm ( l) = jgm (z2, l) are 
also integer functions of l and, hence, kz

2 = k0
2 – l. The latter 

equality means that Ysm and Ygm are the even integer functions 

of kz, while f1 and f2, by definition of (A1.7), are the integer 
functions of kz. Using the parity of the functions Ysm with 
respect to kz, we can obtain from (A1.7) the relations: 

( ) [ ( ) ( )] ,f k f k 21, 2 , ,s s z z1 2 1 2lY = + -

( ) [ ( ) ( )] (2 ).if k f k k3, 4 , ,s s z z z1 2 1 2!lY = - - 	
(A1.9)

Applying the results of [18] to system (4), we immediately 
obtain that it is sufficient to know Ysm (l) and Ygm (l) on the 
entire complex plane l to determine uniquely en(z) and r (z). 
Let the coefficients T– , R– and G–

(1),(2) be known at some inter-
val of angles of incidence 0 /21 21 1G Ga a a p . Then, using 
(A1.8), for real values of [ , ] (0, )cos cosk k k kz 0 2 0 1 0! 1a a  we 
can find f1(kz) and f2(kz) that are the integer functions which 
is sufficient for their unambiguous analytic continuation to 
the entire complex plane kz [17]. Knowing f1(kz) and f2(kz), we 
can find Ysm (l) with the help of (A1.9). Then, using (A1.3) to 
find Ygm (l) at real l and holding an unambiguous analytic 
continuation, we can also find Ygm (l) for any complex values 
of l and thus determine the dependences en(z) and r (z). A 
similar result can be obtained by using the known coefficients 
T+, R+ and G+

(1),(2). 

Appendix 2

Let the signal-wave transmission, reflection, and conversion 
coefficients T+(kx), R+ (kx), and G+

(1),(2) (kx) and (or) T– (kx), 
R– (kx), and G–

(1),(2) (kx) be known for some interval K of values 
kz for a layer with the known profile of the linear dielectric 
constant eyy (z) whose boundaries have the coordinates z = z1 
and z = z2 in the presence of an intense fundamental-radiation 
wave with the known amplitude. In other words, it is known 
that there exist the functions  c(3)yyyy (z), en(z), and r (z) for which 
the problem (3), (4), (6), (8), (10) at these T+ (kx), R+ (kx), 
G+
(1),(2) (kx) and (or) T– (kx), R– (kx), G–

(1),(2) (kx) as well as at 
eyy (z)  and E0 has a nontrivial solution at any kx Î K and 
E+ ¹ 0 and (or) E– ¹ 0. To reconstruct en(z), Ef  (z) and con
sequently c(3)yyyy (z) by virtue of (9), we will find the solution 
Efq (z) of problem (3), (10) with the probe function q(z) instead 
of the function en(z) and four solutions Esm , E*

gm (m = 1 – 4) 
of  the auxiliary system of equations, coinciding with (4) at 
q(z) = en(z): 

[ ( ) ] ( ) 0,d dE z q z c E q z E *s s g
2 2 2 2

1w l+ - + = 	
(A2.1)

[ ( ) ] ( ) 0,d dE z q z c E q z E* *
1g g s

2 2 2 2w l+ - + =* *

where ( ) [ ( ) ( )] ( ) 2 ( )[ ]q z q z z E z c E zf fyy q q1
2 2 2 2w e= - . The four 

solutions (A2.1) we are interested in meet the boundary con-
ditions: 

( ) (1 ), | (1 ),d d iE z R E z k R1s s z z z1 1 1= + =- -+ = +

( ) , | ,d d iE z T E z k Ts s z z z2 2 2 2= =-+ = +

( ) , | ,d d iE z T E z k Ts s z z z3 1 3 1= =- = -

( ) (1 ), | (1 ),d iE z R E dz k Rs s z z z4 2 4 2= + = -- = - 	
(A2.2)

( ) , | ,d d iE z G E z k G( ) ( )
g g z z z1 1

1
1

1
1= =-+ = +

* *

( ) , | ,d d iE z G E z k G( ) ( )
g g z z z2 2

2
2

2
2= =+ = +

* *
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( ) , | ,d d iE z G E z k G( ) ( )
g g z z z3 1

1
3

1
1= =-- = -

* *

( ) , | .d d iE z G E z k G( ) ( )
g g z z z4 2

2
4

2
2= =- = -

* *

Consider now a nonnegative functional from the probe pro-
file q(z) 

[ ( )] ( )dG q z k E d an s s sx
K

m m m
m

2

1

4

m= -
=

m8/y

	 ( ) |d dE d a E z bg g g s s sm m m m m m z d m
2 2m b+ - + -=

*
m

	 |d dE z b*
g g gm m z d m

2
b+ -= m

B 	 (A2.3)

constructed in accordance with the principles described in the 
main part of this paper. Here,  

–
d1,3 = z2;  

–
d2,4 = z1; as1,s4 = T±; 

as2,s3 = 1 + R±; bs1,s4 = "ikzT±; bs2,s3 = "ikz(1 – R±); ag1,g2 = 
G+
(2),(1); ag3,g4 = G–

(2),(1); bg1,g2 = ±ikzG+
(2),(1); bg3,g4 = ±ikzG–

(2),(1). 
In addition, the weight functions msm, mgm, bsm and bgm in (A2.3) 
are any fixed nonnegative numbers, which are simultaneously 
nonzero. In this case, if we know only T+ (kx), R+ (kx) and 
G+
(1),(2) (kx), we have ms1,s2 ¹ 0, mg1,g2 ¹ 0, bs1,s2 ¹ 0 и bg1,g2 ¹ 0, 

while the other weight coefficients are equal to zero. If we 
know only T– (kx), R– (kx) and G–

(1),(2) (kx), we have ms3,s4 ¹ 0, 
mg3,g4 ¹ 0, bs3,s4 ¹ 0 and bg3,g4 ¹ 0, while the other weight 
functions are equal to zero. 

The functional Gn[q(z)], on the one hand, is a measure of 
difference of the values of the electric field strength and its 
derivatives calculated with formulae (A2.1), (A2.2) and cor-
responding to the probe profile q(z) on one of the plate sur-
faces from those we know from the measured transmission, 
reflection, and conversion coefficients of a signal wave with a 
unit amplitude. On the other hand, Gn[q(z)] is a measure of 
difference of the transmission, reflection, and conversion 
coefficients Tq±(kx), Rq±(kx) and Gq

(1),
±
(2) (kx) for the layer with 

the profile q(z) from the coefficients known from the measure-
ments. Indeed, comparison of expressions (6), (8) at E± = 1 
with (A2.2), (A2.3) shows that Gn[q(z)] = 0 only when the 
coefficients Tq+ (kx), Rq+ (kx), and Gq+

(1),(2) (kx) and (or) Tq– (kx), 
Rq– (kx), and Gq–

(1),(2) (kx) coincide with the coefficients T+ (kx), 
R+ (kx), G+

(1),(2) (kx) and (or) T– (kx), R– (kx), G–
(1),(2) (kx) in the 

interval K. We showed however in Appendix 1 that this coin-
cidence is possible only in one case. Therefore, reconstruction 
of c(3)yyyy (z) is reduced to the search for the function q0(z) cor-
responding to the only zero minimum of functional (A2.3) 
and to the subsequent use of expression 

( ) [ ( ) ( )] [ ( ) ]z q z z E z8( )
fyyyy yy

3
0 0

2c e p= -

from (9). Here, Ef0(z) is the solution of problem (3), (10) with 
the function q0(z) instead of the function en(z). 
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