
Quantum Electronics  40 (10)  893 – 898  (2010)	 © 2010  Kvantovaya Elektronika and Turpion Ltd

Abstract.  The leakage loss in straight and bent Bragg fibres has 
been studied experimentally and theoretically using five fibres dif-
fering in the core diameter, the number of layers in the Bragg mir-
ror and their refractive indices. Simple analytical formulas have 
been derived within ray-optics theory which describe leakage and 
bending losses. The optical loss calculated using these formulas 
agrees well with our experimental data. Analysis of the theoretical 
and experimental results enables us to assess the effect of parame-
ters of the waveguiding system on the optical loss in straight and 
bent fibres.

Keywords: fibre optics, Bragg fibre, optical losses, bending loss.

1. Introduction

Bragg fibres (BFs) are among fibres having a photonic band 
gap. Even though BFs were proposed more than three decades 
ago [1, 2], they have attracted practical interest comparatively 
recently, after the optical loss in them had been brought to a 
sufficiently low level [3, 4]. This type of optical fibre is receiv-
ing much attention owing to its unique properties, noteworthy 
among which are the shift of the zero-dispersion point to 
wavelengths near 1 mm [5, 6] and the possibility of producing 
large mode area fibres with a low bend sensitivity [4, 7].

A typical BF comprises a core with a refractive index 
equal to or smaller than that of fused silica and a multilayer 
cylindrical cladding which acts as a Bragg mirror (Fig. 1). 
Light reflection from the boundaries of the layers, which can 
be adequately described by the Fresnel formulas, ensures con-
finement of the light in the fibre core. In contrast to fibres 
based on the principle of total internal reflection, BFs always 
have nonzero leakage losses, which should be taken into 
account in designing the fibre structure. A number of numeri-
cal and analytical approaches have been proposed to date for 
evaluating the optical loss in straight fibres (see e.g. Refs [8 – 11]), 
but they require sufficiently high professional skills. Moreover, 
the complexity of mathematical calculations makes it difficult 
– and, most frequently, impossible – to analyse the relation-
ship between the parameters of BFs and the leakage loss. One 
exception is recent work by Feshchenko [12], who treated 

high-index layers as infinitely thin (delta-layers) and derived 
simple analytical formulas for evaluating the leakage loss in 
planar waveguides and straight BFs.

Note that, in many cases, fibre has bends or is spooled for 
compactness, which may markedly increase optical losses. 
Mathematically, instead of calculating losses in a bent fibre, 
one can calculate those in a straight fibre with a distorted 
refractive index profile. The equivalent-index method takes 
advantage of this approach and is often used in numerical cal-
culations of bent BFs [13, 14], but no detailed theoretical analy-
sis of the bending loss in BFs has been presented to date.

In this paper, we report an experimental and theoretical 
study of loss mechanisms in BFs. We describe optical loss 
measurements on five BFs differing in parameters. Using ray-
optics theory, we derive simple formulas for evaluating losses 
in straight and bent fibres. The calculation results agree well 
with our experimental data. The formulas can be used to 
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Figure 1.  Bragg fibre structure.



	 S.S. Aleshkina, M.E. Likhachev, Yu.A. Uspenskii, M.M. Bubnov894

analyse optical losses in relation to fibre parameters and iden-
tify those parameters having the strongest effect on the losses.

2. Theory

To derive formulas and analyse optical losses, we consider an 
idealised model system: a Bragg fibre with a silica core of 
radius Rc and refractive index nc. The reflective cladding is 
taken to have a periodic structure: all the optically denser layers 
are identical in thickness, dH, and refractive index, nH. All the 
optically less dense layers of the cladding have a thickness 
dL and refractive index nL, differing from those of the denser 
layers. Therefore, the model fibre under consideration can be 
characterised by six parameters: core radius, Rc; index depres-
sion in the core relative to the optically less dense layers, nc; 
number of high-index cladding layers, N; layer thicknesses dH 
and dL; and the index depression in the core relative to the 
optically less dense cladding layers, Dnc = nL – nc. For simplic-
ity, we take the refractive index of the environment to equal 
nL, as is typically the case, and ignore effects related to the 
polymer coating of the fibre, as distinct from Uspenskii et al. 
[15].

As a rule, BFs are designed so that the cladding layers are 
quarter-wave thick at the operating wavelength of the fibre, l:

,
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d
n4

H L
H L H La

l
=^

^ ^
h

h h
	 (1)

where aH(L) is the angle between the beam and fibre axis in the 
high-index (low-index) layers. This choice of layer thicknesses 
ensures the highest reflectivity of the Bragg mirror [16], reduc-
ing the number of parameters of the model Bragg fibre to four.

Silica-core fibres typically have a low index contrast: the 
index difference between their layers is much less than the 
average refractive index (Dn, Dnc << nH, nL, nc). Therefore, the 
refractive index of the optically less dense layers can be taken 
as the average index, n. Because of the low index contrast, the 
fibre modes can be described using the scalar wave equation 
[17, p. 242].

Note that the description of the physical properties of a 
waveguiding system composed of alternating optically denser 
and less dense layers can be simplified using ray theory in the 
l/Rс << 1 approximation [2]. The field in a waveguide can 
then be represented as a combination of plane waves (rays) 
propagating at a certain angle, ac, to the fibre axis. The low-
loss modes of interest for us have small propagation angles, 
with sin a » tan a » a.

For the fundamental mode, the propagation angle of rays 
in the core can be found from the condition that the field, 
described by the Bessel function J0(rnс sin aс 2p/l), be zero 
at r = Rc. The applicability of this condition to Bragg fibres 
was discussed elsewhere [2, 14, 18]. It follows from this condi-
tion that

ac » sin ac = z0,1 l/(2pncRc),	 (2)

where z0,1 » 2.4048 is the first zero of the Bessel function 
J0(x). The propagation angles of rays in the cladding layers 
can be found using the principle of locality, which states 
that the reflection of a wave at any point can be considered 
by replacing a curvilinear (cylindrical in our case) boundary 

with its tangent plane. At small a angles, we obtain from 
Snell’s law 

a2H » ac2 + 2(Dn + Dnc)/n, 

	 (3)
a2L » ac2 + 2Dnc /n,

where aH and aL are expressed through ac, given by (2).
Following Snyder and Love [17, pp. 117, 573], we assume 

that local plane waves lose power only at reflection and turn-
ing points. Therefore, the optical loss in BFs can be expressed 
through the power transmission coefficient of the Bragg mirror, 
T(aс). Because a fraction T of the ray power is lost at each 
reflection point and the separation between two successive 
reflection points is 4Rс /tan aс, the optical loss in a straight 
fibre is
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To find T(aс), we again employ the principle of locality, 
reducing the problem to determining the transmission coeffi-
cient of a planar multilayer mirror. Using a well-known pro-
cedure for treating planar periodic structures composed of N 
quarter-wave layers [16] and taking into account that the 
angles under consideration are small, we obtain

TN(ac) » .
4
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	 (5)

Formulas (2) – (5) can be used to calculate the optical loss 
in a straight Bragg fibre with quarter-wave layers in a range 
around the operating wavelength.

A similar approach can be used to evaluate losses in bent 
BFs. It is then necessary to take into account that bends influ-
ence the aс, aH and aL angles, which become dependent on the 
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Figure 2.  Bent fibre geometry.
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azimuth angle, j, between the bending plane and ray propa-
gation plane. As seen in Fig. 2, a bend increases the propaga-
tion angle on the outer boundary (farther from the bend centre, 
at j = 0) and reduces that on the inner (j = p) boundary. The 
change in propagation angle has a maximum when light is 
incident on the outer surface in a direction lying in the bend-
ing plane, and decreases with increasing j. With these changes, 
relation (4) takes the form
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where we use the mean value theorem and introduce an effec-
tive azimuth angle, jeff, which in general depends on the 
wavelength l and bend radius Rcurv. Our calculations demon-
strate that the use of a fixed effective angle jeff » 60° intro-
duces no significant error.

Let us calculate the propagation angles aH
bent, aL

bent and 
ac
bent in a bent BF. A simple geometric analysis (Fig. 2) indi-
cates that, in the bending plane (j = 0), the angle of incidence 
on the outer surface is ac

bent » tan ac
bent = 2 (2r0 + x)/Lbent = 

aс + q/4, where q is the beam rotation angle relative to the 
bend centre, which determines the beam path in the bent fibre 
after two successive reflections. It can be shown that for any j 
we have
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The Fresnel mechanism of light confinement in the BF core 
leads to partial localisation of mode rays in the fibre layers. 
Given this, the effective radius of the guiding part, r0, is set to 
equal R0 + r/2, where r = NdH + (N – 1) dL.

As above, the aL
bent and aH

bent angles can be found using 
Snell’s law (3). As a result, the transmission of the Bragg mir-
ror in a bent fibre, TN

bent, is given by
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The last factor in (8) is due to the fact that, because of the 
changes in propagation angles, the layers in a bent fibre are 
no longer quarter-wave thick, which gives rise to a phase dif-
ference between the propagating and reflected rays (which is 
only significant for the low-index layers):

.
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^ h
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Note that the above formulas for optical losses were derived 
for fibres with quarter-wave layers, which were assumed to 
have low leakage losses. However, strong bending may increase 
the propagation angles so that the condition aL

bent/aL = 2 will 
be met and the phase difference F L will reach p. Reflections 

from different boundaries are then in antiphase, and further 
addition of layers does not reduce the transmission of the 
Bragg mirror. Reducing the bend radius down to the critical 
one, sharply increases the optical loss in the BF. Relation (6) 
then gives only a qualitative description of the bending effect 
on optical losses. From the condition aL

bent/aL » 2, the critical 
bend radius can be estimated as
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3. Experimental procedure and results

To verify the above formulas, we explored five BFs differing 
in parameters of their core and Bragg mirror (Table 1). The 
fibres were drawn from MCVD preforms. To rule out the 
effect of the polymer coating on optical losses, the silica – poly-
mer interface in the fibres was octagonal in shape [15] or they 
were coated with a polymer close in refractive index to undoped 
silica glass.

Optical losses were measured while consecutively reduc-
ing the fibre length (cut-back technique). To rule out the effect 
of modes excited in the high-index layers, radiation was cou-
pled into and outcoupled from the fibre using a single-mode 
fibre with a cutoff wavelength near 0.8 mm. The single-mode 
and Bragg fibres were fusion-spliced, which ensured good 
data reproducibility. The sample length was varied from 2 to 
6.5 m, depending on the output signal attenuation, and was 
adjusted so as to rule out the influence of higher order modes 
on the net optical loss in the fibre.

Figure 3 shows the loss spectra of three straight BFs with 
different parameters. The curves calculated from Eqn (4) are 
seen to agree well with the measured spectra in the range  
1.1 – 1.2 mm, for which the fibres are intended. The reason for 
this is that, in this spectral range, rays reflected from different 
boundaries of the high-index layers in the Bragg structures 
interfere constructively, and the structure is near quarter-wave. 
Increasing or decreasing the wavelength of the propagating 
light changes the optical thickness of each layer and, as a con-
sequence, increases the leakage loss. This is responsible for the 
discrepancy between the experimental and calculated curves.

Figure 4 plots the optical loss against inverse bend radius 
(zero abscissa corresponds to straight fibres). The curves, 
obtained using Eqn (6), are seen to adequately describe the 
bending effect on the optical loss in the fibre for both a slight 
increase in bending loss (20 % – 30 %, fibre 1) and an increase 
by more than one order of magnitude (fibres 2, 3 and 5). The 
slight discrepancy between the calculated curve and data 
points for fibre 4 is most likely due to the few-mode operation 
of the fibre, which prevented us from accurately determining 
the loss in the fundamental mode LP01.

Table 1.  Parameters of the fibres.

	 Fibre	 D = 2Rc	 Dn = nH – nL	 Dnc = nL – nc	 N	 l/mm	 Rcr/cm	 no.	 /mm			 

	 1	 9	 0.025	 0.0039	 8	 1.12	 0.04 
	 2	 22	 0.017	 0.0000	 3	 1.06	 1.30 
	 3	 38	 0.012	 0.0013	 3	 1.13	 1.44 
	 4	 37	 0.031	 0.0010	 3	 1.26	 1.41 
	 5	 39	 0.012	 0.0012	 4	 1.20	 1.42
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The critical radii calculated by Eqn (10), which determine 
the applicability range of the above formulas, are listed in 
Table 1.

4. Discussion

As seen in Figs 3 and 4, the optical loss calculated from 
Eqns (4) and (6) for the straight and bent BFs agrees well with 
the experimental data. An important point is that the simple 
relations obtained allow us to follow the key trends in the 
variation of the optical loss in the BFs with their parameters. 
In deriving formulas (5) and (8), we considered BFs with a 
low index contrast, a small number of layers and high reflec-
tivity of the interfaces between the denser and less dense  
layers of the mirror. Therefore, the conditions Dnс << Dn and 
aс2 n/2 <<  Dn were met. It can be shown that in the case of 
straight fibres we have
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It follows from (11) that the optical loss in straight fibres 
can be reduced by increasing the number of layers in the 
Bragg mirror, N, and the index contrast between the denser 
and less dense cladding layers, Dn, as supported by compari-
son of the optical loss in straight fibres 3 – 5 (the data points at 
1/R = 0 in Fig. 4). By contrast, increasing the index depression 
in the core increases the optical loss. It is worth pointing out 
that the optical loss depends in addition on the l/Rcurv ratio: 
the relation is linear for Dnс >> 0.5naс2 and a power law with 
an exponent 2N for Dnс << 0.5naс2. The rise in leakage loss 
with increasing wavelength is well seen in Fig. 3. The data can 
also be illustrated by comparing fibre 1 to the other fibres. 
Because of the large index depression in the core and the rela-
tively small core radius, the optical loss in a straight portion of 
fibre 1 is rather high, despite the large number of layers (N = 8) 
and the high index contrast in the Bragg mirror (Dn = 0.025) 
(Fig. 3a).

Consider now how the bend sensitivity of the fibres 
depends on their parameters. The bend sensitivity here means 
the ratio of the optical loss in a bent fibre to the leakage loss 
in a straight fibre. When the bend radius is varied, the bend 
sensitivity is determined by the variation in the slope of the 
optical loss curve at the operating wavelength (Fig. 4).

Using relation (6) for the loss in a bent fibre, we can show 
that the last factor in (8), responsible for the variation in the 
phase difference between rays reflected from different layers, 
is close to unity at relatively weak bends and its contribution 
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to the net transmission coefficient is substantially smaller 
than that of the term due to the reflectivity of the layers in the 
Bragg mirror. Figure 5 shows the calculated optical loss as a 
function of inverse bend radius with and without allowance 
for the phase factor.

The observed behaviour of the loss allows us to neglect the 
phase-related factor in (8) in qualitative analysis of the bending 
loss. The sensitivity of a fibre is then given by

T
T bent
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N  =~ 
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c
bent

L
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bent
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Because the light propagation angles in the denser optical 
layers vary considerably more slowly, relation (12) reduces to 
the form
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Therefore, the bend sensitivity of the fibres is determined 
by the light propagation angle and index depression in the 
core and the number of layers, N. Since we consider bend 
radii well below the critical radius (10), the variation in aL is 
limited by the condition aL

bent – aL << aL (in fact, the variation 
of the aL

bent/aL ratio from unity determines the variation in 
phase factor, which, as shown above, varies insignificantly at 
weak bends). For this reason, the addition of one high-index 
layer has a rather weak effect on the bend sensitivity.

The example of fibres 3–5, which have identical parame-
ters of the core (Dnс ~ 0.001, Rс ~ 20 mm), illustrates the effect 
of the parameters of the Bragg mirror on the optical loss. The 
fibres differ in that the Dn in fibre 4 exceeds that in fibre 3, and 
fibre 5 has an increased number of layers, N. It can be seen 
from Fig. 4 that these fibres are comparable in bend sensitiv-
ity (slope of the curves). Accordingly, a reduction in the opti-
cal loss in straight fibres (fibres 4 and 5 against fibre 3) leads 

to lower optical losses in bent fibres. The effect of the index 
contrast in the Bragg mirror on the optical loss in bent fibres 
was observed earlier [19], whereas a reduction in the optical 
loss in bent BFs upon an increase in the number of layers has 
been predicted and demonstrated for the first time.

Returning to Eqn (13), consider two limiting cases: Dnс >> 
0.5naс and Dnс << 0.5naс2. According to (13), the bend sensi-
tivity for Dnс >> 0.5naс is given by
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and that for Dnс << 0.5naс2 is
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where f (Rcurv) = r0 /(Rcurv sin j).
Because ac is a function of Rc [see (2)], a decrease in the 

core radius will lead to a reduction in the bend sensitivity of 
the fibre. As seen from (14a) and (14b), an increase in index 
depression in the core from zero to Dnс >> 0.5naс2 leads to a 
change in functional dependence (an exponent of unity instead 
of 2N) and, as a consequence, to a reduction in bend sensitivity 
(by a factor of 2N for f (Rcurv) << aс2 ). It is also seen in Fig. 4 
that the bend radius has an insignificant effect on the leakage 
loss in fibre 1, which has the smallest core radius and the largest 
index depression. In particular, a bend of 2.5 cm radius increases 
the optical loss in fibre 1 by only a factor of 1.6.

5. Conclusions

The present experimental and theoretical results indicate that 
a ray-optics model that takes into account only reflections 
from the interfaces in the Bragg structure and interference 
between neighbouring interfaces makes it possible to ade-
quately evaluate the optical loss in both straight and bent 
Bragg fibres. The formulas obtained enabled us to establish 
the relationship between parameters of Bragg fibres and the 
optical loss in straight Bragg fibres and to assess the bending 
effect on optical losses.
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