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Abstract.  An analytic expression describing the stationary two-
dimensional axially symmetric temperature distribution in a disk 
active element (AE) is derived upon pumping the entire disk whose 
thickness is 0.01 cm £ h £ 0.3 cm and the diameter-to-thickness 
ratio is 1 £ d/h £ 100. Thermomechanical stresses are calculated. 
It is shown that from the point of view of the disk damage, the tan-
gential stress on the disk side face constitutes the major threat. For 
different scaling parameters x = d/h, the limiting lasing powers Plas 
are estimated in multimode approximation, which can be obtained 
using a disk AE in the case of end and side cooling for different heat 
exchange coefficients a (by the example of an Nd : YAG crystal). 
It is found that the side cooling can decrease Plas in some situations. 
The priority regions are established in the space of the parameters 
h, x, and a which, while increasing the pump intensity, are accom-
panied by one of the three events violating the normal operation of 
the laser: deterioration of spectral and luminescent AE parameters 
due to heating, malfunctioning of the cooling regime, or thermo
mechanical damage of the disk. It is shown that an increase in the 
scaling parameter x smoothes the radial temperature profile and 
the thermoelastic stress distribution profile. 

Keywords: disk active element, steady-state pumping, limiting lasing 
powers. 

1. Introduction 

The problem of creating high-power disk lasers is quite urgent 
today [1 – 4]. One of the main problems in this case is the 
removal of a large amount of heat released in the active ele-
ment (AE) because its overheating leads to deterioration of 
spectroscopic parameters of the working medium, formation 
of a thermal lens, thermoelastic stresses, and other undesir-
able effects. 

The authors of papers [4 – 6] considered a one-dimensional 
thermal problem for a disk AE when its temperature is the 
function of the coordinate z (the z axis is perpendicular to 
the disk end faces) and is identical in any plane parallel to the 
end faces. This situation occurs if the pump uniform over 
the beam cross section illuminates the entire disk plane and the 
disk itself is cooled only from its end faces. In this case, one 
can obtain an analytic solution of the heat conduction equa-

tion and analyse different undesirable situations caused by 
the AE heating, which was done in [6]. 

In this paper, we consider a more general, two-dimen-
sional thermal problem when the heat is removed not only 
through the AE end faces but also through its side face while 
the pump uniform over the beam cross section is absorbed 
due to an arbitrary number of passes and illuminates the 
entire AE area. As will be shown below, side cooling can lead 
both to an increase and a decrease in the maximal lasing 
power (multimode lasing) limited only by the occurrence 
(with increasing the pump intensity) of one of the three events 
undesirable for laser operation: AE heating above the pre-
scribed temperature, malfunctioning of the normal cooling 
regime, thermal destruction of the AE. 

2. Numerical solution of the heat conduction 
equation and its analytic approximation 

Consider the temperature distribution of the AE in the form 
of disk of thickness h and radius R = d/2 in the case of longi-
tudinal pumping uniform over the beam cross section (Fig. 1). 
The end (z = h) and side (r = R) faces of the AE are convec-
tively cooled, the heat exchange coefficients being a2 and a3, 
respectively. In the case, when the disk is cooled by a cooling 
liquid indirectly, for example, though a substrate, a2 and a3 
are the effective heat exchange coefficients taking into account 
the thermal resistance of the substrate. The function of the 
volume heat release sources qV at any point of the disk volume 
is assumed identical. 
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Figure 1.  Two-dimensional problem: the disk AE cooling from the end 
face from the side z = h and from the side face in the case of longitudinal 
uniform pumping with the intensity I0. 
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This thermal problem is described by the heat conduction 
equation in cylindrical coordinates 
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the end face z = 0 is thermally insulated, where Tf is the tem-
perature of the cooling media; l is the heat conductivity. 

The numerical solution of this problem shows that the 
temperature distribution along the z axis is close to parabolic, 
while the distribution over the radius r can be described by the 
function 
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where r = r/R; 
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C is the dimensionless quantity. 
The behaviour of the function ,f mr^ h as a function of r 

for several values of m is shown in Fig. 2. With decreasing 
m, the function ,f mr^ h gives a parabolic temperature distri-
bution, while with increasing m – a temperature distribution 
of ‘shelf ’ type: 

, ,
,

,
.

f m m
m

1
1

02
"

" 3
r r

=
-

^ h )

Therefore, it is logical to call m the smoothing parameter and 
,f mr^ h – the smoothing function. 
The approximate analytic solution of equation (1) with 

boundary conditions (2) has the form 
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the constants tanhM R m m23a l=^ ^h h  and 1K h 22a l= + ^ h 
are obtained from boundary conditions (2) on the side and 
end surfaces, respectively. Let us introduce also the following 
notations (Fig. 3): 

DT1(0, h) = T (0, h) – T (R, h),  

DT2 (R, 0) = T (R, 0) – Tf ,  DT2 (R, h) = T (R, h) – Tf ,

DT1(0, z) = T (0, z) – T (R, z),  DT2 (R, z) = T (R, z) – Tf ,   

DT (0,0) = T (0,0) – Tf  = DT1(0,0) + DT2 (R,0),  

DT (0, h) = T (0, h) – Tf  = DT1(0, h) + DT2 (R, h),  

DT (0, z) = T (0, z) – Tf  = DT1(0, z) + DT2 (R, z),
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Figure 2.  Smoothing function f ( r, m). 
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Figure 3.  Characteristic temperature distribution in the disk with respect 
to the cuts z = 0 (a), r = 0 – R (b), and z = h (c) as well as the three-dimen
sional temperature profile plotted at d = 2 cm, h = 0.1 cm, qV = 500 W cm–3, 
a2 = 0.75 W cm–2 K–1, a3 = 0.25 W cm–2 K–1, Tf = 27 °C (d). 
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where the subscript 1 corresponds to the internal temperature 
drop (between the axis and the side face) and the subscript 2 – 
to the external temperature drop (between the temperature of 
the side face and the temperature Tf), the temperature drops 
without subscripts – are the general drops (between the tem-
perature on the axis and Tf). The relation between the intro-
duced parameters has the form: 

DT1(0, 0) = K DT1(0, h),	 (6)

DT2 (R, 0) = K DT2 (R, h),	 (7)

DT1(0, 0) = M DT2 (R, 0),	 (8)

DT1(0, h) = M DT2 (R, h).	 (9)

The obtained analytic expression (5) for T (r, z), with the 
accuracy no worse than ~10 % (with respect to the numeri-
cal solution) at l = 0.13 W cm–1 K–1 (YAG crystal) and the 
values of a2 and a3 used in calculations, describes the tem-
perature distribution in the disk at least in the range under 
study d /h = 1 – 100 (where h = 0.01 – 0.3 cm) for C = 0.62. For 
thicknesses h > 0.3 cm, the value of the parameter C should 
be specified; for example, for h = 0.5 cm, we have the constant 
C » 0.5. 

If the end or side faces of the disk are heat insulated, then, 
setting a2 = 0 or a3 = 0, respectively, in expression (5), we 
obtain known one-dimensional temperature distributions under 
steady-state pumping: 
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for a cylinder unlimited in z (which is equivalent to a2 = 0 for 
a cylinder of an arbitrary size) and 
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for a disk with an unlimited end face (which is equivalent to 
a3 = 0 for a disk of an arbitrary size). Note that all this allows 
one to extrapolate the analytic expression for the temperature 
distribution (5) to the regions d/h < 1 and d/h > 100. 

Expression (5) yields also particular solutions with the 
boundary conditions of the first kind on the end and side 
faces at a2 = 3  and a3 = 3, respectively. 

For a convenience of the analysis of thermal processes 
proceeding during scaling (i. e., when changing the ratio 
between the disk diameter d and thickness h), we will intro-
duce the scaling parameter x = d/h. Then, 
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Let us estimate the applicability of the constant function 
of thermal sources qV. To this end, we will use the real func-
tion qV (z) obtained in [6]: 
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where x is the fraction of the absorbed pump power trans-
formed to heat; habs = 1 – exp ( – nkh) is the fraction of the 
pump power absorbed in the crystal after n passes; k is 
the pump absorption coefficient constant over the entire AE 
volume (which is possible, for example, when the pump inten-
sity exceeds the threshold). 

We obtain from (11) an average integral function of the 
heat release sources 
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Then, the pump intensity has the form 
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The ratio of the different D qV = qV (0) – qV (h) of real heat 
release function (11) at points z = 0 and z = h to the average 
integral function qV  has the form 
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where D = kh is the optical density. This ratio changes by no 
more than ~ 1 % at D ~ 0.14 and by no more than ~ 10 % at 
D ~ 0.45. Therefore, after selecting the disk thickness, we can 
find k. For example, for the approximation qV = const with an 
accuracy up to ~ 10 % at h = 0.01 and 0.1 cm, k £ 45 cm–1 and 
k £ 4.5 cm–1, respectively, are required. 

3. Critical function of thermal sources  
and the pump intensity during scaling 

At the temperature of water starting boiling (we will call it the 
critical event B), which cools the disk end face from the side 
z = h (Fig. 4), we can obtain from (5) an expression for the 
function of heat release sources and from (12) – for the input 
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Figure 4.  Characteristic critical temperature distributions on the end 
face z = h for a disk with a heat-insulated side face (a3 = 0), a disk with 
a real heat conducting side face (a3 > 0, boundary conditions of the 
third kind), and a disk with a side face ideally conducting heat (a3 ® 3 , 
boundary conditions of the first kind). 
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pump intensity. From the expression for the temperature 
drop (at r = 0 and z = h) 
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we obtain the critical function of thermal sources 
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For the one-dimensional case (10) (a3 = 0 or x ® 3), 
we have 
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It follows from here that 

, .q T h
h

0B cr
V 0

2T
a

=a =3
^ h 	 (14) 

Figure 5 shows the dependence of the critical pump intensity 
(for the event B) on k for a2 = 0.75 W cm–2 K–1 and the num-
ber of pump passes n = 2 and 16.

In the case of boundary conditions of the first kind (a3 ® 3) 
on the side face, we obtain from the expression for the tem-
perature drop (at r = 0 and z = h) 
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When the temperature of water starting boiling on the 
disk end face z = h is achieved, the temperature T (0, 0) at 
point r = 0, z = 0 can be found with the help of expressions (6) 
and (7). Because this temperature is the maximal disk tem-
perature, its value should not exceed some threshold whose 
excess noticeably impairs the spectral and luminescent prop-
erties of active ions (the event D), which should be taken into 
account in calculations of thermal regimes. In this case, 

, , ,T K T h0 0 0D crT T=^ ^h h 	 (16) 

where DT  D (0, 0) = DT1(0, 0) + DT2 (R, 0); DT  cr(0, h) = DT1(0, h) + 
DT2 (R, h).

4. Thermoelastic stresses in the disc during 
scaling. Limiting function of thermal sources 
and the pump intensities corresponding to the 
disk damage (event C)

4.1. Thermoelastic stresses 

Tangential sj (perpendicular to the radius r and the axis z) 
and radial sr stresses for the axially symmetric temperature 
distribution T (r, z) are determined, according to [7], by the 
expressions 
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where Nj, Nr and Mj, Mr are the internal thermal stress and 
moment resultants; eT and cT are the generalised thermal 
expansion and bending, respectively; aT is the average coeffi-
cient of linear thermal expansion of the disk material; E and n 
are the elasticity modulus (Young modulus) and the Poisson 
coefficient, respectively. 

We will not consider the longitudinal component of the 
stresses sz because the thin disk is characterised by a plane 
stress state at which sz » 0 [8]. 

Substituting the expression 
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Figure 5.  Critical pump intensity leading to water boiling on the end 
face z = h at a3 = 0, a2 = 0.75 W cm–2 K–1 and different disk thicknesses 
as a function of the pump absorption coefficient. The number of pump 
passes n = 2 (a) and 16 (b). 
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into (17) and (18) and using the boundary conditions for a 
thin disk free of external stresses, when Nr = 0, Nj = 0, Mr = 0, 
Mj = 0 on its side face, we derive expressions (17) and (18) in 
the form 

, ,z T 0 01Ts r g=j^ ^h h
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Note that at a2 ® 0 with an accuracy to the cofactor (1 – n), 
expressions (19) and (20) describe stresses in a cylinder: 
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and at a3 ® 0 – the stresses in the plate (see, for example, 
[7 – 9]): 
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Figure 6 shows the radial distribution of stresses sj and sr in 
the YAG disk of thickness h = 0.1 cm at z = 0, qV = 500 W cm–3, 
a2 = a3 = 0.75 W cm–2 K–1, x = 1 – 100. One can see that when 
changing the scaling parameter x, the sign of the stress on the 
disk axis changes from positive (at x = 1 – 1.71) to negative 
(at x = 1.71 – 25.6) and vice versa (at x > 25.6). The maximal 
negative values of sj and sr on the axis are achieved at x = 4.7. 
Note that an increase in x and thus in m smoothes not only 
the temperature profile in the disk but also the stress profile. 
Interestingly, the stresses sj, sr were calculated above assum-
ing that expressions (17) and (18) obtained in [7] for a thin 
disk give a correct estimate of the stresses up to x = 1. 

Let us present the expressions for the stresses on the input 
end face (z = 0) on the axis and the side face of the disk sur-
face. Because at z = 0 we have D = (7K – 1)/(6K  ), D – H = 
(K – 1)/(6K  ), at r = 1, L = mF(m)/tanh (m/2), P = 0 and at 
r = 0, L = P = 1/2 [mF(m)/tanh (m/2) – 1], by substituting these 
expressions into (19) and (20) we obtain 
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for the radial stress at the centre and on the side, respec-
tively, and 
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Figure 6.  Distributions of tangential (a) and radial (b) stresses over the  
radius at z = h in the disk of thickness h = 0.1 cm at qV = 500 W cm–3, 
the heat exchange coefficients a2 = a3 = 0.75 W cm–2 K–1 and different 
scaling parameters x. 
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for the tangential stress at the centre and on the side. 

4.2. Maximal temperature drop DT1
C(0, 0) at the moment 

of thermal damage 

Of all the stresses, the greatest is the tangential (hoop) tensile 
stress on the side (21) at z = 0, r = 1 with some temperature 
drop DT1

 C(0, 0) corresponding to it. When the stress ss reaches 
the maximal value corresponding to the disk damage, the 
temperature drop will be determined by the expression 
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In the limiting cases х ® 0 and х ® 3  and taking into 
account that fact that the smoothing degree m is proportional 
to the scaling parameter x (at constant h), we obtain 
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Figure 7 presents the temperature drop DT1
 C(0, 0) at z = 0 at 

the moment of the damage of the 0.1-cm-thick disk as a func-
tion of the scaling parameter x for a2 = a3 = 0.75 W cm–2 K–1 
(ss = 2008 kg cm–2, g = 34 kg cm–2 deg–1, n = 0.25). At x = 4.7 
(m = 1.54) the temperature drop has a strongly pronounced 
maximum 123 °С, and at x > 40 (m > 10) the temperature 
drop asymptotically tends to 72 °С. When the disk thickness 
is increased, the amplitude of the maximum decreases and 
the maximum is displaced towards smaller x: for example, at 

h = 0.3 cm, x = 2.9 (m = 1.67) the maximal temperature drop is 
116 °С, and at x > 20 the drop DT1

 С(0, 0) ® 69 °С. When the disk 
thickness is decreased, the amplitude of the maximum increases 
and the maximum is displaced towards larger x: for example, 
at h = 0.01 cm, x = 11 (m = 1.17) the maximal temperature 
drop is 140 °С, and at x > 100 the drop DT1

 С(0, 0) ® 77 °С. 

4.3. Limiting function of thermal sources 

Substituting the expression for the maximal temperature drop 
(22) into (5), we obtain the expression for the limiting func-
tion of thermal sources, corresponding to the disk damage: 
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and using expression (12), we find the input pump intensity. 
In the case of boundary conditions of the first kind  

(a3 ® 3) on the side face, the limiting function of thermal 
sources, corresponding to the disk damage, has the form 
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Obviously, in the one-dimensional problem (10), at a3 = 0 
the limiting function of thermal sources corresponding to the 
plate damage has the form 
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5. Calculation of the priority zones of the  
event occurrence – boiling (B), damage (C),  
or achievement of the prescribed maximum  
disk temperature (D) 

It follows from (16) that when the pump is uniform, the tem-
perature drop along the disk axis depends only on K and is 
independent of x (for all the above-considered boundary 
conditions on the side face). Therefore, at the disk thickness 
smaller than that determined by the expression 
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(with increasing the pump intensity) the critical temperature 
of the rear end face (for example, corresponding to the start 
of water boiling) is first achieved. And vice verse, if the disk 
thickness is larger than hD, first, the temperature TD(0, 0) 
achieves the specified value and then, the critical temperature 
of the rear end face T cr(0, h) is achieved.

As a maximally possible temperature whose excess signifi-
cantly affects the spectral and luminescent properties of the 
AE, we chose the temperature 200 °C (the temperature below 
200 °C is usually considered acceptable for the Nd : YAG crys-
tal). The estimates show that at the disk thicknesses h £ 0.3 cm 
used in this paper, the event B (start of the water boiling) occurs 
(with increasing the pump intensity) prior to the event D 
(achievement of the temperature 200 °C at the ‘hottest’ point of 
the disk r = 0, z = 0); therefore, we consider below only the 
events B and C (thermomechanical damage of the disk). 
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Figure 7.  Maximal temperature drop DT1
C(0, 0) at the moment of ther-

mal destruction as a function of the scaling parameter at different disk 
thicknesses h. 
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Equating expressions (13) and (23) to each other, we 
obtain the interface separating the priority zones of the event 
occurrence – water boiling (B) or disk damage (C) – with 
increasing the pump intensity in the space of the parameters h 
and x (Fig. 8). In this case, h and x are related by the expression 
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Note that this expression is independent of the heat release 
fraction x and the number of passes of the pump n in the disk. 
As a result, the boundary of the regions B and C will corre-
spond to different pump regimes, for example, lamp (broad-
band) and diode (selective) pumping. 

In the particular case x ® 3, expression (27) allows one 
to  find the optimal disk thickness such that the start of the 
coolant boiling is only possible at h smaller than the deter-
mined thickness. To this end, expression (27) can be rewritten 
in the form (for the YAG crystal) 
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where Bi = a2h/l is the Biot number (the ratio of the internal 
thermal resistance of the AE to the external thermal resistance 
of its end face during the thermal flow along the z axis). For 
example, at the interface between the zones B and C (Fig. 8), 
when x ® 3, a2 = a3 = 0.5, 0.75, 1.0, and 1.5 W cm–2 K–1, the 
thicknesses asymptotically tend to minimal values 0.35, 0.233, 
0.175, and 0.117 cm, respectively, which are found from the 
expression h = Bi l/a2, where Bi = 1.346. The ratio a2/a3 can 
be approximated by the expression a2/a3 » Bi2/2 (with an 
accuracy ~ 10 %) at 0 G  Bi G  4.4. 

6. Maximal lasing power of a disk four-level laser 
limited by one of the critical evens as a function 
of the scaling parameter 

Based on the found critical (B) and limiting (C) pump powers 
and the priority zones established for them in the space of 
the parameters h and x, we can estimate the maximal lasing 

power of a disk laser with one AE in the resonator (multi-
mode approximation). 

The four-level lasing intensity under steady-state pumping 
is described, as is known, by the expression 
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where a = ln R –1out ; Rout is the reflectivity of the output resona-
tor mirror at the laser wavelength (the rear resonator mirror 
is highly reflecting); c is the coefficient of passive losses in the 
resonator; las'w  и pump'w  are the energies of laser and pump 
quanta, respectively; habs is the fraction of the absorbed 
pump power; I0, Ith are the input and threshold pump intensi-
ties, respectively.

It is obvious that the quantities habs and Ith are subjected 
to the temperature effects due to a change in the spectro-
scopic properties of the AE during the heating (because of the 
Boltzmann population of the Stark levels, temperature pump 
absorption line broadening and the temperature luminescence 
line broadening of the working laser level, etc.). When the AE 
temperature is increased, habs decreases, while Ith increases, 
which affects the laser efficiency. 

For each AE thickness h, expression (28) allows one to 
find the maximal lasing intensity for the corresponding opti-
mal reflectivity of the output mirror (i.e., for the optimal aopt), 
which is determined from the expression ¶Ilas /¶a = 0 with the 
substitution of the pump intensity by the function of thermal 
sources according to expression (12), where q qV - V, with 
an accuracy ~ 10 %. Then the maximal lasing intensity for a 
1.064-mm Nd : YAG laser is 
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where a C h q h2opt 1 c= -V ; 2C las pump1 'cs t w x= ^ h ; slas = 
2.85 ́  10–19 cm2 is the effective laser cross section; t = 250 ms is 
the lifetime of the working laser level. 

In deriving (29) we used the threshold condition for which 
the pump absorption coefficient (lpump = 0.808 mm) k = 

N a h h2 2pump las0s c s- +^ ^h h6 @, where spump = 1.5 ́  10–19 cm2 
is the effective pump absorption cross section, and assumed 
that the entire population of the active Nd3+ ion with the con-
centration N0 = 6.9 ́  1019 cm–3 (0.5 at.%) is distributed only 
between the ground state and the working laser level of the 
Nd3+ ion ( c = 0.005 cm–1). 

Depending on the event to be considered – В (qV = qV
B ) 

or С (qV = qV
C ), we will use in expression (29) the notations 

I Blas or I Clas, respectively, for the maximal lasing intensity. The 
expressions for the maximal lasing power, limited by one of 
the events – B or C, have the form 

P Blas = I BlasS,	 (30)

P Clas = I ClasS,	 (31)

where S = pR2 = px2h2/4 is the area of the AE end surface. 
When the value of a2 is specified, in the particular case of 

the heat-insulated side surface (a3 = 0), for h ® 0 we obtain 
from (29) at q qBV 0= a =3V  (14) 
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Figure 8.  Calculated disk thicknesses determining the boundary of  
priority zones of the event occurrence (start of water boiling and disk 
damage) versus the scaling parameter x with increasing the pump power 
for different heat exchange coefficients a2 = a3. The area above the 
curves is thermal damage of the disk; below – start of water boiling. 
Dashed curves are the asymptotic values of the disk thickness. 
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Figure 9 presents the lasing powers obtained from expres-
sions (30) and (31) at h = 0.2 cm and a2 = a3 = 1.5 W cm–2 K–1 
as well as in the case of the heat-insulated side face at a2 = 
1.5 W cm–2 K–1 and a3 = 0.

Note that at a3 ® 3  or a3 ® 0 and with a simultaneous 
increase in x, expressions (30) asymptotically converge to 
parabolic dependences of x, while expressions (31) diverge, in 
the case of large x the power PC

las at a3 ® 0 being greater than 
that at a3 ® 3. However, there exists the heat exchange 
coefficient  a3

B=C = 0.59 W cm–2 K–1, at which expressions (30) 
and (31), with increasing x, asymptotically converge to one 
and the same parabolic dependence, similar to expression (30) 
at a3 ® 0, i.e., P P Plas

C
las
B

las
B

03 3
-= " "3a a  at x ® 3. 

At other a2 and h, the quantity a3
B=C for which at large x 

the events B and C occur simultaneously, is shown in Fig. 10. 
At a3 G  a3

B=C, the maximum power Plas is limited only by the 
start of water boiling, and at a3 > a3

B=C the disk is damaged 
and the quantity xB=C separating these two events is found 
from expressions (30) and (31). 

For small powers (less than 5 – 50 W at х ® 0), expres-
sions (30) and (31), depending on a3, have the form 
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To obtain the real value of PC
las in expression (34), the cofac-

tor (1 – n) should be replaced by 1. With 1 in place of (1 – n) 
for Q in (22), the maximum lasing power limited by one of the 
events – B or C, can be found from expressions (30) and (31) 
as well as at the scaling parameter x < 1 (i.e., for a cylindrical 
AE at h < 0.3 cm). Note that at x < 1, the stress sz should be 
taken into account; nevertheless, the maximal stress corre-
sponding to the AE damage is the tensile stress sj(1,0) (21) 
on the side face of the AE surface. 

Consider the influence of the end (determined by the heat 
exchange coefficient a2) and side (a3) cooling of the disk on 
the increase in the lasing power Plas. The effect of side cooling 
is not so unambiguous as that of the end cooling. 

The analysis of the characteristic dependence of Plas on x 
(see Fig. 9) shows that in the case of side cooling, Plas at 
х < x'В=С is higher, and at х > x'В=С the lasing power is smaller 
than in its absence. The reason behind this is obviously caused 
by the fact that the tangential stress sj increases with increas-
ing a3, and at a3 > a3

B=C the disk will be damaged at smaller 
lasing powers (at х < x'В=С) than at a3 = 0.

Therefore, side cooling plays a positive role in increasing 
Plas at any x if a3 < a3

B=C, and at х < x'В=С, if a3 > a3
B=C. In 

other words, if the heat removal from the disk side face is 
large, tangential stresses, limiting the maximum possible las-
ing power, appear in the disk at large x. If the heat removal 
from the disk side face decreases (due to a decrease in a3), the 
power Plas increases at any x: at 1 G  x G  10 – by many orders 
of magnitude and at larger x – to a lesser extent. 

7. Minimal diameter of disk AE limited by the 
events B and C and radial distribution of the 
internal temperature at large lasing power 

If it is needed to obtain the prescribed lasing power, expres-
sion (29) can help to estimate the minimal AE diameter provid-
ing this power at the given thickness and values of a2 and a3. 

7.1. Detailed analysis at Plas = 1 kW 

Figure 11a presents the dependence of the minimal possible 
AE diameter limited by the event B or C on the AE thickness 
when the maximal lasing power is 1 kW, the heat exchange 
coefficient a2 in the case of end cooling is 1.5 W cm–2 K–1 
(effective cooling) and the heat exchange coefficient a3 on the 
side face varies from 0 to 1.5 W cm–2 K–1. The maximal AE 
temperature not exceeding 200 °С is possible at h < 0.237 cm 
with the used parameters. One can see that in the case of the 
heat-insulated side face (a3 = 0) the required AE diameter 
(limited by the event B) monotonically increases with increas-
ing the AE thickness in the range 0.01 – 0.3 cm. The use of side 
cooling with the heat exchange coefficient a3 = 1.5 W cm–2 K–1 
allows one to decrease the diameter by 5.3 % (compared to the 
diameter in the case a3 = 0) at h = 0.17 cm (before the occur-
rence of the event C – point 0 in Fig. 11a). At h > 0.17 cm, 
the  required diameter noticeably increases (the event C has 
a priority – dashed curve). Thus, to decrease the diameter at 
h >  0.17 cm, the heat exchange coefficient on the side face 
a3 < 1.5 W cm–2 K–1, depending on h, is needed. This heat 
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Figure 9.  Calculated maximal lasing powers limited by the event B 
or C as functions of the scaling parameter x at h = 0.2 cm, a2 = a3 = 
1.5 W cm–2 K–1 (solid curves) and a2 = 1.5 W cm–2 K–1 and a3 = 0 (dashed 
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exchange coefficient is aВ=С(h) at which the AE diameter can be 
decreased (events B and C occur simultaneously – points 1 – 3). 

Using the above-derived expressions for internal and 
external temperature drops (6) – (9) for the events B and C as 
well as the expression for the smoothing degree of the radial 
temperature profile f ( r, m) it is easy to evaluate the character 
of the radial temperature distribution at any point z of the AE 
in the case of the maximal lasing power of 1 kW (Figs 11b, c) 
because DT1( r, z) = DT1(0, z) f ( r, m). In particular, at the edges 
z = 0, h, for the event B we have
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The end face of the disk surface (z = 0) is most strongly 
subjected to thermal distortions due to the face that the  

internal temperature drop DT1
 B,C(0, 0) here is maximal; with 

increasing z it decreases parabolically and at point z = h will 
be K times smaller than the maximal. Figures 11b, c show the 
dependence of the main parameters m and DT1

 B,C(0, 0) charac-
terising the internal temperature distribution over the radius 
at the maximal lasing power 1 kW on the AE thickness. At 
a3 = 0 and 1.5 W cm–2 K–1 and thickness h = 0.01 cm, m is 
equal to 29.2, while the internal temperature drops are 0 and 
21.6 °C, respectively. Using Fig. 2, we can easily estimate 
the  internal temperature distribution profile, which has a 
‘shelf-like’ shape. With increasing the thickness up to 0.17 cm 
(a3 = 1.5 W cm–2 K–1), the smoothing degree m decreases 
down to 7.15, while the internal temperature drop increases 
up to 88.9 °C, which forms the internal temperature distri
bution profile shown in Fig. 2. An increase in the thickness 
from 0.17 to 0.3 cm (a3 = 1.5 W cm–2 K–1) weakly affects 
the internal temperature distribution profile; in this case, the 
main parameters change as follows: m from 7.15 to 6.49 and 
DT1

 C(0, 0) from 88.9 to 89 °С. The choice of the optimal aB=C 
at h > 0.17 cm with the aim of decreasing the diameter does not 
lead to a gain in the smoothing of the temperature profile because 
a decrease in DT1

 B = C(0, 0) from 88.9 °С (h = 0.17 cm) to 80.1 °С 
(h = 0.3 cm) is compensated for by a decrease in the smooth-
ing degree m from 7.15 (h = 0.17 cm) to 5.29 (h = 0.3 cm). 

7.2. General analysis at Plas = 0.1 – 100 kW 

Figures 12 – 14 present the calculation results of the diameter 
and main parameters describing the temperature distribu-
tion over the radius, m and DT1

 B,C(0, 0) for the lasing power 
0.1 – 100 kW. 
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Figure 11.  Minimal AE diameter (a), smoothing degree m (b), and the 
internal temperature drop DT1(0, 0) (c) for the maximal lasing power 
of 1 kW limited by the event B or C versus the AE thickness at a2 = 
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For the lasing power Plas = 100 W, an increase in a3 from 
0 to 1.5 W cm–2 K–1 leads to a noticeable decrease in the diam-
eter d; the formal calculation gives the minimal d equal to 
0.026 cm at h = 0.73 cm (B=C) but the maximal AE tempera-
ture in this case reaches 407 °С. For Plas » 240 W, the mini-
mal diameter d = 0.55 cm (B=C) corresponds to h = 0.3 cm at 
a3 = 1.5 W cm–2 K–1 and the maximal temperature 226 °С. At 
Plas > 1 kW, the positive effect of side cooling decreases even 
more (at the stage of the event B); therefore, it is preferable to 
exclude side cooling because in the thickness range 0.12 – 0.17 cm 
(depending on the output power), the thermal destruction has 
already a priority, which considerably increases the minimal 
diameter. 

Note that the minimal diameter for the lasing power above 
0.2 kW weakly depends on the thickness. To this end, we can 
approximately estimate it by using expression (32) at h ® 0 
and a3 = 0: 
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where d is measured in cm, PB
las – in W, and a2 – in W cm–2 K–1. 

Then, with the help of expression (35) we can obtain from (4) 
an estimating expression for the smoothing degree: 
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which is independent of the heat exchange coefficient a2. 
Thus, at any lasing power, h G  0.3 cm and a3 » 0, as well 

as at Plas > 0.2 kW, h G  0.12 cm and a3 G  1.5 W cm–2 K–1, 
expressions (35), (36) can help to estimate, with an accuracy 
no worse than ~ 10 %, the minimal diameter and the smooth-
ing degree as functions of the AE thickness. 

8. Conclusions 

(i) We have derived an analytic expression describing with 
an accuracy of ~ 10 % the stationary two-dimensional axially 
symmetric temperature distribution in a disk AE cooled from 
the end face and from the side face for the disk thicknesses 
0.01£h£0.3 cm and the diameter-to-thickness ratio 1£x£100. 

(ii) We have calculated the radial and tangential stresses in 
the disk in the case of uniform steady-state pumping. It is 
shown that from the point of view of thermomechanical dam-
age the tangential stress of the disk side face constitutes the 
main threat. 

(iii) We have estimated the limiting lasing powers, which 
can be obtained in a disk AE cooled from the end and side 
surfaces of the disk. It is shown that side cooling can decrease 
Plas in certain situations. 

(iv) We have determined the priority regions in the space 
of the parameters k, h, x, a2, and a3 in which, with increasing 
the pump intensity, one of the three events violating the normal 
operation of the laser occurs first: deterioration of spectral 
and luminescent AE characteristics, malfunctioning of the 
normal cooling regime; thermomechanical disk damage. 

(v) We have shown that the general smoothing of the tem-
perature radial profile along the z axis is determined by the 
smoothing function f ( r, m) (characterised by the parameter 
m – the smoothing degree) and the temperature drop DT1(0, z) 
(proportional to the heat exchange coefficient a3 on the side 
surface). Temperature smoothing leads to smoothing of thermo
elastic stresses. 

(vi) If the medium cooling the side face is temperature 
sensitive, resulting in such undesirable effects as start of water 
boiling, melting of an indium substrate, etc., they should be 
taken into account in calculating the maximal lasing effi-
ciency. Because in this thermal problem for the disk AE, the 
maximal temperature drop on the side surface is formed at 
z = 0 and r = R, by introducing the critical temperature drop 
DT2

 сr(R, 0) = T  cr(R, 0) – Tf, where, for example, T  cr(R, 0) = 
100 °C and the coolant is water, we obtain from (5) and (8) the 
second critical function of heat release sources 

cr , ,q T R
RK

0
2cr

V 2
3T

a Y
= ^ h

which should be also taken into account in the analysis of 
the events B and C. The condition T cr(R, 0) = 100 °C has the 
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Figure 13.  Smoothing degree m. Notations are the same as in Fig. 12. 
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highest effect on the maximal lasing power at the scaling 
parameter x < 1. 

(vii) The limiting pump power resulting in the thermal 
damage due to the tangential stress at z = 0 and r = R can be 
always somewhat increased, which means that the maximal 
lasing power can be also increased. There exist several methods 
to do this: not to illuminate the entire AE area, to cool addi-
tionally the disk end face (the method of a cooling jacket – 
export of the region in which the maximal temperature gradi-
ent is formed outside the pumped region), or to form the 
radial pump-power profile with a gentle slope at the side face 
of the AE. 

References 
  1.	 Stewen C., Contag K., Larionov M., Giesen A., Hügel H. 

IEEE J. Sel. Top. Quantum Electron., 6 (4), 650 (2000).
  2.	 Johannsen I., Erhard S., Müller S., Stewen C., Giesen A., 

Contag K., in OSA Trends in Optics and Photonics, Advanced 
Solid State Lasers (Washiington, DC, Optical Society of America, 
2000) Vol. 34, pp 137 – 143. 

  3.	 Erhard S., Karszewski M., Stewen C., Giesen A., Contag K., 
Voss A., in OSA Trends in Optics and Photonics, Advanced Solid 
State Lasers (Washiington, DC, Optical Society of America, 
2000) Vol. 34, pp 78 – 84.

  4.	 Garnov S.V., Mikhailov V.A., Serov R.V., Smirnov V.A., 
Tsvetkov V.B., Shcherbakov I.A. Kvantovaya Elektron., 37 (10), 
910 (2007) [ Quantum Electron., 37 (10), 910 (2007)]. 

  5.	 Smirnov V.A., Shcherbakov I.A. Kvantovaya Elektron., 38 (12), 
1105 (2008) [ Quantum Electron., 38 (12), 1105 (2008)]. 

  6.	 Alpat’ev A.N., Smirnov V.A., Shcherbakov I.A. Kvantovaya 
Elektron., 39 (11), 1033 (2009) [ Quantum Electron., 39 (11), 
1033 (2009)]. 

  7.	 Kovalenko A.D. Termouprugost’ (Thermal Elasticity) 
(Kiev: Izd. ‘Vishcha shkola’, 1975). 

  8.	 Mezenov A.V., Soms L.N., Stepanov A.I., in Termooptika 
tverdotel’nykh lazerov (Thermal Optics of Solid-State Lasers) 
(Leningrad: Mashinostroenie, 1986). 

  9.	 Koechner W. Solid-State Laser Engineering (New York: Springer, 
2006). 


