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Abstract.  Propagation and interaction of orthogonally polarised 
two-dimensional super-Gaussian light beams is studied theoreti-
cally in a 4mm-symmetry photorefractive crystal in the drift regime 
when the external electric field is applied to the crystal in the direc-
tion of the optical axis. The output beams displaced with respect to 
each other in directions parallel and perpendicular to the direction 
of the external electric field strength vector are considered. It is 
shown that an auxiliary light beam polarised orthogonally to the 
fundamental light beam makes it possible to carry out efficiently 
address localisation of the fundamental beam propagating in a quasi-
soliton regime. The crystal thicknesses are found, which are opti-
mal from the viewpoint of maximisation of the fundamental light 
beam deviation. It is shown that ‘square’ super-Gaussian beams in 
the near-field diffraction region are focused at smaller values of the 
external electric field than those of the Gaussian beams. 

Keywords: photorefractive crystal, orthogonal polarisations, square 
super-Gaussian beam, Gaussian beam, beam interaction, crystal of 
the class 4mm, SBN crystal. 

1. Introduction 

Studying the interaction of quasi-soliton light beams in nonlin-
ear media is of interest in view of the prospects for designing all-
optical switching and localisation devices based on these media. 
Recently, there have published many papers devoted to investiga-
tions of interaction of light beams in photorefractive crystals. 

Some papers consider coherent and incoherent interaction 
of two-dimensional Gaussian light beams with the same linear 
polarisation in the photorefractive strontium barium niobate 
(SBN) Sr0.61Ba0.39Nb2O6 crystal. They show that coherent 
interaction of the light beams can lead to their mutual attrac-
tion and complete fusing as well as to the mutual repulsion 
(see, for example, [1, 2]). 

Khmelnitsky et al. [3] compared the results of the experi-
ment on interaction (in the SBN crystal) of the so-called square 
and rectangular two-dimensional light beams polarised in par-
allel to the optical axis of the crystal with the theoretical results. 

Shepelevich et al. [4, 5] studied theoretically interaction of 
orthogonally polarised one-dimensional Gaussian light 
beams in cubic optically active crystals. They showed that this 
interaction makes it possible to efficiently control the address 
localisation of a quasi-soliton linearly polarised light beam by 
an auxiliary divergent orthogonally polarised beam. 

The authors of papers [6, 7] presented the theory of propa-
gation of one-dimensional orthogonally polarised soliton light 
beams in anisotropic photorefractive crystals. However, they 
placed the primary emphasis upon searching for mutual posi-
tions of the beams with respect to the external electric field 
where the soliton regime is realised for both beams, while the 
control of propagation of one beam with the help of the other 
was considered indirectly.

In some papers (for example, [2, 8]) studying interaction of 
two-dimensional light beams in uniaxial crystals, expressions 
for the potential of the internal electric field take into account 
only the drift component and neglect the diffusion compo-
nent. In addition, many papers (for example, [1, 2]) consider 
the beams with the Gaussian intensity distribution. 

At the same time, some papers have been recently pub-
lished (see, for example, [9]), showing that two-dimensional 
flat-topped light beams (super-Gaussian beams are the spe-
cific case of such beams) have some advantage over Gaussian 
beams. In particular, in the free propagation regime their 
divergence in the near-field diffraction region is significantly 
smaller than that of Gaussian beams. Thus, to ensure the 
quasi-soliton propagation regime with the use of the external 
electric field is possible by employing the electric field strength 
weaker than that in Gaussian beams. 

Characteristics of generation and application of different 
light beams, including super-Gaussian beams, were studied in 
papers [9 – 11]. Scientific papers usually consider two types of 
two-dimensional super-Gaussian light beams – cylindrical and 
square (see, for example, [12]). Square super-Gaussian beams 
have a larger store of light energy than the Gaussian and 
cylindrical super-Gaussian beams and require fewer electric 
fields to focus in the near-field diffraction region. 

In this paper we present the results of theoretical investi-
gations of two-dimensional orthogonally polarised square 
super-Gaussian beams in the SBN crystal, taking into account 
the diffusion and drift mechanisms of photorefraction, and 
compare their interaction with that of Gaussian beams under 
the same conditions. 

2. Theory 

Consider incoherent interaction of two monochromatic light 
beams normally incident on the face of the 4mm-symmetry 
photorefractive crystal whose optical axis lies in the face plane 
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while the other crystallographic axis is directed inside the 
crystal along the normal to this face. 

If we assume that the natural crystal anisotropy markedly 
exceeds the additional change in the dielectric constant induced 
by the external electric field, this change can be interpreted as 
perturbation and ordinary and extraordinary waves in the 
crystal can be treated as unperturbed modes of the beam’s 
light field. 

We will direct the x axis of the working coordinate system 
along the crystallographic axis c, which is the optical axis of 
the crystal. Let the external electric field E0 be also directed 
parallel to the optical axis c. The z axis is directed along the 
crystallographic axis a, while the y axis – along the crystallo-
graphic axis b. Then, Maxwell’s equations and basic equa-
tions of the photorefractive effect [13] make it possible to 
derive, using the covariant representation [14] of the electro-
optic tensor of the 4mm-class crystal, the system of equations 
in the paraxial approximation, which describes a change in the 
vector envelope projections of the electric field strengths of the 
first (A1) and second (A2) light beams on the axis x and y: 

¶

¶

¶

¶

¶

¶

¶
¶

,i
z

A

k n x

A

y

A k n
A r E

x2
1

2
0

o

oy y y
y

1

0 2

2
1

2

2
1 0

3

1 13 0
j

+ + - - =f cp m  

¶
¶

¶

¶

¶

¶
¶
¶

0,i
z
A

k n x

A

y

A k n
A r

y2
1

2e

ex x x
x

1

0 2

2
1

2

2
1 0

3

1 42
j

+ + + =e o  

	
(1)

¶
¶

¶

¶

¶

¶
¶
¶

0,i
z
A

k n x

A

y

A k n
A r E

x2
1

2e

ex x x
x

2

0 2

2
2

2

2
2 0

3

2 33 0
j

+ + - - =e co m  

¶

¶

¶

¶

¶

¶

¶
¶

0.i
z

A

k n x

A

y

A k n
A r

x2
1

2o

oy y y
y

2

0 2

2
2

2

2
2 0

3

2 42
j

+ + + =f p  

Here, k0 is the modulus of the wave vector of the light beams 
in vacuum; no and ne are the refractive indices of ordinary and 
extraordinary waves; E0 is the projection of the E0 vector on 
the x axis; r13, r33, and r43 are the electro-optic tensor compo-
nents of the crystal; j is the found electric potential related to 
the spatial charge field potential f by the expression 

j = f + E0x	 (2)

and determined from the equation (see, for example, [15, 16]) 
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is the relative light field intensity in the region of incoherent 
interaction of light beams; Id is the dark intensity including 
the background noise; kB is the Boltzmann constant; T is the 
absolute temperature; q is the elementary charge; /0 0 0h m e=  
[17]. Note that in studying coherent interaction of the light 
beams or in determining polarisation of the light transmitted 
through the crystal, we should take into account different 
phase shift of ordinary and extraordinary waves at a fixed 

coordinate z. The term in the left-hand side of equation (3), 
containing the multiplier kBT/q, corresponds to the electron 
diffusion in a photorefractive crystal (diffuse term). The expres-
sion in the right-hand side of (3) containing E0 is responsible 
for the electron drift in the external electric field. Thus, the 
regime of propagation and interaction of the light beams at 
E0 ¹ 0 is called the drift regime. 

We assume that the first beam at the crystal input is lin-
early polarised, perpendicular to the external electric field 
vector E0 (ordinary wave), while the second beam is linearly 
polarised, parallel to the vector E0 (extraordinary wave), i.e., 

, 0,A A Ay z x z1 0 01 1 0= =
= =

, 0.A A Ax z y z2 0 02 2 0= =
= =

	 (5)

Numerical estimates show that when conditions (5) are met 
at the SBN crystal output under typical conditions, the inequal-
ities |A1x | 2 << |A1y | 2, |A2y | 2 << |A2x | 2 are fulfilled and the 
contribution of the components A1x and A2y, which become 
nonzero in calculations, can be neglected in the resultant 
intensity (4) calculated at each step and determining the rela-
tion between the orthogonal components of the beams. Thus, 
the system of equations (1) can be approximately replaced by 
a system of two differential equations in partial derivatives: 
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3. Numerical simulation of interaction  
of two-dimensional light beams with super-
Gaussian and Gaussian intensity distributions 
in a photorefractive SBN crystal 

Simulating interaction of two-dimensional light beams in the 
SBN crystal, we used the parameters: no = 2.36; ne = 2.33; l = 
0.5145 mm; r13 = 47 pm V–1; r33 = 235 pm V–1 (see, for exam-
ple, [18, 19]); E0 = 0.8 kV cm–1; the crystal length, 30 mm; the 
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Figure 1.  Profiles of different-order super-Gaussian-beam cross sections. 
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Figure 2.  Calculation results of interaction of Gaussian light beams with the centres displaced by a distance D parallel to the external electric field 
vector, by neglecting electron diffusion in the crystal: cross sections of Gaussian beams at the crystal input ( 1, 2 ) and the resultant beam at the 
crystal output ( 3 ) by a plane parallel to the plane xz and passing through the point at which the intensity maximum is achieved (a); light field dis-
tribution over the crystal thickness (b, d, f); position of the quasi-soliton beam ( 2 ) at the crystal output (c, e, g). 
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characteristic cross sections of the output beams, r0 = 15 mm; 
the distance between the beam centres, D = 20 mm. The optical 
axis of the crystal is directed along the x axis.

The relative intensity I of the square super-Gaussian beam 
at the crystal input is described by the expression (see, for 
example, [12, 20 – 22]) 

N
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N N
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=
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= G 	 (7)

where N is the super-Gaussian beam order. Note that at 
N = 2, expression (7) describes a Gaussian beam. In this case, 
r0 is called the beam radius. We assume below that I0 = Id, i.e., 

the maximal relative intensity of the light beams (7) is equal to 
unity at the crystal input (Fig. 1). 

Let us analyse first the interaction of orthogonally polarised 
Gaussian (N = 2) light beams [curves ( 1 ) and ( 2 ) in Fig. 2a] 
displaced with respect to each other by D = 20 mm along the 
direction of the external electric field strength vector E0, by 
neglecting the diffusion term in the equation for the potential. 
Beam ( 1 ) is polarised perpendicular to the external electric 
field strength vector, while beam ( 2 ) – parallel to this vector. 
Point A in Fig. 2 indicates the initial position of the centre of 
beam ( 1 ) at the crystal input, while point B shows the initial 
position of the centre of beam ( 2 ). The horizontal dashed line 
(Figs 2b, d, f ) and intersecting solid lines (Figs 2c, e, g) are 
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Figure 3.  Calculation results of interaction of Gaussian light beams with the centres displaced by a distance D parallel to the external electric field 
vector, with allowance for electron diffusion in the crystal: cross sections of Gaussian beams at the crystal input ( 1, 2 ) and the resultant beam at the 

crystal output ( 3 ) by a plane parallel to the plane xz and passing through the point at which the intensity maximum is achieved (a); light field dis-

tribution over the crystal thickness (b, d); position of the quasi-soliton beam ( 2 ) at the crystal output (c, e). 
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shown for convenient comparison of the beam positions at 
the crystal input and output. 

If we neglect the intensity of the output beam ( 1 ), which is 
virtually scattered and can be called auxiliary, beam ( 2 ) can 
be treated as a resultant beam. Because the interacting beams 
are attracted, the quasi-soliton beam ( 2 ) deviates and occu-
pies (at the crystal output) the position of beam ( 1 ) (Fig. 2c), 
which is strongly scattered, but nevertheless plays the role of 
the control beam (Fig. 2b). Without beam ( 1 ) and electron 
diffusion in the crystal, beam ( 2 ) does not deviate. As the 
distance between the beam centres increases up to 35 mm, the 
beam attraction becomes weaker and the position of beam ( 2 ) 
at the crystal output changes insignificantly (Figs 2d, e) com-

pared to the initial position. A further increase in D (D = 40 mm, 
Figs 2f, g) leads to a weak repulsion of the beams, while at 
D > 100 mm beam ( 1 ) virtually stops affecting beam ( 2 ).

Mutual attraction and repulsion of the light beams in their 
incoherent interaction versus the distance between them was 
also studied in [23] for the identical linearly polarised beams. 
If the equation takes into account terms responsible for the 
electron diffusion in the crystal, we can observe at D = 20 mm 
an additional beam displacement along the x axis in the direc-
tion opposite to that of the external electric field strength vec-
tor due to the beam self-deflection appearing when diffusion 
is taken into account. The displacement direction of beam ( 2 ) 
during the beam interaction (Figs 2b, c) coincides with the dis-
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Figure 4.  Calculation results of interaction of super-Gaussian light beams with the centres displaced by a distance D parallel to the external electric 
field vector: light field distribution over the crystal thickness without (a) and with (c) the electron diffusion; position of the quasi-soliton beam ( 2 ) 
at the crystal output without (b) and with (d) the diffusion; cross sections of the beams by a plane parallel to the plane xz and passing through the 
point at which the intensity maximum is achieved without (e) and with (f) the diffusion [cross sections of super-Gaussian beams at the crystal input 
( 1, 2 ) and cross section of the resultant beam at the crystal output ( 3 )]. 
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placement direction of this beam due to self-deflection; there-
fore, the displacement of the quasi-soliton beam ( 2 ) in the 
direction of beam ( 1 ) increases (Figs 3a, b, c) compared to the 
displacement shown in Fig. 2. At D = 40 mm when the beams 
repulse due to their interaction (Figs 2f, g), the directions of 
the above-described displacements are opposite; therefore, the 
displacement of beam ( 2 ) along the x axis, caused by the beam 
interaction, is compensated for by the displacement resulting 
from the beam self-deflection and the beam repulsion is virtu-
ally absent (Figs 3d, e). Figure 4 presents the results of calcu-
lation of the interacting square super-Gaussian (N  = 10) 
orthogonally polarised light beams displaced with respect to 
each other along the direction of the external electric field 
strength vector E0 (D = 20 mm). 

Processes of the self-deflection (due to diffusion) and dis-
placement (due to interaction) of the beams are also observed 
when they displace with respect to each other in the direction 
perpendicular to that of the external electric field strength 
vector. However, in this case the beams self-deflect along the 
x axis in the direction opposite to that of the external electric 
field strength vector, while the beam deflection due to their 
interaction occurs along the y axis in the direction of beam 
( 1 ), and as these effects overlap, beam ( 2 ) displaces across 
the x axis (Fig. 5). 

One can see from Figs 2 – 5 that Gaussian and super-
Gaussian beams with the above parameters behave similarly. 
But at the same time, they exhibit a number of distinctions. 
For example, when we consider interaction of Gaussian light 
beams without the electron diffusion in the crystal, the opti-

mal crystal length z for the selected parameters (Fig. 2b) is 
equal to 15 mm because at z > 15 mm the deflection of beam 
( 2 ) in the direction of beam ( 2 ) almost stops; for the super-
Gaussian beams (Fig. 4) the optimal value is z = 25 mm. We 
can also point out that the super-Gaussian light beam ( 2 ) dis-
places more under the action of beam ( 1 ) (Figs 5c, d) than the 
Gaussian beam (Figs 5a, b).

The light beams with the intensity profiles close to the 
rectangular one (in our case – super-Gaussian) can be conve-
niently used at a small thickness of the crystal because at the 
initial stages of transmission through the crystal the profiles 
of these beams become markedly deformed, which may lead 
to a significant increase in the beam intensity, i.e., to addi-
tional focusing that is not typical of the Gaussian beams. 
However, the use of the super-Gaussian beams can cause 
some problems: already at N > 5 we observe an increase in 
the number of ‘pulsations’ at the edges of the beam profile, 
which introduces additional errors in calculations [24]. 

We have found that when in the absence of the external 
electric field beam ( 2 ) propagates through a 10-mm-thick 
crystal and beam ( 1 ) does not affect it, we observe a mono-
tonic decrease in the maximal relative intensity in the case of 
a Gaussian beam, while in the case of a super-Gaussian beam 
there appears an additional self-focusing, which achieves a 
maximum at z = 1.8 mm. This additional self-focusing of 
square super-Gaussian light beams, taking place in the region 
0 < z < 4 mm, affects their interaction result. We will study 
this effect by considering interaction of orthogonally polarised 
Gaussian and super-Gaussian light beams with predetermined 
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Figure 5.  Calculation results of interaction of light beams displaced with respect to each other in the direction perpendicular to the external electric 
field vector: for Gaussian beams – position of the quasi-soliton beam ( 2 ) at the crystal output without (a) and with (b) the electron diffusion; for 
super-Gaussian beams – position of the quasi-soliton beam ( 2 ) at the crystal output without (c) and with (d) the diffusion. 
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parameters and D = 20 mm in the drift regime without electron 
diffusion in the crystal. The external electric field E0 is assumed 
equal to 0.8 kV cm–1, and the coordinate inside the crystal – to 
1.8 mm because at this value of z we observe the maximal 
additional self-focusing of a solitary super-Gaussian beam 
propagating in the crystal.

Interaction of Gaussian beams resulted in their fusing at 
z = 1.8 mm (Figs 6a, c). In the case of super-Gaussian beams, 
we failed to observe their complete fusing, while the beam 
intensity increased by 3 – 3.5 times and each beam continued 
focusing independently.

After the Gaussian light beams interacted, the merged 
beam becomes asymmetric [Fig. 6c, curve ( 3 )] – the right-
hand side of the envelope being steeper than the left-hand 
one. Because the conditions for the diffracted beams are closer 
to the total internal reflection on the right than on the left, the 
propagating beam deflects to the left along the x axis if we look 
at the face of the beam (Fig. 2c) or to the right we look at its 
tail (Fig. 2b). 

The same situation takes place when square super-Gauss-
ian beams interact [one can see from Fig. 6d that the maximal 
intensity of the right beam is greater than that of the left one, 
while the right-hand part of the envelope of the total intensity 
distribution along the x axis is steeper than the left-hand part, 
which determines a more significant deflection of the beams due 
to their interaction (Fig. 4c) than in the case of the Gaussian 
beams (Fig. 3c)].

Recall that bright spatial solitons propagate in a nonlinear 
medium without diffraction under condition that the refrac-
tive index in the beam region is greater than in the adjacent 
regions. The resultant beam self-focusing compensating for 
the beam diffraction is also explained by the total internal 
reflection of the light beams during their diffraction. 

4. Conclusions 

We have studied the peculiarities of propagation and interac-
tion of orthogonally polarised Gaussian and square super-
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ian beams at the crystal output ( 1, 2 ) and of the merged beam at the crystal output ( 3 ) by a plane parallel to the plane xz and passing through the 
point at which the intensity maximum is achieved (d).
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Gaussian light beams in a photorefractive SBN crystal placed 
in the external electric field. 

We have shown that during interaction of such orthogo-
nally polarised beams one of the beams retains its quasi-soli-
ton character and experiences deflection under the action of 
the other beam, which strongly scatters but plays the role of the 
control one. 

We have found that allowance for the diffuse term in the 
equation for the potential leads to an additional displacement 
of the light beams along the x axis in the direction opposite to 
the direction of the external electric field. 

We have found the optimal crystal thicknesses for which 
the deflection of the quasi-soliton light beam during the inter-
action of two-dimensional orthogonally polarised light beams 
will be greatest. 

We have established differences in propagation and inter-
action of Gaussian and super-Gaussian two-dimensional light 
beams. We have found that square super-Gaussian beams 
require fewer electric fields for focusing in the near-field dif-
fraction region than Gaussian and cylindrical super-Gaussian 
beams, while cylindrical super-Gaussian beams require fewer 
electric fields for focusing in the near-field diffraction region 
than Gaussian beams. A disadvantage of super-Gaussian beams 
at N > 5 is their spatial instability in the far-field diffraction 
region. 

The obtained results can be used to control the beam self-
focusing and are of interest for fabricating devices for address 
switching of the beam positions. They can also stimulate the 
experimental investigation of propagation and interaction of 
light beams of arbitrary profiles (other than Gaussian) in 
photorefractive crystals. 
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