
Abstract. The classic examples of optical phenomena
resulting in the appearance of solitons are self-focusing,
self-induced transparency, and parametric three-wave inter-
action. To date, the list of the éelds of nonlinear optics and
models where solitons play an important role has signiécantly
expanded. Now long-lived or stable solitary waves are called
solitons, including, for example, dissipative, gap, parametric,
and topological solitons. This review considers nonlinear
optics models giving rise to the appearance of solitons in a
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narrow sense: solitary waves corresponding to the solutions of
completely integrable systems of equations basic for the
models being discussed.

Keywords: optical solitons, inverse scattering transform, ultrashort
pulses, dispersion, modulation, multiwave interaction, Raman scat-
tering, optical ébres, Kerr nonlinearity.

1. Introduction

Nonlinear waves exist in many fundamental natural
phenomena. They can be found in hydrodynamics and
aerodynamics, in solid-state physics and plasma physics, in
optics and éeld theory, in chemical reaction kinetics and
population dynamics, in atomic physics and gravitation
theory. All nonlinear waves can be divided into two types:
waves in a dispersion medium and waves in a dissipative
dispersion medium. A special place among the waves of the
érst type is occupied by solitons. The term `solitons' was
long referred to as nonlinear solitary waves, which retain
both their shape and velocity during propagation and
collision with other solitary waves. However, many
examples have been accumulated by now where solitons
do not retain their shape while propagating, move at an
accelerated speed, decompose, or form coupled states
during their interaction. Nevertheless, they all have a
speciéc feature which consists in the fact that the equations
describing their evolution can be completely integrable.

The history of solitons began in 1834 when J.S. Russel
observed and described an unusual type of waves in water,
propagating without dispersion broadening. To study long
waves on the liquid surface in channels, in 1872 J.V. Bussi-
nesq derived an equation whose solution corresponded to
solitary waves propagating in any of two possible directions.
These waves could propagate through each other, thereby
retaining their initial shape. A simpler equation for the
waves on the water surface, which travel only in one
direction, was derived by D. Korteweg and G. de Vries
in 1895. In 1964 N. Zabuski and M. Kruskal found out that
the Korteweg ë de Vries equation has solutions in the form
of solitary waves, which posses the properties of particles:
retain their shape during propagation and after collisions
with each other. This made it possible to call these waves the
solitons (i.e., `particles of a solitary wave', in analogy with
the terms: phonon, photon, electron, magnon, etc.). Con-
struction of the inverse scattering transform (IST) in 1968 [1]
allowed the reason for the soliton longevity to be under-
stood. Now in many parts of physics solitons are an
important element for describing different effects. We can
say that they play the same role in nonlinear physics as
harmonic waves in linear physics. Note that due to the
creation of lasers, nonlinear optics ë the éeld in which the
main features of solitons are most conspicuous ë appeared
and developed.

It was predicted in 1962 [2] that a positive correction to
the refractive index, proportional to the radiation intensity,
can lead to suppression of the diffraction divergence of the
beam and to its collapse. This phenomenon was called self-
focusing and was actively studied elsewhere.

Studying the propagation of a ruby laser pulse through a
ruby rod, McCall and Hahn [3] found out that under certain
conditions an electromagnetic pulse propagates through a
resonant absorbing medium without energy losses, resulting
in the emergence of the self-induced transparency phenom-

enon. The pulse duration should be markedly smaller than
the times of the medium polarisation relaxation and the
difference of resonance level populations. In this case, all the
atoms respond in-phase under the action of the electric éeld
of a pulse, accompanied by absorption (strong, resonant)
and stimulated emission. At a suféciently large pulse
amplitude, all the atoms érst undergo transition to the
excited state, then ë to the ground state, thus returning the
energy absorbed due to the stimulated emission back to the
pulse.

Self-focusing of light beams and self-induced trans-
parency are the érst bright examples of the important
role of solitons in nonlinear optics. At the same time,
most modern investigations in this éeld of physics are
devoted to studying propagation of nonlinear waves in
nonresonant media. Here, due to modulation instability a
cw wave can produce a chain of separate pulses, which
under certain conditions can evolve into solitons. Since
1979, when formation of solitons in an optical ébre was
experimentally demonstrated, their propagation in ébres
and ébreoptic communication lines has attracted much
attention.

Another classic problem of nonlinear optics is the
parametric wave interaction. Harmonic generation, stimu-
lated Raman scattering, parametric ampliécation, four-wave
mixing still attract attention of the researchers. Of special
interest is three-wave interaction because it is an example of
soliton emergence in a dispersionless nonlinear system, while
there is an opinion that a soliton appears due to balance
between dispersion broadening and nonlinear compression
of a solitary wave.

1.1 Self-focusing

To describe self-focusing, the authors of [3, 4] considered a
paraxial wave beam in a nonlinear medium, whose
dielectric constant has a positive addition, proportional
to the intensity. The self-focusing theory [5] is based on a
three-dimensional nonlinear parabolic equation, which is
called in many applications the (2+1)-dimensional non-
linear Schr�odinger equation. This model made it possible to
calculate the focusing threshold, the focal length and to
obtain a dependence of the intensity on the distance to the
focusing point. Waves in a nonlinear dispersion medium
and the decay of the plane wave into separate wave packets
in the case of modulation instability were studied in [6] with
the help of a nonlinear parabolic equation. Reviews of the
geometrical and wave optics of nonlinear media, self-
focusing, and nonlinear optical effects in the éeld of self-
focusing beams are presented in [7, 8]. Main fundamental
works on self-focusing and results of modern studies in this
éeld are given in monograph [9].

The authors of paper [10], important for the soliton
theory, showed that the one-dimensional nonlinear
Schr�odinger equation (NLSE)

ie;z � e;xx � jej2e � 0; (1)

describing plane self-focusing (in this case, z is the
normalised coordinate directed along the beam axis and
x is the normalised transverse coordinate) and self-
modulation (z is the normalised time and x is the
normalised coordinate in the direction of the wave
propagation), can be exactly solved by the inverse scattering
transform. (Hereafter, partial derivatives are designated by
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a comma in the subscript.) Within the framework of the
NLSE model, the problem related to diffraction of an
electromagnetic wave from an opaque slotted screen behind
which nonlinear (Kerr) medium is located was solved
[11, 12]. The shift of the diffraction maxima and minima,
proportional to the square of the éeld strength, was
obtained. As the threshold intensity increases, a waveguide
narrow channel develops. The authors of paper [13]
analysed the stabilities of this phenomenon within the
IST. It was found that a plane self-induced waveguide and
soliton are unstable with respect to transverse perturbations
(`S-turn' and `waist' instabilities). On the whole, a soliton is
unstable with respect to perturbation bending its front. The
IST allows one to solve the NLSE, which takes into
account the linear spatial inhomogeneity [14]. The N-soliton
solution was found and the recurrent expression for the
conserved quantities was derived.

Self-focusing and self-modulation of a light wave in a
Kerr medium, taking into account arbitrary polarisation,
were considered in detail in [15]. The resultant system of
equations for the electromagnetic éeld vector projections
(the waves e1; e2) is a system of coupled NLSEs (the system
of Manakov equations):

ie1;z � e1;xx � �je1j2 � je2j2�e1 � 0;
(2)

ie2;z � e2;xx � �je1j2 � je2j2�e2 � 0:

It was found that while crossing the channels (solitons)
their polarisations change only if the initial polarisations
were not collinear or orthogonal.

It is worth noting that both while taking int account the
spatial inhomogeneity and solving the vector NLSE, the
solitons are nonstationary and some of their parameters
change in collisions.

1.2 Optical solitons in optical ébres

One of the limitations on the data transfer rate in ébreoptic
communication lines (FOCLs) in the case of pulse-code
modulation results from broadening of optical pulses
during their propagation in the ébre due to group velocity
dispersion. The dispersion broadening of the pulse can be
suppressed if rather high-power light pulses are used. Here,
the analogy with the self-focusing phenomenon is appro-
priate, when the diffraction broadening of the pulse is
compensated for by its compression due to the nonlinear
properties of the medium in which it propagates. In an
optical ébre, instead of a spatial soliton, a temporal soliton
should be formed. The authors of papers [16, 17] suggested
using optical solitons to transmit information via FOCLs.
The authors of papers [18, 19] derived an equation
describing propagation of optical pulses in a single-mode
ébre, taking into account the second-order group velocity
dispersion, which formally coincides with the NLSE.

Experiments performed in [20] showed that a soliton is
actually produced from a 5-ps pulse in a � 1-km-long ébre
(use was made of the ébres 0.76 ë 2.5 km in length to make
certain that dispersion broadening is suppressed) when the
power threshold equal to � 1 W is exceeded. A mode-locked
colour centre laser (F centres in KF) was used in the
experiment. The laser was pumped by a 5-W Nd laser
and had an output power of 1ë2.5 W at 1.23 ë 1.46 mm.
Later the authors of papers [21, 22] demonstrated prop-
agation of 6 ë 7-ps pulses in a negative dispersion ébre to a

distance of 700 m. Initial pulses experienced changes typical
of a nonlinear solitary wave [nonlinear Schr�odinger (NLS)
soliton] at their peak power of � 1:24 W (theoretical
prediction ë 1.0 W). At a lower power, the pulse experienced
dispersion broadening and at a power of 5 W it was
compressed by 3.5 times. The authors also observed the
pulse splitting into several subpulses as well as their further
merging into one pulse. This phenomenon, called the
recurrence, is typical of some class of solitons, in particular,
NLS solitons.

Because the higher-order group velocity dispersion,
transverse distribution dispersion of the electric éeld in
the ébre, nonlinear susceptibility dispersion, optical losses,
and other effects violate the dynamic balance between the
nonlinear compression of the pulse and its dispersion
broadening, solitons in real FOCLs do not exist in a strict
sense. But distances propagated by an optical soliton in the
ébre signiécantly exceed the dispersion length or the length,
which could be propagated by a weak pulse. Thus, we can
treat a soliton as a good approximation for real nonlinear
pulses in FOCLs, i.e., pulses with durations of the order of
or higher than 10 ps.

Let e designate the normalised complex slowly varying
envelope of an optical pulse so that the electric éeld strength
is given by the expression

E�t; x; y; z� � A0e�t; z�C�x; y� exp�ÿio0t� ib0z�

�A0e
��t; z�C ��x; y� exp�io0tÿ ib0z�;

where b0 is a propagation constant, depending on the
carrier wave frequency o0; C(x; y) is the mode function
determining the transverse distribution of the electric éeld
in the ébre; A0 is a material normalisation amplitude
(maximal value of the electric éeld strength E). This
normalised envelope is described by the NLSE [18, 19] in
the form:

ie;z � se;tt � m̂jej2e � 0: (3)

Here, z � z=Ld and t � (tÿ z=vg)=tp0 are the normalised
independent variables: the coordinate along the ébre axis
and time, respectively; tp0 is the pulse duration at z � 0; vg
is the group velocity of the pulse. The term in (3) with the
second derivative in time describes the dispersion pulse
broadening (s � ÿ1 corresponds to normal dispersion and
s � �1 ë anomalous dispersion). The dispersion length is
Ld � 4b0t

2
p0jq 2b0=qo

2jÿ1. The third term in (3) takes into
account the self-action effect or self-modulation. The
coefécient m̂ is equal to the ratio of the dispersion length
to the length Lk � b0c

2�2po 2
0A

2
0 jweffj�ÿ1. Here, weff is the

effective third-order nonlinear susceptibility describing the
high-frequency Kerr effect.

The complete integrability of the NLSE was found in
[11, 23]. A one-soliton solution of the NLSE (in the case of
s � 1) has the form:

es�z; t� �
2iZ exp�iF�z; t��

cosh�2Z�t� 4yzÿ t0��
;

where F(z; t) � ÿ2ytÿ 4(y 2 ÿ Z 2)zÿ j0; Z, y, t0 and j0 are
the constants determined by the initial conditions. Such a
soliton is sometimes called a bright soliton (Fig. 1). The
NLS solitons, as follows from this expression, propagate at
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y � 0 at a velocity of a weak (linear) pulse in the medium.
However, their velocity can differ from the linear pulse
velocity because of the initial phase modulation due to
which y 6� 0. Multisoliton pulses behave similarly to
breathers (Fig. 2); however, when some threshold of the
phase modulation depth of the initial pulse is exceeded,
such a multisoliton pulse is transformed into some separate
solitons.

The higher the multiplicity N of a multisoliton pulse, the
more complex the pattern of its spatial evolution; however,
it is important that at some path length the N-soliton is
composed into one peak whose width is smaller than the
initial signal by N times. This fact was used to compress an
optical picosecond pulse down to femtosecond durations.

If s � ÿ1, the NLS solitons with a zero asymptotic are
absent. However, if je�z; t�j ! e0 at t! �1, equation (3)
has the solution

es�z; t� � e0fcosf tanh

��e0 cosf�tÿ e0z sinf� � i sinf�g exp�ÿie 20 z�;
which is called a grey soliton. In a particular case, when the
parameter f is equal to zero, it transforms into the solution
called a dark soliton (Fig. 3):

es�z; t� � e0 tanh�e0t� exp�ÿie 20 z�:

Apart from multisoliton solutions, the NLSE has also
another type of a solitary solution called a multipole soliton
[24]. This solution corresponds to multiple points of a
discrete spectrum of the spectral Zakharov ë Shabat prob-

lem in the IST. In fact, they are difécult to realise because
any small perturbation of the initial condition removes the
degeneracy of the discrete spectrum points. This means that
only in some exceptional cases the initial optical pulse can be
transformed into a multipole soliton. Different properties of
NLS solitons are described in many papers and reviews, for
example, in [25 ë 28]. Note also wonderful books [29 ë 34]
whose authors made a noticeable contribution to the
development of the soliton theory.

1.3 Self-induced transparency

The self-induced transparency (SIT) phenomenon consists
in propagation of a suféciently high-power ultrashort light
pulse in a resonant medium without the pulse shape
distortion and energy losses [35 ë 37]. Here, an ultrashort
pulse is a pulse whose duration is much smaller than the
polarisation relaxation times and population differences of
resonance energy levels. In this case, the light ëmedium
interaction consists in stimulated absorption and emission
of electromagnetic radiation by resonance atoms of the
medium. When both processes are ideally balanced, the
state of the medium, after an ultrashort pulse traverses it,
coincides with its initial state, and in this sense, the medium
is transparent. The group velocity of such a stationary
ultrashort pulse, called a 2p-pulse or a SIT soliton, is
smaller than the phase velocity of light in a medium and
depends on the pulse duration: the shorter the pulse, the
greater its propagation velocity [35 ë 38]. When pulses with
different velocities propagate in a medium under SIT
conditions, one of them catches up with the second pulse
and, having colliding it propagates through this second
pulse. The shape and group velocity of 2p-pulses, as is
typical of solitons, do not change. Depending on the ratio
between durations tp1 and tp2 of colliding 2p-pulses, their
interaction pattern is different. If tp1=tp2 < (3ÿ ���

5
p

)=2 �
0:382, the pulse trajectories do not intersect. Otherwise, the
collision resembles a repulsive interaction of solid balls
which exchange energy during collisions, ë the amplitudes
of 2p-pulses change (Fig. 4). The SIT phenomenon itself
and the behaviour of SIT solitons are described in detail in
[37 ë 39].

From the mathematical point of view, the properties of
SIT pulses (2p-pulses) follow from the completely integrable
system of reduced Maxwell ë Bloch (RMB) equations
describing the SIT by using the model of two-level atoms
with nondegenerate energy levels as was shown in [40, 41]
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Figure 1. Bright NLS soliton (corresponds to a stationary electromag-
netic pulse).
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Figure 2. Pulse corresponding to a three-soliton NLSE solution
(demonstrates the recurrence phenomenon).
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Figure 3. Dark NLS soliton (looks like a moving dip against the
background of a wave of constant intensity).
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and later thoroughly studied in papers [42 ë 46]; 2p-pulses
correspond to single-soliton solutions of these equations,
and the collision process reêects the evolution of the two-
soliton solution ë it asymptotically transforms into a pair of
solitons [42, 47, 48].

The simplest theory of the SIT phenomenon was
developed by McCall and Hahn [35, 36]. In the general
case, the interaction of radiation with an ensemble of two-
level atoms is described by Bloch equations for atoms and
by Maxwell equations for a classical electromagnetic éeld.
In an isotropic dielectric the system of Maxwell equations is
reduced to one wave equation for the electric éeld E � El.
For plane waves with a constant polarisation vector l, we
can write a system of complete Maxwell ë Bloch equations
(MB):

E;zz ÿ cÿ2E;tt � �4pnad=c 2�hr1;tti; (4)

r1;t � ÿoar2; r2;t � oar1 � �2d=�h�Er3;
(5)

r3;t � ÿ�2d=�h�Er2;

where d is the projection to the direction of the vector l of
the matrix element of the dipole transition operator; na is
the concentration of resonance atoms. Note that the com-
ponents of the Bloch vector, r1, r2, and r3 depend on the
transition frequency oa. The angle brackets in (4) indicate
averaging over the distribution of these frequencies.

In a linear homogeneous medium an electromagnetic
wave can propagate in one of two possible directions. The
reêected wave emerges due to scattering from macroscopic
inhomogeneities, after propagating the interface between
homogeneous media or in a graded-index medium. In
nonlinear media the refractive index inhomogeneities can
be induced by the wave itself. Thus, the applicability of the
unidirectional wave approximation requires additional sub-
stantiation [49]. The authors of [50, 51] showed that if the
atomic concentration is so small that the parameter
4pnad

2=�hoa < 1, we can take into account only the wave
propagating in one of the directions and neglect the wave
propagating in the opposite direction. It was found that for
typical values of the resonance system parameters d � 1 D,
o � 1015 sÿ1, and na 5 1023 cmÿ3 the effect of the backward
wave can be neglected. In this case, the MB equations are
reduced to a system of RMB equations:

E;z � cÿ1E;t � ÿ�2pnad=c�hr1;ti; (6)

r1;t � ÿoar2; r2;t � oar1 � �2d=�h�Er3;
(7)

r3;t � ÿ�2d=�h�Er2:
It is pertinent to note that both in the MB and RMB
equations, E is a real value of the electric éeld strength of
an electromagnetic wave. No limitations on the pulse
duration, except the fact that equations of macroscopic
electrodynamics are used, are imposed.

The next step in constructing the approximate theory of
resonance interaction of the electromagnetic radiation with
the medium is the quasi-harmonic wave concept. It means
that the electric éeld of the wave propagating along the z
axis can be represented as a éeld e of a harmonic wave but
with a variable amplitude and phase:

E�z; t� � 2A�z; t� cos�k0zÿ o0t� j�z; t��

� e�z; t� exp�i�k0zÿ o0t��+c. c. (8)

Here, o0 is the carrier (harmonic) wave frequency; k0 is the
wavenumber corresponding to this frequency; the real
envelope (the instantaneous harmonic wave amplitude)
A(z; t) and and phase j(z; t) are assumed to be the functions
slowly varying in space and time such as

jA;tj5o0jAj; jA;zj5 k0jAj;

jj;tj5o0jjj; jj;zj5 k0jjj:
In addition, the ultrashort pulse amplitude is usually so
small that the instantaneous Rabi frequency [(d=�h)maxA] is
much smaller than the resonance transition frequency. In
the approximation of a slowly varying real envelope of a
pulse e and its phase j, system (6), (7) is replaced by:

e;z � cÿ1e;t � ÿa 0hpi; (9)

e�j;z � cÿ1j;t� � ÿa 0hqi; (10)

q;t � �Do� j;t�p;
(11)

p;t � ÿ�Do� j;t�q� er; r;t � ÿep;
where Do � (oa ÿ o0) is the detuning from resonance;
a 0 � (2pnad

2=�hc); e � (d=2�h)A is the normalised pulse
envelope; the quantities p, q and r are related to the initial
components of the Bloch vector by the expressions

r1 � ÿp�z; t� sin�k0zÿ o0t� j�z; t�� � q�z; t�

� cos�k0zÿ o0t� j�z; t��; r3 � ÿr�z; t�:

The self-induced transparency theory proposed by McCall
and Hahn is based on equations (9) ë (11). But if we restrict
our consideration to the situation when the initial pulse
lacks the phase modulation and the shape of the
inhomogeneously broadened line is speciéed by the
symmetric function Do, it follows from (9) ë (11) that the
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Figure 4. Collision of two SIT solitons leading to an energy exchage
while preserving the pulse area.
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phase modulation does not appear. In this case, equations
(9) ë (11) are reduced to a system of SIT equations:

e;z � cÿ1e;t � ÿa 0hpi; q;t � Dop;
(12)

p;t � ÿDoq� er; r;t � ÿep:
When the absorption line is homogeneously broadened, the
SIT equations in the case of an exact resonance are reduced
to the well-known sine-Gordon equation

f;xt � sinf � 0; (13)

where t � (tÿ z=c), x � a 0z, and f;t � e.
The beneécial properties of the systems of equations

(6) ë (7), (9 ë (11), (12), and equation (13) consist in the fact
that they all can be represented as an integrability condition
for the pair of linear equations, which makes it possible to
use the IST to solve these equations. If we assume that
before the arrival of ultrashort pulses all the atoms are in the
ground state and after their propagation the atoms again
return to the ground state, all the mentioned equations can
be supplemented by additional boundary conditions

lim
t!�1

r3 � ÿ1; lim
t!�1

r1;2 � 0:

Both the RMB equations and the SIT equations with
such boundary conditions are solved by the IST method in a
standard way [41, 42, 44 ë 48]. In the general case, the
solution is an N-soliton wave and a wave spreading due
to dispersion. The single-soliton solution of the system of
equations (12) is given by the expression

es�z; t� � 2tÿ1p sech�tÿ1p �tÿ z=vs��;

where the group velocity vs of solitons is related to the pulse
duration tp and the resonance absorption length lÿ1a � a 0 by
the expression

vÿ1s � cÿ1�1� ct 2p l
ÿ1
a �:

In the general case, an N-soliton ultrashort pulse trans-
forms (during its propagation) into L1 isolated solitons and
L2 breathers (in this case, the condition N � L1 � 2L2)
should be met). The breather is a stable solitary wave
(as an ordinary soliton) but with internal amplitude oscil-
lations. The authors of paper [37] showed that the breather
of RMB equations, being a real space- and time-localised
pulse with internal oscillations, resembles the 0p-pulse of
McCall and Hahn. If the frequency of internal oscillations
increases, the breather envelope can be described by a
soliton solution of the SIT equations with a high accuracy.
Therefore, the 2p-pulse of McCall and Hahn is the limiting
case of the breather described by RMB equations.

1.4 Three-wave interaction

One of the well-studied nonlinear optical phenomena is the
frequency conversion of electromagnetic radiation in optical
nonlinear media. The classic examples of these phenomena
are the harmonic generation of the fundamental (pump)
wave, parametric frequency summation and subtraction,
Raman scattering [52]. At a suféciently high pump
intensity, the medium polarisation nonlinearly depends
on the electric éeld strength of the wave. If the electro-

magnetic wave frequencies are not in resonance with the
atomic transitions, this dependence can be obtained by
using the conventional perturbation theory. This gives a
series expansion for polarisation P in powers of the electric
éeld strength. The coefécients of this series, which are in the
general case nth-rank tensors w�n�, are called the nonlinear
susceptibilities. They describe different processes of non-
resonant interaction of electromagnetic waves in a medium.

Consider a quadratically nonlinear medium character-
ised by the tensor w�2�. Let two harmonic (or quasi-
harmonic) waves with the frequencies o1 and o2 propagate
along the z axis. Because the medium polarisation is a
quadratic function of the electric éeld strength of these
waves, the medium can generate waves with the carrier
frequencies o1 � o2, 2o1, and 2o2. These waves in turn
generate new waves with the frequencies 2o1 � o2,
o1 � 2o2, etc. In dispersion media these processes are
not equally effective. There exists the phase-matching
condition due to which, at certain types of three-wave
interactions, the wave amplitudes change markedly while
all other interactions remain ineffective. In some cases, the
phase-matching condition can take place for the waves
propagating in the same direction. In this case we speak
of collinear parametric interaction, which means that the
distance at which the waves effectively interact can be quite
large and, thus, a high frequency conversion coefécient can
be obtained. If the phase matching is achieved for the waves
propagating in different directions, these waves interact only
in the region where the wave beams overlap. The noncol-
linear parametric three-wave interaction is an interesting
example, when the corresponding system of equations turns
out to be completely integrable in the two- or three-
dimensional case [53, 54]. The multidimensional integrable
systems, having a physical content, are exceptionally rare
examples in the soliton theory.

Let e1; e2; and e3 be slowly varying normalised envelopes
of the pulses of interacting waves with the carrier wave
frequencies o1, o2, and o3 and wavenumbers k1, k2, and k3,
respectively. Consider the case when only one wave with the
sum and difference frequency is generated during the
collinear propagation with the pump and idler waves. In
the slowly varying envelope and phase approximation the
system of equations describing the three-wave interaction
can be written in the form [55, 56]:

e1;z � vÿ11 e1;t � ise�2e
�
3e

iDkz;

e2;z � vÿ12 e2;t � ise�3e
�
1e
ÿiDkz; (14)

e3;z � vÿ13 e3;t � ÿise�1e�2eÿiDkz;

where for o3 � o1 � o2 and Dk � k3 ÿ k2 ÿ k3 the éelds
e1; e2; e3 are the envelopes of the pump and idler waves and
the complex-conjugate envelope of the signal wave,
respectively; for o3 � o1 ÿ o2 and Dk � k3 � k2 ÿ k3 the
éelds e1; e2; e3 are the envelopes of the signal wave and the
complex-conjugate envelopes of the idler and pump waves,
respectively; s is the coupling constant; v1;2;3 are the group
velocities of the corresponding waves. The group velocity
dispersion is neglected.

The resonance Raman scattering (when the populations
of the energy levels of atoms and molecules in the medium
weakly change) and the scattering of optical waves on the
sound wave can be treated as special cases of three-wave
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interaction. For the normalised envelope of the incident
wave pulse e1, the envelope of the scattered wave e2, and the
envelope of the acoustic wave w the authors of [57] used the
equations

ie1;z � e2we
idz;

ie2;z � e1w
�eÿidz; (15)

iw;t � ÿEw� e1e
�
2e
ÿidz;

where E is the normalised frequency detuning; d is the
normalised wave detuning. Under conditions of the exact
resonance E � 0, and when the phase-matching conditions
are met, d � 0. It is assumed that the group velocities of the
incident and scattered waves are identical. We can show
that under certain conditions equation (15) is rewritten in
the form of a system of RMB equations. Due to this,
Raman scattering can be studied, as is the case of the SIT,
with the help of the IST.

Equations (14) describing the three-wave interaction
have an inénite number of conservation laws with the
B�acklund transforms having place for these waves [55].
The authors of [58] showed that these equations withstand
the Painlev�e test and there exists a class of their self-model
solutions expressed by P-V and P-VI Painlev�e transcenden-
tals. Because the dispersion of the phase and group
velocities is absent, the soliton part of the solution,
describing the three-wave interaction, is not separated
from the nonsoliton part, which is often called radiation.
This makes it difécult to study the process of the three-wave
interaction by analytic methods and makes us restrict our
consideration to some special cases. The noncollinear SHG
is the example of such a case where we can énd a particular
exact solution without the IST. In this case, the obtained
solution demonstrates the inseparability of solitons and
radiation (nonsoliton part of the solution of these equa-
tions).

The authors of paper [59] studied the stimulated
Brillouin backscattering with the help of the IST in an
amplifying medium for two initial rectangular pulses.
Stimulated Raman scattering and stimulated Brillouin
scattering in the quasi-stationary regime were considered
in [60] as a three-wave interaction, which made it possible to
use the IST with the spectral Zakharov ë Shabat problem.

The phase matching can be achieved by using aniso-
tropic crystals, which allow one to select the direction in
which the ordinary and extraordinary waves will have equal
phase velocities. Another way to achieve the phase matching
is to select the angle at which the beams of the interacting
waves intersect so that the vector equality k3 � k1 � k2 be
fulélled. The system of the equations describing the non-
collinear SHG (in the normalised form) has the form:

Zze1;z � Zxe1;x � vÿ11 e1;t � ise�2e3;

Zze2;z ÿ Zxe2;x � vÿ11 e2;t � ise�1e3; (16)

e3;z � vÿ13 e3;t � 2ise1e2;

where Zz � k1z=k1 � k2z=k2; Zx � k1x=k1 � ÿk2x=k2 are the
direction cosines of the pump wave beams; e1; e2 are the
normalised electric éelds of the pump beams intersecting at

an angle 2ym; e3 is the normalised electric second-harmonic
éeld. The phase-matching condition is met if the angle ym is
selected so that the condition n(2o) � n(o) cos ym is fulélled
for the refractive index at different frequencies. This
condition is realised only in the anomalous dispersion
region when n(2o) < n(o).

1.5 Reasons for searching for new, completely integrable
systems

With the appearance of such a powerful tool for studying
nonlinear problems, as the IST, new models and theories
began emerging, based on completely integrable equations
and describing phenomena in nonlinear optics. Moreover,
along with the development of the known theories, new
problems have been considered and new means have been
developed to describe the propagation of optical waves in
nonlinear media.

Nanosecond and picosecond optical pulses contain
many (106 ÿ 103) electromagnetic éeld oscillations. To
describe the evolution of such signals it is sufécient to
consider only the pulse envelope and phase. In the case of
multiwave interaction, pulses with well-separated carrier
wave frequencies were considered. To this end, the repre-
sentation of electromagnetic signals as quasi-harmonic
waves is quite acceptable. Passage to the femtosecond
(10ÿ15 s), attosecond (10ÿ18 s), zeptosecond (10ÿ21 s) dura-
tions makes it impossible to use the quasi-harmonic wave
approximation (or the slowly varying amplitude and phase
approximation). The above-mentioned NLSE is unaccept-
able and its generalisation leads to some model equations
among which there are completely integrable equations.

If an optical quasi-harmonic pulse is characterised by
some carrier-wave frequency, in resonant media we can
restrict our consideration to two energy states, with the
transition between the states occurring under the action of a
pulse, ë this is the two-level atom model. Many carrier-wave
frequencies and resonant medium levels participating in the
response to such a multifrequency pulse require general-
isation of the two-level model. Among the generalisations
we have some which are based on systems of completely
integrable equations and in these cases solitons are possible.

An electromagnetic éeld is a vector one; therefore, it
may be needed to generalise the scalar models considered
above. In this direction we managed to énd some examples
of emergence of the vector (two-component or three-
component) solitons.

1.6 A few words about the inverse scattering transform

There exist hamiltonian systems for which canonical
transforms can be found to transform the original
equations of motion to new systems of equations describing
an ensemble of independent harmonic oscillators. After
such a substitution of the variables, the equations of motion
corresponding to them are trivially integrated. It is believed
that the Hamiltonian system in this case allows the action ë
angle variables, the system itself being called completely
integrable. The discovery of Gardner, Green, Kruskal, and
Miura in 1967 armed the researchers with a powerful tool
for studying completely integrable systems, i.e., the IST.
Later the IST was elaborated by V.E. Zakharov, L.D. Fa-
deev, A.B. Shabat, and S.V. Manakov as well as by
Ablowitz, Kaup, Newell, and Segur (AKNS).

The essence of the IST consists in the following. Let
L̂ � L̂(qx; q) and Â � Â(qx; q) be two linear operators,
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where q(x; t) is the potential ë either scalar, or vector, or
matrix function of the variables x and t. The compatibility
condition of the pair of equations

L̂c � 0; T̂c � �qt ÿ Â�c � 0 (17)

means that the operators L̂ and T̂ commute, i.e.,

q
qt
L̂ � �L̂ ; Â�: (18)

This operator equation is a differential equation (system of
equations) with respect to the potential (potentials) q(x; t).
It is believed that for this equation expression (18) is the
Lax representation or the zero curvature representation and
the operators L̂ and Â are called a Lax pair. Quite often the
operator L̂ is used in the form L̂ � (qx ÿ Û):

If for some speciéc nonlinear evolution equation one
manages to énd the Lax representation, its solution can be
obtained following the algorithm given below. As a direct
spectral problem, use is made of the scattering problem or
eigenvalue problem

L̂c � lc; ql=qt � 0

plus the condition of the q(x) behaviour at jxj ! 1. The
solution of this problem yields the eigenvalues fljg,
eigenfunctions fcjg, and the scattering matrix. The set of
these quantities is the scattering data C(0) at q(x; 0) � q0(x).
According to the second equation from (17), the scattering
data C(t) can be found for all t > 0. The potential recovery
q(x; t) by the scattering data, i.e., the solution of the inverse
spectral problem, leads to the solution of the initial
nonlinear equation for which (18) is the Lax representation.

Note that the transition from the equation L̂c � 0 to the
equation L̂c � lc retains the Lax representation (18).
Because it was assumed here that the change (deformation)
in the potential q(x; t) with time t does not change the
spectrum of the operator L̂, the nonlinear equation for
q(x; t) is called the isospectral deformation equation.

For many nonlinear equations with the Lax representa-
tion, there was developed a way to construct the action ë
angle variables, which makes it possible to call them
completely integrable.

2. Beyond the model of two-level atoms

The development of the SIT theory is associated with a
passage outside the model of two-level atoms and with
consideration of multifrequency ultrashort pulses. The
interaction of multilevel resonant media with radiation
characterised by some carrier-wave frequencies is studied.
In addition, direct interaction between the resonance atoms,
nonlinear properties of the dielectric into which the
resonance atoms are submerged, and polarisation (vector
behaviour) of radiation itself were taken into account.
Figure 5 shows two conégurations of the energy states of
three-level atoms, which represent a very popular recent
model for the resonance coherent optics. Figure 6 presents
the resonance transitions between the two-level atom states,
degenerate in the angular moment projections, when it is
important to take into account the vector character of the
electromagnetic radiation of ultrashort pulses. The differ-

ence between the double and two-photon resonances is
illustrated in Fig. 7.

2.1 Double resonance

Let the optical pulse propagate along the z axis and its
electric éeld strength be

E�z; t� � A�z; t� exp�i�k0zÿ o0t��+c. c. (19)

The carrier frequency o0 is close to the frequency o21 of the
j2 $ j1 transition between the energy levels j1i and j2i,
degenerate with respect to the projections m1 and m2 of the
total angular momenta j1 and j2. In the general case, the
evolution of the ultrashort pulse envelope and the resonant
medium state is described by a system of equations for
which the exact solution in the case of arbitrary j1 and j2 is
unknown. But for the transitions j2 � 0$ j1 � 1,
j2 � 1$ j1 � 1 and j2 � 1=2$ j1 � 1=2, the corresponding
systems of the generalised RMB (GRMB) equations are
completely integrable. As is shown in [61 ë 63], their soliton
solutions can be obtained by using the IST. For the
transitions j2 � 0$ j1 � 1 and j2 � 1$ j1 � 1, the GRMB
equations can be written in the uniéed form:

e;z � ÿi
X
a�1:2

bah p�a�i;

o1

o2
j2i

j3i

j1i j1i

j2i

a b

j3i

o2

o1

Figure 5. (a) L- and (b) V-conégurations of the energy levels of a three-
level atom.

m � ÿ1 m � 0 m � �1

j2 � 1

j1 � 0

Figure 6. Resonance transitions between the states of a two-level atom
with j1 � 0 and j2 � 1.

o1

o2 o2

a b

j7i j7i

j5i

j4i

j6i
j5i

j4i

j2i j2i

j1i

j3i

j6i

j3i

j1i

o1

Figure 7. Double (a) and two-photon (b) resonances.
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p�a�;t � idp�a� ÿ ie � m̂�a� � ien�a�;

m̂�a�;t � ÿi�e� 
 p�a� ÿ p �a�� 
 e�;

n�a�;t � ÿi�p �a�� � eÿ e� � p �a��; (20)

where the symbol 
 denotes the tensor multiplication, i.e.,
(a
 b)ik � aibk, and the dimensionless variables are
t � (tÿ z=c) and z � a 0z.

If the transition j1 � 0! j2 � 1 is considered, equation
(20) assumes that the vector e is determined by the
components ej � dtp0�h

ÿ1Aj, b1 � 1 and b2 � 0. For the
transition j1 � 1! j2 � 0 we have in (20) ej � dtp0�h

ÿ1Aj,
b1 � 0 and b2 � 1. Finally, for the transition
j1 � 1! j2 � 1, we have ej � dtp0�

���
2
p

�h�ÿ1Aj and b1 �
b2 � 1=2. Hereafter, the subscripts take the values
j � �1, d � Dotp0 is the normalised detuning from the
resonance, and the superscript is equal to 1, 2. The
scalars n �a�, vectors p �a�, and matrices m̂ �a� are expressed
by the slowly varying envelopes of the matrix elements of
the density matrix r̂ as:

p
�1�
j � h j2; 0jr̂j j1; j i; p �2�j � h j2;ÿjjr̂j j1; 0i;

n �1� � h j2; 0jr̂j j2; 0i; n �2� � ÿh j1; 0jr̂j j1; 0i;

m
�1�
jl � h j1; jjr̂j j1; l i; m�2�jl � h j2;ÿjjr̂j j2;ÿl i:

Generalised RMB equations (20) serve as a condition of
the solvability of a pair of linear equations of the inverse
scattering transform for the AKNS hierarchy of the high-
dimensionality equations. The spectral problem of this type
in the IST was érst proposed and studied by Manakov [15]
while describing self-focusing of a polarised light beam.

If we introduce a unit vector l determining the ultrashort
pulse polarisation, the single-soliton solution of the system
of equations (20) will correspond to an electromagnetic
pulse with the envelope in the form

es�t; z� � ÿi2Zl sech�2Z�tÿ t0� ÿ bz� exp�ÿ2at� ikz�;

where Z; x; a; k; b � b(Z) are the parameters determined
from the initial conditions, as the polarisation vector.
This ultrashort pulse can be called a polarised 2p-pulse.

Let two polarised 2p-pulses, differing in durations (1=2Z1
and 1=2Z2) and polarisation vectors (l1 and l2), enter the
resonant medium at point z � 0 one after another with an
interval t2 ÿ t1:

es�t; 0� � ÿi2Z1l1sech�2Z1�tÿ t1�� ÿ i2Z2l2sech�2Z2�tÿ t2��:

For simplicity, we selected the solitons with a � k � 0. On
the axis of the normalised time t the érst soliton is located
to the left from the second one and it is assumed that
t2 ÿ t1 4 1=2Z1; 1=2Z2 so that they do not interact. If Z2 >
Z1, the velocity of the second soliton is higher than the
velocity of the érst soliton, which means that after a while
they will collide and then will move apart so that the second
pulse will be to the left from the érst (slow) pulse on the t
axis at z!1. The two-soliton envelope will take the from:

es�t; z� � ÿi2Z1l 01sech�2Z1�tÿ t 01� ÿ b1z�

ÿi2Z2l 02sech�2Z2�tÿ t 02� ÿ b2z�:

The possible phase shift is included in the change in the
polarisation vectors. The rules of changes in the vectors l1
and l2 are given by the expressions:

l 01 � E
�
ÿ l1 �

2Z2�l1 � l �2 �
Z2 ÿ Z1

l2

�
; l 02 � E

�
ÿ l2 �

2Z1�l2 � l �1 �
Z2 ÿ Z1

l1

�
;(21)

where

E �
�
1� 4Z1Z2
�Z2 ÿ Z1� 2

jl2 � l �1 j 2
�ÿ1=2

; �l1 � l �2 � � �l 01 � l 0�2 �.

The formulae show that if the solitons are linearly polarised
before the collisions, they will remain linearly polarised
after them. But if the polarisation vectors of initial solitons
are such that (l1 � l2) � cos y, the collision leads to the
rotation of the polarisation vectors by the angles y1 and y2,
determined by the expressions:

l 01 � l1 � cos y1 � ÿ
1� B12 cos

2 y

�1ÿ B12B21 cos
2 y�1=2

;

l 02 � l2 � cos y2 � ÿ
1� B21 cos

2 y

�1ÿ B12B21 cos
2 y�1=2

;

where

B12 �
2Z2

Z1 ÿ Z2
; B21 �

2Z1
Z2 ÿ Z1

:

The expressions for the N-solitons, breathers, and the
B�acklund transform were found in paper [64]. The authors
of papers [65, 66] analysed equations (20) from the point of
view of their solution with the help of the Riemann problem.
They obtained the soliton solutions and noted that the
single-soliton solutions are always described by an ordinary
sech-shaped pulse. They showed that there exist solitons
moving with a variable velocity and oscillating amplitudes.

There exist several versions of the GRMB equations
describing the ultrashort pulse propagation in multilevel
media. The simplest case is the models of atoms with three
resonance energy levels, called V- and L-conégurations
(Fig. 4). It was found in [67, 68] that if the oscillator forces
for each transition in V- and L-conéguration of the energy
levels are equal, there can exist a two-frequency pulse
(characterised by two carrier waves with different frequen-
cies), which propagates in a medium without the envelope
shape distortion. The ultrashort pulse of this type was called
a simulton [69]. The simultons are the single-soliton sol-
utions of GRMB equations (20). The multisoliton solution
corresponds to colliding simultons. Simultons with internal
oscillations (as if colour breathers) are the two-level general-
isation of the McCall ëHahn 0p-pulses. Note here that the
simulton in the general case is unstable with respect to
transformation into one single-frequency 2p-pulse and can
stay a two-frequency pulse only if the medium is specially
prepared, i.e., if the resonance levels are populated in a
certain way [70].
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The theory of propagation of two-frequency polarised
ultrashort pulses in a three-level medium leads to the matrix
variant of the GRMB system. This system was solved by
generalising the IST to the case of the matrix Zakha-
rov ë Shabat ëAKNS spectral problem (or matrix
Manakov spectral problem). This case was considered in
detail in papers [71 ë 73].

The authors of paper [74] described coherent propaga-
tion of a three-frequency ultrashort pulse in a three-level
medium where each harmonic component of the ultrashort
pulse is in resonance with the corresponding transition, and
in addition, the medium has a quadratic nonlinearity. The
electric éeld is presented as a superposition of three éelds,

E�z; t� �
X3

j;k�1�j6�k�
�Ejk exp�ÿiojkt� ikjkz�+c.c.],

where the frequencies ojk are close to the frequencies of the
transitions between the jth and kth states of three-level
atoms. The truncated Maxwell equations are written in the
form

�Ejk;t � vjkEjk;z� � iajkrjk � ibjkEjnEnk; (22)

where vjk is the group velocity for the wave with the
envelope Ejk;

ajk �
4pnaojkdjk

n 2�ojk�
; bjk �

2pojkw
�2�

n 2�ojk�
;

djk is the matrix element of the dipole transition operator
between the jth and kth states; w�2� is the second-order
nonlinear susceptibility; n(ojk) is the refractive index at the
frequency ojk. The elements of the density matrix rjk satisfy
the von Neumann equations

2rjk;t � ÿidjkrjk � igjk�rkk ÿ rjj�Ejk

� i�gjnEjnrnk ÿ rjngnkEnk�; (23)

rkk;t � Im�gkjEkjrjk+c.c.,),

where gjk � (2ajk=djk)
1=2.

We considered the cases when all the three transitions
are allowed and one of the transitions is forbidden in the
dipole approximation (for example, d23 � 0). In both cases
for equations (22) and (23) we obtained the Lax represen-
tation, which makes it possible to use the IST to énd the
soliton solutions.

2.2 Self-induced transparency in the case of two-photon
resonance

Multiphoton processes can develop in the éeld of high-
power optical pulses. The simplest situation appears when
the resonant medium interacts with a couple of ultrashort
pulses having different charier-wave frequencies o1 and o2

so that o1 � o2 coincides with the resonance transition
frequency o21. This situation refers to nondegenerate two-
photon resonance, when o1 � o2. The corresponding
nonlinear processes are two-photon absorption
(o1 � o2 � o21) and Raman scattering (o1 ÿ o2 � o21)
of the interacting waves. If the pulse duration is much

smaller than the polarisation relaxation times and popu-
lation differences their coherent propagation is possible.
This SIT-like process, called two-photon self-induced
transparency, is described by GRMB equations [75 ë 77].

2.2.1 Nondegenerate two-photon resonance
Using the normalised variables, we can write the system of
equations (see details in [74]) in the form:

for Raman scattering

ie1;z � ÿkS1hnÿ n0ie1 ÿ �1=2�h pie2;

ie2;z � ÿkS2hnÿ n0ie2 ÿ �1=2�h p�ie1;
(24)

p;t � i�d� dS�p� ine1e
�
2;

n;t � �i=2��pe�1e2 ÿ p�e1e
�
2�;

for two-photon absorption

ie1;z � ÿkS1hnÿ n0ie1 ÿ �1=2�h pie�2;

ie2;z � ÿkS2hnÿ n0ie2 ÿ �1=2�h pie�1;
(25)

p;t � i�d� dS�p� ine1e2;

n;t � �i=2��pe�1e�2 ÿ p�e1e2�:
Here, dS � 2kS1je1j 2 � 2kS2je1j 2 takes in into account the
frequency shift of the transition due to the high-frequency
Stark effect; p is the slowly varying polarisation; n is the
population difference of resonance levels; n0 is its equili-
brium value. It is convenient to rewrite these equations in
new variables, which are quadratic functions of normalised
envelopes of ultrashort pulses e1;2:

S0 � �je1j 2 �mje2j 2�; S3 � �je1j 2 ÿmje2j 2�;

p � R � R1 � iR2; n � R3;

S � S1 � iS2 � �1ÿm�e1e2 � �1�m�e1e�2;

where m � 1 in the case of Raman scattering and m � ÿ1
in the case of two-photon absorption. In these variables the
both systems can be written in the form:

R;t � i�d� b���S0 � b�ÿ�S3�R� iR3S;
(26)

R3;t � �i=2��RS � ÿ R �S�;

S;z � ib�ÿ�hR3iSÿ imhRiS3;
(27)

S3;z � �i=2��hRiS � ÿ hR �iS�; S0;z � 0;

where b ��� � kS1 �mkS2.
Note that this implies the law of conservation of the

`modulus of the energy spin vector' S � (S1;S2;S3):

�S 2
1 � S 2

2 �mS 2
3 �;z � 0;

i.e. S 2
1 � S 2

2 �mS 2
3 � S 2�t�.
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The authors of papers [78, 79] introduced the new
variables:

r � R�eiF�t�; s � Sÿ1S�eiF�t�; r3 � R3; s3 � Sÿ1S3;

Z �
� t

0

S�t1�dt1; F�t� � b���
� t

0

S0�t1�dt1:

With these variables, the system of equations (26) and (27)
takes the form:

s;z � imrs3 � i~gr3s; s3;z �
i

2
�r �sÿ rs ��;

(28)

r;Z � i~grs3 � ir3s; r3;Z �
i

2
�rs � ÿ r �s�;

where ~g � b�ÿ�. The laws of conservation of the modulus of
the `spin vectors' s � �s1; s2; s3� and r � �r1; r2; r3� are
written in the form

m�s 21 � s 22 � � s 23 � 1; r 21 � r 22 � r 23 � 1:

As was shown by Steudel and Kaup [78, 79], the uniéed
system of equations (28) derived in this way can be solved
with the help of the IST if all the atoms are identical. The
B�acklund transform, which makes it possible to obtain
soliton solutions of arbitrary multiplicity from single-soliton
solutions of equations (28), is given in [80].

Using the Kaup ë Steudel model, the authors of [81]
studied, with the help of the IST, the propagation of
ultrashort pulses under Raman resonance conditions.
They considered the limit when the Raman scattering is
initiated by polarisation êuctuations of a small-area Stokes
pulse, and took into account the pump êuctuations. By
using the obtained self-similar solution, the compression of
the Stokes éeld êuctuations in a strongly nonlinear Raman
scattering stage was explained.

The theory of soliton generation at the leading edge of a
long pump pulse in the case of stimulated Raman scattering
was developed by Kamchatnov [82]. Kamchatnov used the
Kaup ë Steudel model as the starting point and the MIST to
formulate the Witham formalism and obtain periodic
solutions with its help.

2.2.2 Degenerate two-photon resonance
In this case, two photons of one wave are absorbed upon a
resonance transition between the states of a two-level atom.
The normalised RMB equations have the form

e;z �
i

2
�re � ÿ gr3e�;

ir;t � 2�r3e 2 � ge �e �r�; (29)

r3;t � i�r �e 2 ÿ re �2�;

where g is the coefécient proportional to the ratio of the
nonlinear susceptibility responsible for the Stark shift to the
susceptibility responsible for two-photon absorption. In the
assumption that the population difference of the resonance
states changes insigniécantly, r3 � ÿ1� jrj 2=2, these equa-
tions can be reduced to equations describing the SHG [83]
in which, however, the éeld e plays the role of the pump
wave and polarisation r is treated as a harmonic. Although
the SHG equations

e1;z � ÿ2e2e �1 ; e2;t � e 21

have the Lax representation and the IST makes it possible
to énd their solutions, these equations lack solitons.

2.3 Coherent four-wave mixing

Counterpropagation of two pairs of waves in a cubic
nonlinear medium, when the sum (or difference) of the
carrier frequencies is close to the transition eigenfrequency
in the medium, was considered in [84, 85]. If the entire éeld
is represented as a superposition of the éelds of four waves

E�z; t� �
X2
j�1
�Aj exp�ÿio1jt� ik1jz�

�Bj exp�ÿio2jt� ik2jz�+c.c.],

the truncated Maxwell equations are written in the form

�A1;z � vÿ11 A1;z� � ia11A1jB1j2 � ia12A2�B1B
�
2 �e id;

�A2;z � vÿ12 A2;z� � ib11A2jB2j2 � ib12A1�B2B
�
1 �eÿid;

(30)

�B1;z � uÿ11 B1;z� � ia22B1jA1j2 � ia21B2�A1A
�
2 �eÿid;

�B2;z � uÿ12 B2;z� � ib22B2jA2j2 � ib21B1�A2A
�
1 �e id;

where v1; v2; u1; u2 are the group velocities; ajk and bjk are
the coupling constants; d � �k12 ÿ k11 � k21 ÿ k22�z is the
phase (wave) detuning. The case of exact synchronism
(d � 0) and the relations for the group velocities (v1 �
v2 � ÿu1 � ÿu2; v1 � ÿv2 � u2 � ÿu1) were studied. The
Lax representation was found for this system of equations
and the IST was developed. Soliton and quasi-self-similar
solutions describing the decay of the initial unstable state
were constructed. Using the IST, the authors of [86] found
the single-zone solution, which is a periodic wave*. The
Witham equations were derived for slow envelopes.

The four wave interaction of counterpropagating waves
under conditions of two-photon resonance was considered
by Zabolotskii [87]. Using the IST previously developed for
this problem, Zabolotskii found periodic (single-zone)
solutions, which are periodic analogues of solitons and
have the soliton properties.

2.4 Self-induced transparency in a medium with the Kerr
nonlinearity

Nonlinear properties of optical ébres can be reinforced by
introducing resonance impurities into them. At the end of
the last century much attention was paid to the inves-
tigation of the erbium-doped ébres. Such ébres proved
suitable for designing ébre ampliéers. The attention of the
researchers was also drawn to coherent phenomena (photon
echo, SIT) in these `one-dimensional' media.

It is known that the NLSE, which is used to describe
optical solitons in ébres, is as integrable [11, 23] as the RMB
equations, which describe the coherent propagation regime
in a resonant medium. The solution of the NLSE and RMB

*Solitons evolve from the initial conditions in the form of a solitary wave.
If a periodic extended wave is the initial condition, instead of N-solitons
there can appear N-zone solutions corresponding to the generalised
cnoidal waves. The discrete spectrum of the IST (see Section 1.6) trans-
forms in a set of allowed zones, which gave the name to periodic solutions.
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equations is based on the same spectral problem of the IST.
The system of equations, which describes the coherent
propagation in a ébre with resonance impurities, combines
both mentioned systems of equations, which indicates the
possibility of its complete integrability under certain con-
ditions.

The evolution of an ultrashort pulse propagating in a
nonlinear single-mode ébre with resonance impurities is
described by the system of equations [88 ë 91]:

ie;z � se;tt � mjej 2e� kh pi � 0;
(31)

p;t � idp� 2ifer; r;t � i f �e �pÿ ep ��;
where e is deéned as a slowly varying complex ultrashort-
pulse envelope (see Section 1.2). Interaction of radiation
with resonance impurities is characterised by a dimension-
less constant f � �dA0, where �d is the effective matrix
element of the dipole moment operator of the transition
between the resonance levels. The coefécient k is expressed
via the dispersion length Ld and the resonance absorption
length La [30, 73]: k � Ld(La f )

ÿ1.
Propagation of polarised ultrashort pulses in a ébre with

the Kerr nonlinearity, when the resonance levels of the
impurities are degenerate with respect to the orientation of
the total angular momenta j1 and j2, are described in some
cases by completely integrable equations. For the electric
éeld strength of ultrashort pulses in quasi-harmonic approx-
imation we can write:

Ej�t; x; y; z� � A0ej�t; z�C�x; y�exp�ÿio0t� ib0z�

�A0e
�
j �t; z�C ��x; y�exp�io0tÿ ib0z�:

As in (20), the subscript is j � �1; therefore, we can speak
about the vector optical soliton. The same system of
equations emerges if the nonlinear ébre contains three-level
impurities and the ultrashort pulse is characterised by two
carrier-wave frequencies: o0 ! o1;2 and C�x; y� !
C�o1;2; x; y�.

The authors of papers [92, 93] studied theoretically
propagation of polarised ultrashort pulses in a Kerr medium
with resonance impurities. Apart from the two-level system,
they considered the cases when the energy states of the two-
level impurities can be degenerate. Only those systems of
equations, which describe the transitions j1 � 0$ j2 � 1
and j1 � 1 ! j2 � 1, proved to be integrable.

The equations for the normalised envelopes e � (e1; e2)
and variables, which determine the state of the resonance
impurities, can be written in the uniéed form:

ie;z � se;tt � m̂�e � e ��e � k
X
a�1:2

bahp�a�i;

p�a�;t � idp�a� ÿ if �e � m̂�a� ÿ en�a��;
(32)

m̂�a�;t � ÿi f �e � 
 p�a� ÿ p�a�� 
 e�;

n�a�;t � ÿi f � p�a�� � eÿ e � � p�a��:

The variables entering the Bloch equations in (32) were
determined above (see Section 2.1).

The authors of papers [72, 92] found that both the
system of equations (31) and system (32) are completely
integrable but only when LdL

ÿ1
a � 2f 2. This condition

means that the SIP soliton should be also a NLS soliton.
In other words, the 2p-pulse amplitude and duration should
be such that the dispersion broadening of the ultrashort
pulse should be exactly compensated for by its compression
due to self-phase modulation. The condition for the
existence of SIT and NLS solitons was discussed in detail
in [94] and then experimentally studied in an Er 3�-doped
ébre [95]. At room temperature, the polarisation relaxation
time T2 is about of 0.1 ps and the dipole moment of the
resonance (at a wavelength of 1.53 mm) transition is
jd12j � 4:7� 10ÿ3 D. To obtain a SIT soliton and a NLS
soliton with approximately the same power, use was made
of a ébre with a near-zero second-order group velocity
dispersion. With the ébre cooled down to 4.2 K (in this case,
T2 � 10 ns), stable 2p- and 4p-pulses (SIT solitons) were
observed.

Other examples of a completely integrable model
describing propagation of an ultrashort pulse in ébre
with impurities were presented in papers [96 ë 98]. Instead
of the NLSE, use was made of the Hirota-type equations to
take into account the third-order group velocity dispersion,
self-steepening of the pulse edge, and self-induced Raman
scattering:

ie;z � �1=2�e;tt � m̂jej 2e

� iE�e;ttt � 3jej 2e;t � �3=2�e�jej 2�;t� � khpi � 0; (33)

p;t � idp� 2ifer; r;t � if �e �pÿ ep ��:

It was shown that this system of equations has the Painlev�e
properties when some relation between the model param-
eters is fulélled. The Lax representation was also found,
which makes it possible to develop the IST and énd its
explicit soliton solution. Instead of the NLSE in (31),
Makhan'kov et al. [99] considered the complex modiéed
Korteweg ë de Vries equation

ie;z ÿ i�e;ttt � 6jej 2e;t � 3e�jej 2�;t� � kh pi � 0;
(34)

p;t � idp� 2i f er; r;t � i f �e �pÿ ep ��:
They found the zero curvature representation and, using the
B�acklund transform, obtained the soliton solution of the
system under study. In both cases the discussed systems of
equations are completely integrable under condition that
LdL

ÿ1
a � 2f 2.
Zabolotskii [100] considered propagation of an ultra-

short pulse in a ébre with resonance impurities. Unlike other
models, this model took into account the inertia of the Kerr
nonlinearity in the ébre and correction to the refractive
index, caused by a change in the populations of the
resonance levels, the third-order group velocity dispersion
being neglected. The model is described by the system of
equations

ie;z � e;tt � m̂jej 2e� iE�jej 2e�;t ÿ gre� ikp � 0;
(35)

p;t � idp� 2ier; r;t � i�e �pÿ ep ��:
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With certain relations between the parameters in (35), this
system of equations is completely integrable. For the given
equations, the Lax pair and soliton solution were found.

3. Femtosecond optical solitons

Success in producing femtosecond electromagnetic-éeld
pulses by compression or direct generation in laser systems
has lead to the necessity to develop new models describing
propagation of such pulses in which the slowly varying
envelope approximation is not used. To this end, the model
resulting in completely integrable equations and having
soliton solutions would be rather attractive.

3.1 Self-induced transparency in a model of unidirectional
waves

Probably, the érst completely integrable model used to
describe coherent propagation of ultrashort pulses in which
the slowly varying envelope approximation was neglected
was considered in [48, 50]. If the complete MB equations
lack the soliton solutions, by assuming that the electro-
magnetic wave propagates only in one direction, we can
obtain RMB equations (6), (7) for which there exists only
one restriction on the pulse duration: it should be much
shorter than the polarisation relaxation time. In the
normalised form the RMB equations are expressed as

e;z � ÿhr1;ti; r1;t � ÿr2;
(36)

r2;t � r1 � er3; r3;t � ÿer2:
Single-soliton solutions describe the half-cycle pulse ë a
unipolar spike of the electromagnetic éeld. Two-soliton
(multisoliton) pulses correspond to the case of colliding
single-soliton ultrashort pulses. Among the two-soliton
solutions, there are breathers (corresponding to the coupled
state of two solitons), which are similar to the few-cycle
éeld-strength pulses.

3.2 High-order NLSE

To describe the nonlinear phenomena occurring with
optical femtosecond pulses in nonlinear optics, the authors
of [26, 101, 102] suggested using the high-order nonlinear
Schr�odinger equation. After passing to the normalised
variables, it can be represented in the form of the NLSE
with auxiliary terms:

ie;z � se;tt � m̂jej2e� i�Z3e;ttt � m2jej2e;t

� m3e�jej2�;t� � 0: (37)

Here, the parameter Z3 corresponds to the third-order
group velocity dispersion, while m2 and m3 correspond to
two inertial contributions to the nonlinear polarisability,
which are responsible for the formation of a shock wave
and Raman self-scattering.

If Z3 � 0, m2 � m3 � 1 and m̂ � 0, the high-order NLSE
(37) is reduced to the derivative nonlinear Schr�odinger
equation

ie;z � se;tt � i�jej2e�;t � 0: (38)

This equation is completely integrable [103]. Using the IST,
we can énd both its soliton and multisoliton solutions. Note

that the condition m̂ � 0 is insigniécant for reducing the
high-order NLSE to the completely integrable equation,
and the resulant modiéed derivative NLSE

ie;z � se;tt � m̂jej2e� i�jej2e�;t � 0 (39)

remains a completely integrable equation [104].
If Z3 � 1, m2 � �6, m3 � 0, equation (37) is reduced to

the Hirota equation [105]

ie;z � se;tt � m̂jej2e� ie;ttt � 6ijej2e;t � 0; (40)

which represents another example of a completely integra-
ble equation.

In the general case, equation (37) is obviously not
completely integrable. But if we assume that Z3 � E1,
m2 � �6E1, m3 � 3E1, and m̂ � 2s, the high-order NLSE is
reduced to a new integrable equation. In this case, the
change of variables in (37) yields

u;z � E1�u;xxx � 6juj2u;x � 3ujuj2;x� � 0: (41)

Here, the electromagnetic éeld is related with the solution
of equation (41) by the expression

e(z; t) � u(z; x) exp
�
ist
3E1
� 2is 3z

27E 21

�
.

This equation was derived by Sasa et al. [106], who showed
that its solution can be obtained with the help of the IST.
Unlike the NLS solitons, the solitons of the Sasa ë Satsuma
equation (41) can have two humps and change polarity,
similarly to the SIT breathers. Mihalache et al. [107] found
the one-parameter family of solitons, four-parameter family
of breathers and the general N-soliton solution of the
Sasa ë Satsuma equation.

3.3 Alternative to the NLSE

Sch�afer et al. [108] proposed a model describing prop-
agation of few-cycle (up to one oscillation period)
electromagnetic-éeld pulses in a nonresonance dielectric
medium. The authors of [108] used a scalar wave equation
describing propagation of a plane wave along the z axis:

E;zz ÿ cÿ2E;tt � 4pcÿ2P1;tt:

Polarisation P is divided into linear and nonlinear parts:
P � Plin � Pnl. In the general case, the linear part of
polarisation is represented by an integral:

Plin�z; t� �
� t

ÿ1
w�1��tÿ t 0�E�z; t 0�dt 0:

The integrand response function w�1��tÿ t 0� ë the linear
susceptibility in the wavelength region between 1.6 and
3 mm ë is approximated by the expression whose Fourier
spectrum (in wavelengths) is

w�1�(l) � w�1�0 � w�1�2 l 2;

where w�1�0 � 1:11 mmÿ2; w�1�2 � 0:0106 mmÿ2. As for the
nonlinear part of polarisation, use is made of the expression
Pnl � w�3�E 3, which means that only the cubic nonlinearity
is taken into account, while the nonlinear susceptibility
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dispersion is absent (instantaneous response). These
assumptions allow one to rewrite the initial wave equation
in the form:

E;zz ÿ vÿ2E;tt ÿ 4p 2w�1�2 E � 4pw�3�cÿ2E3
;tt; (42)

where v is the phase velocity (as in an ordinary dielectric).
The linear part of this equation coincides with the

Klein ëGordon equation, which has solutions describing
the waves travelling from left to right and from right to left.
The next approximation is to be restricted to waves
travelling only into one direction. The wave equation
(42) can be reduced by using the multiscale perturbation
method; the details of this procedure can be found in [108].
The resultant equation, called the Sch�afer ëWayne short-
pulse equation (SWSPE), has the form

E;zt � 2p 2w�1�2 E� 2pw�3�cÿ2E 3
;tt � 0: (43)

If we appropriately substitute the variable and re-designate
the independent variables, this equation can be written in a
more elaborate form:

etx � e� �e3=6�;xx: (44)

In this form the SWSPE was studied in papers [109, 110],
which showed that it is completely integrable. The same
result was achieved by the authors [111, 112], who addi-
tionally found the soliton solutions and Hamiltonian
structure of the SWSPE. Using the IST, Victor et al.
[110] derived an expression for the multisoliton solution of
the SWSPE.

The numerical solution of the complete wave equation
and comparison of its results with the results of the SWSPE
solution showed that for few-cycle pulses the agreement
between the obtained data and those that could be collected
if the NLSE were solved instead of the SWSPE is much
better.

The attempt to generalise this equation for the case of
two-component (polarised) electromagnetic radiation [113]
did not lead to equations having a physical sense.

3.4 Propagation of extremely short pulses

When we consider a resonant medium where all the
relaxation processes are discarded as considerably slower
(compared to the duration of an electromagnetic-éeld
pulse), the resonance transition frequency oa yields the
only time scale*. If the pulse duration tp meets the condition
tpoa 4 1, its evolution can be described by using the quasi-
harmonic wave representation (or, which is the same,
considering slowly varying envelopes). Otherwise, if
tpoa 4 1, one should use complete Maxwell equations or
ë under certain conditions ë the unidirectional wave
approximation. The ratio e � oR=oa, where oR is the
instantaneous Rabi frequency [i.e., (d=�h)max jEj], yields a
new parameter. Let the amplitude of ultrashort pulses be
such that the frequency oR is small compared to the
minimal frequency of the resonance transition. Thus, we
can use e as a small parameter for solving Bloch equations

(5) in the perturbation theory and substitute the polar-
isation medium obtained in this way into the wave
equation, without using the approximation of slowly
varying envelopes of ultrashort pulses [114]. In the
unidirectional wave approximation the wave equation is
written in the form

E;z � cÿ1E;t � ÿ�2pnad=c�hr1;ti; (45)

where polarisation of the ensemble of two-level atoms with
an accuracy to the third-order of smallness in e is written in
the form

hr1;ti � 2hd=�hoaiEÿ 2hd=�ho 3
a iE;tt

ÿ 4hjdj2d=�h 3o 3
a iE 3: (46)

Substituting (46) into equation (45) and changing the
variables (see details in [114]) lead to the modiéed
Korteweg ë de Vries equation known in the soliton theory
[31]

e;t � 6e 2e;x � e;xxx � 0: (47)

As is known [115], the Korteweg ë de Vries equation is
completely integrable and its soliton solutions are obtained
by using the IST. The single-soliton solutions correspond to
propagation of electromagnetic spikes (extremely short
pulses, video pulses), and breathers ë to few-cycle pulses
(Fig. 8).

Paper [116] considered the cases when the description
can and should be performed without the slowly varying
envelope approximation. As examples, Korteweg ë de Vries
(in a quadratic medium), modiéed Korteweg ë de Vries (in a
cubic medium) and sine-Gordon (in a resonant medium)
equations were considered. In paper [117], comparing the
results of description of few-cycle pulse propagation with
the help of the modiéed Korteweg ë de Vries, sine-Gordon
equations, SWSPE and some model equations, the authors
came to the conclusion that the most suitable is the
combined modiéed Korteweg ë de Vries ë sine-Gordon
equation [118, 119]:

e;z � c1 sin#� 3c2e
2e;t � c3e;ttt � 0; #;t � e: (48)
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Figure 8. Modiéed Korteweg ë de Vries breather ë two-soliton solution
of the modiéed Korteweg ë de Vries equation (looks like an electroma-
gentic few-cycle pulse).

*Recall that in passing from microscopic electrodynamic equation to
macroscopic ones, the éelds were averaged over a physically small volume.
This procedure determines the applicability limits of macroscopic Max-
well equations.
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Under the condition c3 � 2c2, this equation is completely
integrable [118] and its soliton (more precisely breather)
solutions well reproduce the evolution of few-cycle pulses,
obtained in numerical calculations.

The authors of [120 ë 125] derived other equations to
describe propagation of extremely short pulses. The review
of some of them can be found in [126]. However, they are
not completely integrable and have no soliton solutions.
Thus, for example, propagation of a polarised ultrashort
pulse in a resonant medium can be described by a two-
component generalised modiéed Korteweg ë de Vries equa-
tion, which is reduced to a completely integrable equation
only in the case of éxed pulse polarisation. At the same time,
numerical simulation of propagation and interaction of
solitary waves with the help of the above equations shows
their stability or weak attenuation. Collision of such pulses
is accompanied by weak emission of linear dispersive waves.
All this makes them similar to solitons.

3.5 Self-induced transparency in a two-level medium with
a permanent dipole moment

Usually, the models of resonance interaction of electro-
magnetic pulses with matter took into account only those
state of atoms and molecules for which the dipole moment
operator does not have diagonal elements. However, there
exist media (polar molecules, asymmetric quantum dots,
quantum wells) for which the dipole moment operator has
diagonal elements [127 ë 129]. Propagation of short and
extremely short electromagnetic pulses in such media was
studied in [130 ë 140]. The authors of these papers
considered a plane electromagnetic wave propagating in
a medium from atoms and molecules whose transition from
the ground state to the excited is characterised by the dipole
moment operator with both nonzero nondiagonal (d12; d21)
and diagonal (d11; d22) matrix elements. Because of the
diagonal matrix elements of the dipole moment operator,
transitions of atoms and molecules have constant polar-
isability. It is believed that the resonance system has a
permanent dipole moment. If the dipole ë dipole interaction
is smaller than the thermal êuctuation energy and the
external constant electric éeld is absent, the macroscopic
polarisation of the medium is zero. All the papers
mentioned in this Section considered only paraelectrics.
In the case of extremely short pulses, all the relaxation
processes in the system of atoms can be neglected.

The assumption that the waves propagate only in one
direction allows one to reduce the complete MB equations
to a simpler system of equations, i.e., RMB equations (6),
(7), which take into account diagonal matrix elements of the
dipole transition moment operator. For the case under study
the RMB equations have the form [126]:

E;z � cÿ1E;t � ÿ
pna
c
h�d22 ÿ d11�r3;t � 2d12r1;ti;

(49)

r1;t � ÿ�oa �
�d11 ÿ d22�E

�h

�
r2;

r2;t �
�
oa �

�d11 ÿ d22�E
�h

�
r1 �

2d

�h
Er3;

(50)

r3;t � ÿ
2d

�h
Er2:

These equations differ from (6), (7) by auxiliary terms
proportional to d11 ÿ d22.

Equations (49), (50) can be rewritten in the normalised
form as was done previously for (9) and (10) so that to
obtain a normalised system of equations

e;z � ÿhr1;t ÿ mr3;ti; (51)

r1;t � ÿ�1� me�r2;
(52)

r2;t � �1� me�r1 � er3; r3;t � ÿer2;

where m � (d11 ÿ d22)=2d12 is the measure of inêuence of the
permanent dipole moment on the resonance system
response to an electromagnetic éeld. Equation (51) can
be expressed as e;z � hr2i.

Agrotis et al. [131] found in the absence of inhomoge-
neous broadening of the resonance line that the system of
equations (51), (52) admits the Lax representation. Caputo
et al. [132] considered another (gauge equivalent) Lax
representation. The Hamiltonian structure of equations
(51) and (52) was determined in [135]. Account for the
inhomogeneous broadening of the resonance line preserves
the property of complete integrability of this system of
equations [136].

Using the method of Darboux transforms, the authors of
[137 ë 139] obtained soliton solutions of the system of
equations (51), (52), in particular, the breather solution
whose appearance and evolution was studied numerically in
[140]. Analytic expressions for two-soliton solutions of
equations (51) and (52), including solutions for breathers,
were previously derived in [131].

If we set the parameter m equal to zero in equations (51)
and (52), we can obtain a system of RMB equations, having
soliton solutions which can describe both the few-cycle
pulses (breathers) and unipolar pulses ë electromagnetic
éeld spike (extremely short pulse) [39, 42]. The solitons of
the RMB equations have an `area'

#(z) �
�1
ÿ1

e(z; t)dt,

multiple of 2p; this means that under the action of such a
pulse, atoms undergo transition from the ground state to
the excited state and vice versa such that the soliton
propagation turned the state of the resonant medium into
initial. The multiplicity of the pulse `area' to 2p depends on
the number of changes in the populations of ground and
excited states. The breather has an `area' equal to zero;
therefore, it is called a 0p-pulse. When m is nonzero, the
breather area is also nonzero and its shape is asymmetric,
which was observed in calculations [140]. In addition, its
group velocity can be much smaller than the velocity of
light in a medium.

4. Multicomponent solitons

4.1 Vector optical solitons

In the general case, the vector soliton corresponds to the
soliton solution of the system of nonlinear equations, which
can be represented as a row matrix. Thus, for example, the
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vector NLS soliton is the solution of the multicomponent
(vector) NLSE

ie;z � se;tt � m̂�e � e ��e � 0; (53)

where e � (e1; e2; . . . ; en). The subscripts of the vector
components can have here different physical sense, for
example, the frequency (for a polychromatic pulse) or
projection of the polarisation vector of the polarised
electromagnetic pulse.

Equation (53) is an example of a completely integrable
equation that is used in nonlinear optics. It belongs to the
hierarchy of AKNS equations which can be solved by using
the IST together with the Manakov spectral problem [15].
The multisoliton solution for the n-component NLSE was
obtained in [99, 141].

As a simple vector generalisation of the derivative
NLSE, we can use the equation

ie;z � e;tt ÿ i��e � e ��e�;t � 0: (54)

In [142] the IST was applied to the vector (two-component)
derivative NLSE. The results were used to study the
modulation instability of circularly polarised long Alfv�en
waves.

The authors of [143] found that the completely integra-
ble equation

ie;z � e;tt � i�e � e ��e;t � 0; (55)

taking into account a nonlinear change in the group
velocity, has soliton solutions.

Another example of the vector nonlinear waves emerges
while considering propagation of a femtosecond optical
pulse in an optical ébre, taking into account birefringence,
highest orders of the group velocity dispersion, and non-
linear susceptibility. Quite integrable in this case is the two-
component Sasa ë Satsuma equation [144], which generalises
equation (41):

u;z � E�u;xxx � 6�u � u ��u;x � 3u�u � u ��;x� � 0: (56)

The authors of [144] considered also the three-component
Sasa ë Satsuma equation. They found that this equation has
the Lax representation and can be solved using the IST.
However, the exact soliton solution can be simply obtained
by using the method of Darboux ëB�acklund transforms.

4.2 Self-induced transparency in a three-level medium
for polarised pulses

A particular case of interaction of polarised radiation with
a resonant medium was considered in [145]. It was assumed
that a two-frequency ultrashort pulse propagates in a three-
level medium in the case when one of the V- or L-
conéguration levels is not degenerate, while other two levels
are triply degenerate with respect to projections of the
angular momentum. Or, vice verse, two levels are
degenerate (triplets), while the adjacent level is not
degenerate (singlet).

4.2.1 The j1 � 0! j2 � 1! j3 � 0 transition
The electric-éeld components of an ultrashort pulse can
produce a 2� 2 matrix ê � (e j

k), where the subscript
denotes the `colour' ë the carrier-wave frequency o1 or

o2, and the superscript ë circular polarisation. For left-
polarised radiation we have j � ÿ1, while for right-
polarised radiation ë j � �1. The elements of the transition
matrix are collected in the matrices p̂, n̂, and m̂ according to
the following rules:

for V-transition ( j; l � �1)

p j
1 � h j1; 0jr̂j j2; j i; p j

2 � h j3; 0jr̂j j2; j i; n11 � h j1; 0jr̂j j2; 0i;

n 2
2 � h j3; 0jr̂j j3; 0i; mjl � h j2; jjr̂j j2; l i; n 2

1 � h j1; 0jr̂j j3; 0i � n1�1 ;

for L-transition (k; l � �1)

pk
1 � h j2;ÿkjr̂j j1; 0i; pk

2 � h j3;ÿkjr̂j j2; 0i;

n11 � ÿh j1; 0jr̂j j2; 0i; n 2
2 � ÿh j3; 0jr̂j j3; 0i;

mkl � ÿh j2;ÿljr̂j j2;ÿki; n 2
1 � ÿh j1; 0jr̂j j3; 0i � n1�2 :

The RMB equations (in the slowly varying envelope
approximation) corresponding to this case of transition in a
three-level medium are written as a system of matrix
equations:

ê;z � ÿihp̂i;

p̂;t � idp̂� i�n̂êÿ êm̂�;
(57)

m̂;t � i�p̂�êÿ ê�p̂�;

n̂;t � i�p̂ê� ÿ êp̂��:
This system of equations has the Lax representation and is
solved with the help of the IST. The single-soliton solutions,
the B�acklund transform (which made it possible to
construct soliton solutions of an arbitrary multiplicity),
and an inénite sequence of the conservation laws were
found for this system. As in the case of a polarised 2p-pulse,
the normalised envelope of a two-frequency polarised
soliton ë solution of the system of equations (57) ë is
found from the expression

ê(t; z) � l �p� 
 l �c�2Z sech�2Z(tÿ t0)ÿ bz�

� exp(ÿ 2at� ikz);

where l �p� is the unit vector in the space of polarisations and
l �c� is the unit vector in the space of frequencies (colour).
Collision of two such solitons leads to the rotation of these
vectors. The expressions determining the rotation of the
polarisation and colour vectors are similar to (21). The
vectors l �p� rotate independently of the vectors l �c�. Thus,
when the solitons collide, polarisation changes and the
energy between the components of two-frequency polarised
solitons is redistributed.

4.2.2 The j1 � 1! j2 � 1! j3 � 0 transition
In this case, the elements of the transition matrix are
collected in the scalar n and in the matrices p̂, r̂, k̂, m̂
according to the following rules:

for the V-transition
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pk
1 � h j1;ÿkjr̂j j2; ji; pk

2 � h j3;ÿkjr̂j j2; 0i;

n � ÿh j2; 0jr̂j j2; 0i; mkl � ÿh j1;ÿljr̂j j1;ÿki;

kkl � ÿh j3;ÿljr̂j j3;ÿki; rkl � ÿh j1;ÿljr̂j j3;ÿki;
for the L-transition

pk
1 � h j2; 0jr̂j j1; ki; pk

2 � h j2; 0jr̂j j3; ki; n � h j2; 0jr̂j j2; 0i;

mkl � h j1; kjr̂j j1; l i; kkl � h j3; kjr̂j j3; l i; rkl � ÿh j3; ljr̂j j3; ki:
It is convenient to form here a four-component electric-

éeld vector of the ultrashort pulse e � �eÿ11 ; e�11 ; eÿ12 ; e�12 �,
polarisation matrix p � ( pÿ11 ; p�11 ; pÿ12 ; p�12 ), and 4� 4
matrix M̂ constructed from the blocks:

M̂ � m̂ r̂
r̂� k̂

� �
:

Using these notations, the RMB equation can be written in
the form

e;z � ÿih pi;

p;t � idpÿ ie � M̂� ien;
(58)

M̂;t � ÿi�e � 
 pÿ p � 
 e�;

n;t � ÿi�p � � eÿ e � � p�:
The derived system of equations resembles system (20).

Thus its solution can be easily obtained by using the IST. As
in the previous case, solitons were found and their inter-
action character was determined.

4.3 Self-induced transparency in an anisotropic/isotropic
two-level medium with a permanent dipole moment

The anisotropy of the dipole moment operator (it can be
related to the crystal structure of the matrix containing
resonance atoms) and the effect of the permanent dipole
moment are taken into account in the Hamiltonian of the
system of two-level atoms by introducing the following
term ë interaction Hamiltonian:

Ĥint � ÿŝ��d �1�zx Ex � d �1�zy Ey� � ŝÿ�d �2�zx Ex � d �2�zy Ey�

�ŝ1�dxxEx � dxyEy� � ŝ2�dyxEx � dyyEy�;
where use is made of matrices ŝ� � (1� ŝ3) and ordinary
Pauli matrix ŝ1; ŝ2; ŝ3. The transverse components of the
electric-éeld vector are designated as Ex and Ey; d

�a�
zx ; d

�a�
zy

are the diagonal matrix elements of the dipole moment
operator in the ground (a � 1) and excited (a � 2) states;
djk are the real tensor components of the dipole moment of
the transition between the states a � 1 and a � 2
[146 ë 148].

In normalised variables the system of generalised RMB
equations has the form:

ex;z � �kxr1 � kyr2 ÿ r3�ey ÿ r2;

ey;z � ÿ�kxr1 � kyr2 ÿ r3�ex � rr1;

r1;t � �1ÿ kxex ÿ kyey�r2 � eyr3; (59)

r2;t � ÿ�1ÿ kxex ÿ kyey�r1 ÿ exr3;

r3;t � exr2 ÿ eyr2:

Here, ex and ey are the normalised projections to the
corresponding electric-éeld axes of the pulse; kx, ky, and r
are the parameters, expressed via the matrix elements of the
permanent dipole moment and real tensor components of
the dipole transition moment; r1; r2; r3 are the components
of the Bloch vector.

Using the IST, the author of [146] found the solution for
the isotropic limit (r � 1) of the general integrable model of
interaction between a two-component electric éeld and two-
level atoms. A more complicated problem corresponding to
the anisotropic case (r 6� 1) was solved in [147, 148]. In this
case, the IST is based on the spectral problem of a new type,
which was previously not encountered in the soliton theory.
Recent paper [149] presents a detailed review of the IST,
which is used to solve exactly the system of the RMB
equations, taking into account the éeld polarisation and the
permanent dipole moment, and gives explicit expressions for
their soliton solutions.

4.4 Coherent propagation of polarised extremely short
pulses

Propagation of few-cycle pulses in a resonant medium of
two-level atoms was described in the unidirectional wave
approximation by a completely integrable model based on
scalar RMB equations (6) and (7). Zabolotskii [150] took
into account the electromagnetic-éeld polarisation, which
preserves the integrable properties. He considered the
interaction of extremely short pulses with a two-level
medium consisting of atoms with the energy s-transition
( j � 1=2;m � ÿ1=2$ j � 1=2;m � 1=2, where j and m are
the total angular momentum and its projection to the
quantization axis, respectively). In this case, the matrix
element of the dipole moment is written in the form
d � dxx̂ÿ dyŷ, where x̂, ŷ are the unit vectors of the
Cartesian coordinate system, which determine the axes x
and y, orthogonal to the z axis of the wave propagation.
The equations for the electromagnetic pulse components
have the form

Ex;zz ÿ cÿ2Ex;tt � 4pcÿ2nadxr1;tt;

Ey;zz ÿ cÿ2Ey;tt � 4pcÿ2nadyr2;tt;

and the Bloch equations have the form

r1;t � ÿo0r2 � �dy=�h�Eyr3;

r2;t � o0r1 ÿ �dy=�h�Exr3;

r3;t � �dx=�h�Exr2 ÿ �dy=�h�Eyr1:

Using the unidirectional wave approximation and introduc-
ing the normalised dependent (e1, e2) and independent (z
and t) variables, the system of the vector RMB equations
can be written in the form [150 ë 152]
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e1;z � r1;t; e2;z � r 2r2;t;

r1;t � ÿr2 � e2r3; r2;t � r1 ÿ e1r3; (60)

r3;t � e1r2 ÿ e2r1;

where r � dy=dx. If we make a substitution (r1; r2; r3)!
(ÿ r1;ÿr2; r3) and set e2 � 0, system (60) transforms into
the RMB equations (6) and (7).

The isotropic case (dy � dx) considered in [152] yields a
system of the vector RMB equations, which can be
integrated with the help of the IST based on the Kaup ë
Newell spectral problem [103]. This problem was used to
solve the derivative NLSE (38). The soliton solutions can be
found in [103]. Steudel et al. [152] obtained the multisoliton
solutions of the system of the vector RMB equations by
using the Darboux and B�acklund transforms. These sol-
utions have breathers, which describe few-cycle
electromagnetic-éeld pulses:

ebr�z; t� � ÿ2ik sin 2f
cosh�t sin 2fÿ �z=2� cotf� if�
cosh2�t cos 2f� �z=2� � if�

� exp�it cos 2f� iz=2�; (61)

where k and f are two constants depending on the initial
condition.

If we treat the ratio dy=dx as arbitrary, the system of
equations (60) can be still solved using the IST, but the
spectral problem should be different. This new spectral
problem and the zero curvature representation for system
(60) were found in [150]. The author of [150] obtained the
soliton solution but because of its awkwardness we do not
present it here. The multisoliton solutions, including breath-
ers, were later obtained by Steudel et al. [153], who, using
the results of [150] constructed the Darboux and B�acklund
transforms for (60) in the general case. Nontrivial symmetry
groups of the corresponding zero curvature representation
were studied in [146, 154]. The same papers showed that the
solutions of the vector RMB equations are expressed by the
solutions of the matrix Riemann ëHilbert problem. Many
results associated with the description of propagation of
extremely short electromagnetic pulses in a two-level
medium are collected in review [149].

4.5 Optical domain walls

Investigation of polarisation state dynamics of two optical
pulses or beams counterpropagating in a nonlinear Kerr
medium resulted in formulation of the models predicting
formation of domain walls separating the regions with
different polarisations.

Thus, Tratnik et al. considered counterpropagation of
optical pulses in an isotropic cubic nonlinear medium [155].
The waves propagate in the directions ẑ and ^ÿz along the z
axis and are characterised by slowly varying envelopes
e��� � e�x x̂� e�y ŷ. The system of truncated equations for
the envelopes has the form:

e
���
j;t � e

���
j;z � igintf��e���� � e���� � �e�ÿ�� � e�ÿ���e���j

��e���� � e����e���j g; (62)

where z � k0z, t � k0vgint t are the normalised coordinate
and time; k0 is the wavenumber of the carrier wave; vgint is
the group velocity (the group velocity dispersion was
neglected). The interaction constant gint is determined by
the linear [w�1�] and nonlinear [w�3�] susceptibilities:
gint � 2pw�3�=(1� 4pw�1�).

The polarisation state is often described by the Stokes
vector S. In the present problem two such vectors are used:

S ��� � �e����x e���y +c. c.,

ie����x e���y +c.c., je���x j2 ÿ je���y j2�:
The moduli of these vectors, jS ���j2 � (e��� � e����), remain
constant so that the polarisation state is determined only by
the orientation of the Stokes vectors.

By using the new independent variables 2Z � zÿ t and
2x � ÿ(z� t) and the system of equations (62), the authors
of [155] obtained two coupled Bloch equations describing
the rotation of the introduced Stokes vectors around each
other:

qxS
��� � gintS

�ÿ� � S ���;
(63)

qZS
�ÿ� � ÿgintS �ÿ� � S ���:

The authors of papers [156, 157] considered the bire-
fringent medium with a cubic nonlinearity. The equations
for the Stokes vectors are more cumbersome but, by
neglecting the Kerr self-action compared to their cross
action, these equations can be simpliéed and reduced to
completely integrable equations of motion of an anisotropic
chiral éeld in the O(3) group [158, 159]:

qxS
��� � S ��� � ĴS �ÿ�;

(64)

qZS
�ÿ� � S �ÿ� � ĴS ���;

where Ĵ is the diagonal matrix determined by the nonlinear
medium susceptibilities. When the matrix elements Ĵ are
different, solutions (64) determine stable polarisation states
in the case of parallel or orthogonal vectors of counter-
propagating waves.

The models under study resemble the model of an
isotropic (63) or anisotropic (64) ferromagnetic. It is known
that ferromagnetic have domain walls describing the tran-
sition from one stable state of magnetic moments to
another. In optics the domain wall corresponds to the
region where the polarisation state of the interacting waves
changes, for example, the left-polarised waves turn into the
right-polarised ones.

5. Deformed solitons

In the conventional IST, the spectral parameter corre-
sponding to the linear problem on eigenvalues is assumed
constant. The potentials entering the spectral IST problem
change (deform) according to the system of integrable
equations and because the spectral parameter is constant
the given integrable equations prescribes isospectral defor-
mation. If the spectral parameter is not constant, we can
derive equations which can be solved by the inverse
scattering transform; however, the soliton solutions in
these equations do not preserve their shape during
propagation.
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Some problems of nonlinear ébre optics make use of the
models based on the NLSE with variable coefécients. For
example, propagation of optical solitons in a dispersion- and
loss-compensated ébre. In the general case, use is made of
the equations, which are not completely integrable and do
not have soliton solutions. However, there are cases when a
change in the variables allows one to reduce a nonauton-
omous NLSE to completely integrable equation [160, 161].

5.1 Deformed Maxwell ë Bloch equations

Burtsev et al. [162] suggested generalising the IST in which
the spectral parameter depends on the coordinate and time.
The nonlinear evolution equations solved by this method
are sometimes called deformed (nonisospectral) integrable
equations. We will call the corresponding soliton solutions
the deformed solitons.

In nonlinear optics an example of such a system of
equations was found. This system represents generalised MB
equations describing the ultrashort-pulse evolution in a two-
level medium where the excited atomic state is steadily
populated, while the ground states is depleted so that the
difference between the populations changes at a constant
velocity. The deformed RMB equations in this case have the
form [162]:

e;z � p; p;t � er; r;t � ÿ
1

2
�e �p� ep �� ÿ 4�c: (65)

The parameter �c describes pumping in a two-level medium.
Another example of deformed RMB equations presented

in [163] is given by the equations

e;z � p; p;t � �cp � er; r;t � �cr � ÿ 1

2
�e �p� ep ��: (66)

This system assumes that the population difference and
polarisation in a two-level medium relax at the save rate.

Paper [163] also considers a system of equations

ie;z �
1

2
e;tt �

1

4
jej2e � ip;

(67)

p;t � er; r;t �
1

2
�e �p� ep �� � ÿ4�c;

describing propagation of ultrashort pulses in an optical
ébre with resonance impurities in the case of exact
resonance and cw pump. Porsezian et al. [164] determined
the condition under which (65) and (67) have the Painleve

0

property. The two-soliton solution of equations (65) and
(67) was given in [165], which made it possible to énd the
B�acklund transform allowing the multisoliton solutions to
be constructed from single-soliton ones.

Zabolotskii [166] considered the evolution of extremely
short pulses within the framework of two integrable systems
of generalised RMB equations. The érst model describes
interaction of the éeld with a two-level nondegenerate
medium, taking into account the permanent dipole moment
and external cw pump. The system of the equations
generalising (51) and (52) has the form:

e;z � r2;

r1;t � ÿ�1� me�r2 � �b�z�;
(68)

r2;t � �1� me�r1 � er3;

r3;t � ÿer2 � �c�z�;
where the parameter �b described induced polarisation of the
medium. Zabolotskii showed that this system is integrated
with the help of the IST, and presented a general expression
for the N-soliton solution. By the example of particular
solutions he studied the effect of the permanent dipole
moment and pump on the soliton dynamics.

The second model describes interaction of pulses of a
two-component electric éeld with a two-level degenerate
medium (the ground state is a triple and the excited state is a
singlet) under cw pumping of the upper level and depletion
of lower levels. The system of equations of this model is
expressed as

e1;z � ÿp1; e2;z � ÿp2;

p1;t � ÿ�1� m1e1�s1 ÿ 2n1e1 � q1e2;

p2;t � ÿ�1� m2e2�s2 ÿ 2n2e2 � q1e1;

s1;t � �1� m1e1�p1 � q2e2; s2;t � �1� m2e2�p2 ÿ q2e1; (69)

q1;t � ÿ�e1p2 � e2p1�; q2;t � �e1s2 ÿ e2s1�;

n1;t � 2e1p1 � e2p2 � ��c1 � �c2�;

n2;t � e1p1 � 2e2p2 � ��c1 � �c2�:
Here, e1; e2 are the normalised circular right- and left-
polarised electric éeld components; m1 � (d22 ÿ d11)=d12 and
m2 � (d33 ÿ d11)=d12 are the coefécients taking into account
the Stark shifts of the energy levels; �c1 and �c2 are the
population and depletion rates of the upper and lower
levels, respectively; the density matrix elements are related
to the variables in equations (69) by the expressions:

ip1 � %12 ÿ %21; ip2 � %13 ÿ %31; s1 � %12 � %21;

q1 � %23 � %32; iq2 � %23 ÿ %32; n1 � %11 ÿ %22;

n2 � %11 ÿ %33:

The example of soliton solutions for different initial
populations of the sublevels showed that the pump leads
to a change in the polarisation dynamics. The two-soliton
solution is used to analyse the interaction of solitons in a
two-level medium in the presence of an external pump.

In some problems the model equations differ from
completely integrable by the terms with a small parameter.
In this case, use can be made of the perturbation theory for
solitons [167, 168]. Zabolotskii [169] presented the pertur-
bation theory for the systems of evolution equations, which
are close to the systems integrable by the IST with a spectral
parameter depending on spatiotemporal variables. This
theory is used to study the evolution of soliton light pulses
in a two-level medium with an upper pump level, taking into
account linear and nonlinear losses and dispersion. Zabo-
lotskii also studied the contribution of the radiation part of
the solution with allowance for perturbations and showed
that there exists a parameter domain where this contribution
can be neglected.
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5.2 Deformed equations in the case of two-photon
absorption
Burstev et al. [163] proposed a system of equations which
correspond to deformations of Kaup ë Steudel equations
(26) and (27) describing the SIT in the case of two-photon
resonance:

r3;z �
i

2
�s �rÿ sr �� ÿ �c

4
r3;

r;z � isr3 � igs3rÿ
�c

4
r; (70)

s3;t � ÿ
i

2
�s �rÿ sr �� � E

�c

4
r3;

s;t � igr3s� iErs3 � E�c
�
ifÿ g

2

�
r:

Here, E � 1 corresponds to two-photon absorption and
E � ÿ1 corresponds to stimulated Raman scattering. The
parameter f is deéned as f 2 � �Eÿ g 2�=4.

Another example of deformation of Kaup ë Steudel
equations has the form

r3;z �
i

2
�s �rÿ sr �� � 4�hs3;

r;z � isr3 � igs3rÿ 8�h

�
if� g

2

�
s;

(71)

s3;t � ÿ
i

2
�s �rÿ sr �� ÿ �cs3;

s;t � igr3s� iErs3 ÿ �cs;

where �h � if �c=�4E(i f� g=2� ÿ g=2�. However, these systems
did not attract much attention.

5.3 Deformed NLSEs

The authors of paper [170] developed the Riemann problem
method to solve the deformed NLSE

ie;t � e;zz � 2jej2e� i

2t
e � 0; (72)

which contains an auxiliary term, linear in the éeld and
inversely proportional to time (for spatial solitons) or to
coordinate (for temporal solitons). The equation itself was
presented in [162] as an example of the NLSE deformation,
its solution being described by cylindrically diverging waves
in a cubic nonlinear medium. This deformation is trivial
because with a proper change in the variable, equation (72)
can be reduced to an ordinary NLSE.

A more general example of the NLSE deformation is
presented in [171, 172]:

ie;t � � f �z�e�;zz � 2f �z�jej2e� 2e

� z

ÿ1
f;z1 jej2dz1 � 0: (73)

Here, the spatial inhomogeneity is given by an arbitrary
function f (z). At f (z) � 1, we obtain an ordinary NLSE.
The equation is completely integrable and has solutions in
the form of deformed solitons, which move at an
accelerating velocity in particular cases of the inhomoge-
neity selection.

5.4 NLS solitons in an inhomogeneous medium
To describe an electromagnetic wave in an inhomogeneous
medium, Chen et al. [14] proposed the equation

ie;t � e;zz � 2�jej2 ÿ az�e � 0; (74)

which, as was shown, can be solved with the help of the IST
under the condition that the spectral parameter changes
linearly with t. The soliton solution has the form:

es�t; z�

� 2Z expf2i�xÿ at�zÿ 4i�a 2t 3=3ÿ azt 2 � �x 2 ÿ Z 2�t�g
cosh�2Z�z� 2at 2 ÿ 4xtÿ z0��

: (75)

Here, the parameters Z; x; are found from the initial
conditions and z0 is the position of the centre of gravity
of a soliton at the initial instant of time. If in a standard
soliton the position of the centre of gravity changes linearly
with time (z � z0 � 4xt) so that x is the group velocity, the
trajectory of the centre of gravity for a deformed soliton is
given by the expression

z � z0 � 4xtÿ 2at 2:

Thus, the soliton as a whole moves with uniform
acceleration. At a > 0; x > 0 the trajectory of the soliton
motion resembles the trajectory of a body thrown vertically
(Fig. 9). Chen et al. [14] found also the N-soliton solution
and derived a recurrent expression to calculate the integrals
of motion.

The solitary waves in a medium, whose inhomogeneity is
described by a quadratic function, were studied by Balak-
rishnan [173] using the equations:

ie;t � e;zz � 2�jej2 � az 2�e � 0: (76)

Using the generalised MIST, soliton solutions correspond-
ing to nonstationary pulses and accelerated pulses were
found. Interest in this equation is caused by the studies of
the Bose condensate of ultracold atoms. If we consider the
condensate which is in a cigar-like magnetic trap and is
conéned by an optical parabolic trap in the longitudinal
direction, the Gross ë Pitaevskii equation [174] can be
written in the form of (76).
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Figure 9. Turn of a soliton in an inhomogeneous medium ë uniform
acceleration.
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Cupta et al. [175] considered the NLSE with a variable
coefécient in the linear term. The dependence of this
coefécient on the coordinate is given by the parabolic
function with a maximum for the positive value of the
coordinate:

ie;t �
1

2
e;zz � iej2e� igeÿ

�
aÿ 1

2
bz 2
�
e � 0: (77)

Cupta et al. found the solution in the form of a solitary
wave. At some parameters, reêection of a solitary wave
from an inhomogeneity is possible.

5.5 Solitons of a nonautonomous NLSE

The equation

ie;z �
1

2
D�z�e;tt � R�z�jej2e� ig�z�e � 0 (78)

is called the nonautonomous nonlinear Schr�odinger equa-
tion. In some cases (for example, in describing the spatial
deformed solitons), the variables z and t change places. At
a certain ratio between the coefécients, this equation (after
changing the variables) can be transformed to an ordinary
NLSE.

Under the condition that the coefécients responsible for
the group velocity dispersion D, nonlinearity R, and
dissipation g in (78) are related as

2gDR � RD;z ÿ R;zD,

it is possible to énd the zero curvature representation for
(78) [176] and thus the multisoliton solutions of the
nonautonomous NLSE. The authors of [176] used the
Darboux transform following directly from the IST
equation to énd the soliton and multisoliton solutions.
For a single-solitons solution the trajectory of the centre of
gravity of a soliton in the plane (z; t) is given by the
equation

t � t0 � a1

� z

0

D�x�dx;

where a1 is a constant found from the initial conditions. If
the dispersion parameter D is speciéed by the periodic
function, the soliton will periodically change its direction of
motion (Fig. 10). The soliton amplitude can increase,

decrease, or remain constant, which results from the choice
of the coefécients in (78). It is pertinent to note that the
collision of solitons in this case does not lead to their
destruction. Such deformed solitons are genuine solitons,
i.e., the solutions of a completely integrable equation, as is
shown in [177].

Apart from bright solitons with a zero asymptotic, the
NLSE has the solutions, which are called grey and dark
solitons and represent a moving dip of the wave intensity
against the constant nonzero background. The authors of
[178] considered grey solitons in the case of a nonauton-
omous NLSE. They found the soliton solutions at a certain
ratio between the parameters in equation (78). They also
showed that if the initial soliton has a phase modulation
(chirp), the grey deformed soliton can experience self-
compression.

Tian et al. [179] considered the generalised two-compo-
nent nonautonomous NLSE

ie1;z �
1

2
D�z�e1;tt � R�z��je1j2 � je2j2�e1 � ig�z�e1 � 0;

(79)

ie2;z �
1

2
D�z�e2;tt � R�z��je1j2 � je2j2�e2 � ig�z�e2 � 0:

If the relation

2g
R

D
� q

qz

�
R

D

�

between the coefécients describing the group velocity
dispersion, nonlinear response, and dissipation is met, it
is possible to énd the zero curvature representation for
system (79) and using the IST to énd the soliton solutions,
including the two-soliton solutions, which describe the
collision of two solitons.

Recently, Serkin et al. [180] considered the nonauton-
omous NLSE

ie;z �
1

2
D�z�e;tt � R�z�jej2eÿ �2a�z�t� O 2�z�t 2�e � 0; (80)

which has soliton solutions with the parameters (phase and
group velocities, amplitude, and phase) varying with z.
Serkin et al. called these solitons nonautonomous [180].
Like ordinary (with éxed parameters) solitons, the non-
autonomous solitons interact elastically. Moreover, Kundu
[181] showed that equation (80) transfers into a standard
NLSE after some transformations.

6. Application of integrable models

Nonlinear optics has some phenomena, which can be
described with the help of integrable systems of equations
such as NLSE, RMB, three-wave equations, etc., or models
which are analysed by using the IST formalism.

6.1 Propagation of an ultrashort pulse through a thin élm

Propagation of the ultrashort pulses through an interface
between two dielectric media on which a thin (with a
thickness l shorter than the wavelength of a carrier wave)
élm of resonantly absorbing atoms is located, was
considered in some papers, including [182]. Let a thin
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Figure 10. Variable acceleration of a soliton in a medium with
periodically varying parameters.
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élm be at point z � 0 on the axis along which an
electromagnetic wave propagates. The wave equation has
the from

E;zz ÿ n 2cÿ2E;tt � 4pcÿ2Pttld�z�:

Polarisation is P � nadhr1i, where r1 is found from the
solution of Bloch equations (7). The refractive index n of
dielectric media is deéned as n(z) � 1 at z < 0 and n(z) �
n > 1 at z > 0. Outside the élm, the solution of the wave
equation for the harmonic wave has the form:

Eÿ�z; t� � Einexp�ik1zÿ iot�

�Eref exp�ÿik1zÿ iot�+c. c., z < 0;

E��z;o� � Etrexp�ik2zÿ iot )+ c. c., z > 0:

Here, k1 � o=c, k2 � on=c are the wavenumbers of incident
and refracted waves. The amplitudes of the reêected and
propagated waves can be expressed by the incident wave
amplitude and the thin élm polarisation. For a quasi-
harmonic ultrashort-pulse wave, this can be rather cum-
bersome. The authors of paper [182] suggested solving a
system of equations for an auxiliary éeld ~E(z; t), which is
determined by the equation

~E;z � i�4po0nadl=n�hr1�t�id�z�:

with the boundary conditions

lim
z!ÿ1

~E�z; t� � Ein; lim
z!�1

~E�z; t� � Etr:

The equation for ~E(z; t) and Bloch equations (7), as was
shown in [182], can be solved with the help of the IST, thus
énding the refracted ultrashort pulse. If we assume, for
example, that the incident wave envelope Ein�t� �
2Zÿ1sech�Zt�, the refracted wave envelope will have the
form:

Etr�t� � 2Zÿ1fsech�Zt� � e ij0sech�Z�tÿ t0��g;

where the phase shift j0 and t0 are determined in solving
the linear IST equations. Thus, when ultrashort pulses
coherently interact with thin élm atoms there emerges a
delayed pulse.

The authors of [183] presented generalisation to the case
of polarised radiation or three-level atoms. They also
considered the case of the ultrashort pulse incident on a
thin élm at an arbitrary angle and showed that the number
of solitons in the reêected and refracted waves depends on
the angle of incidence.

6.2 Raman soliton

Druhl et al. [184] observed anomalous reversible pump
depletion in the case of Raman scattering and formation of
a short spike of Stokes radiation. This phenomenon was
interpreted as soliton formation under the action of a
random phase shift in the Stokes pulse and the short spike
itself has been known since then as a Raman soliton.
Numerical simulation [185] showed that the phase shift
mechanism can lead to ampliécation of the Raman soliton

even in the presence of coherence damping and of detuning
from resonance, and the possibility of propagation of a
stable Raman soliton was found in an optical ébre. The
experimental results, conérming the prediction that the
quantum êuctuations lead to the formation of a sponta-
neous Raman soliton, are presented in [186].

The authors of [187, 188] considered a model describing
the three-wave interaction:

e1;z � ÿqe2; e2;z � q �e1; qt � ÿWq� e1e2: (81)

In these equations e1; e2 are the pump-pulse and scattered-
wave envelopes; q is the medium polarisation envelope; W is
the polarisation (coherence) damping coefécient. Using the
IST, Kaup [188] solved the problem with initial conditions
for this system of equations. He obtained the condition
necessary for the appearance of the Raman solitons and
determined their parameters.

To interpret the experiment from paper [184], Claude et
al. [189] used another model, which does not take into
account the coherence damping:

e;t � ga1a
�
2 ; a1;z � ea2; a2;z � e �a1. (82)

Here, a1; a2 are the amplitudes of the excited and ground
states of the medium. The boundary conditions

lim
z!ÿ1

a1 � 1; lim
z!ÿ1

a2 � 0; lim
z!�1

e � 0

correspond to the assumptions that before the soliton is
formed, the medium was in an excited state. Thus, this
model described the decay of the excited state, accompanied
by generation of a radiation pulse. The equations were
solved with the help of the IST. Because the spectrum of the
spectral IST problem does not contain a discrete part, the
Raman soliton observed in the experiment does not in fact
correspond to the solution of equation (82). In the case of a
long pulse, the equations were modiéed to take into
account the coherence (phonon wave) damping losses;
however, the system derived is not completely integrable.

Later, the Raman solitons were studied in [190 ë 192]
using the IST, which allows one to solve boundary problems
on a semi-axis. The main attention in studies of stimulated
Raman scattering was concentrated on the analysis of the
nonsoliton part of the spectrum of the IST equation.

6.3 Model of a laser ampliéer and superêuorescence

The authors of [193] suggested using SIT equations to
describe ampliécation of electromagnetic pulses during their
propagation through an inversely populated medium. The
model of a two-level lossless ampliéer was studied by Lamb
[194]. He found the SIT self-similar solution, which follows
from the equation

vf;zz � f;z ÿ sinf � 0:

The numerical solution shows that the stationary pulse is
absent but if nonlinear losses are introduced in the wave
equation, it is possible to obtain a stationary solution [195]
called a p-pulse. The inverse scattering transform in
analysing the laser ampliéer model was érst used by
Manakov [196]. He found that the solitons in this model are
absent. The problem on the propagation of an ultrashort
pulse in an extended two-level ampliéer was reformulated
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[197, 198] into the boundary problem on a semi-axis. The
authors of these papers showed that the ampliéed pulse
always has a quasi-self-similar form. Near the leading edge
the ultrashort pulse is described by the Painleve

0
equation

while at the trailing edge the solution passes to the regime
of self-similar high-frequency oscillations.

The SIT equations were used in [199] to describe the
superêuorescence phenomenon (i.e., formation of short light
pulses from polarisation êuctuations in a two-level inversely
populated medium). Unlike SIT, the superêuorescence
pulses are produced from the unstable state of the resonant
medium and the IST should be reformulated to solve the
boundary problem on the time semi-axis. The solution of
this problem was discussed in [191, 199, 200].

6.4 Development of the IST and its application in
nonlinear optics

It is pertinent to note that the use of the IST in boundary
problems on a énite interval or semi-axis allows one to
describe rigorously transient processes during the stimu-
lated Raman scattering [189, 190] and some other processes
in nonlinear optics [201, 202].

Steudel et al. [200] developed the effective S-matrix
method to solve the equations on the énite interval. As
an example of the developed formalism, they studied SHG
and stimulated Raman scattering. The Riemann ëHilbert
problem method for integrating the equations speciéed on
the semi-axis was presented by Doctorov et al. [202]. They
considered application of this approach to develop the
perturbation theory, which makes it possible to analyse
the systems close to completely integrable, as well as to the
case of SIT and stimulated Raman scattering on a limited
interval. They showed that because of the atom dephasing,
the Raman soliton (Raman spike of the electromagnetic
éeld) can be stabilised.

6.4.1 Cnoidal waves
The periodic solutions of the Korteweg ë de Vries equations
were called cnoidal waves because thay are expressed by the
function cn, known as the Jacobi cosine. It would be well to
call ordinary harmonic waves the cosine waves. Apart from
the solutions corresponding to solitary waves, the com-
pletely integrable systems also have the solutions, which
describe periodic waves, more general than the cnoidal ones
(see the footnote in Section 2.3). The IST was used to
construct periodic solutions of some nonlinear optics
equations. Using the IST-based Witham method, a theory
of soliton generation at the leading edge of a long pump
pulse was developed for the two-photon absorption and
stimulated Raman scattering in the Kaup ë Steudel model
(28) [82, 203]. The periodic solutions describing the four-
wave interaction of counterpropagating waves under the
two-photon absorption were érst found in [87]. Note,
however, that these solutions lack any physical sense
because one should not neglect polarisation relaxation
and population difference for periodic waves inénitely
extended in time.

6.4.2 Relations with the éeld theory models
Of interest is the fact the both the McCall ëHahn SIT
equations and the generalised RMB equations in the case
when inhomogeneous resonance-line broadening is absent
and exact resonance is fulélled can be transformed into the
equations of motion of the principal chiral éeld model
[204]. The same model involves the Kaup ë Steudel equa-
tions describing the SIT in the case of two-photon reso-

nance [205]. The authors of paper [206] have recently
studied different generalisations of the generalised RMB
equations for multilevel systems and have found that these
systems have the hidden non-Abelian symmetry.

Similarly to that how the unitary transform couples the
Hamiltonians of different theories of optical resonance and
quantum optics, the authors of [207] found that this
transform allows one to obtain from a Lax representation
of one exactly integrable system a Lax representation of
another system. As an example of unitary transforms in the
theory of integrable systems, the authors of [208, 209]
considered the propagation model of differently polarised
pulses under the Raman scattering and two-photon reso-
nance conditions on the j1 � 0! j2 � 0 and j1 � 1! j2 � 1
transitions. The models were obtained by applying the
unitary transform to the Lax representation of the equations
of the polarisation double-resonance theory in the three-
level system with the L-conéguration of the energy levels.

6.4.3 Method of Stark switching for optical solitons
One of the coherent spectroscopy methods is the Stark
switching technique. The resonance atomic or molecular
medium is placed in the éeld of cw laser radiation whose
carrier-wave frequency differs from the transition fre-
quency. Then, with the pulse of the dc electric éeld, the
transition frequency because of the Stark effect changes
such that this frequency is in resoance. Similarly, we can
`switch on' and `switch off' the resonance interaction. This
technique helped to study coherent transition processes:
optical nutations, free induction decay, photon echo,
coherent Raman beats.

The same method can be used to excite optical solitons
in a resonant medium. Using the IST theory, Basharov et al.
[210] developed a theory describing propagation of ultra-
short pulses under the condition that additional Stark pulses
`switch on' the resonance interaction. The basis of the IST
consists of the nontraditional spectral problem. The author
of [211] presented the generalisation to the case of polarised
ultrashort pulses.

6.4.4 Solitons and the electromagnetically induced trans-
parency
The model of three-level atoms is the simplest model which
is used to study the electromagnetically induced trans-
parency (EIT). Nazarkin et al. [212] showed that two-
photon self-induced transparency can emerge due to rela-
xation suppression in the medium such that the electro-
magnetic pulse propagation regime becomes coherent.

The authors of papers [213, 214] considered the inter-
action of solitons under the EIT conditions by using the
system of equations (21). Rybin et al. [215, 216] discussed
the electromagnetic pulse deceleration under the EIT
condition by using the model of three-level atoms with
the L-conéguration of the energy levels. They showed that
the group velocity of a soliton monotonically decreases with
increasing intensity of the control laser éeld.

6.4.5 Solitons in artiécial media
A great deal of interest has arisen in the last few years in
artiécial materials (metamaterials) with extraordinary
electrodynamic properties. Negative refraction is the most
discussed property of such materials [217]. To date, such
metamaterials ë transparent in the optical spectrum ë are
absent, but their possible nonlinear properties are being
actively studied. Transparent metamaterials can have NLS
solitons or solitons in a two-component NLSE [218, 219].
Interesting phenomena can be found in metamaterials due
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to the simultaneous existence of forward and backward
waves* in them [220]. Recent paper [221] indicated the SIT
possibility for a backward wave.

Basharov [222] described an artiécial medium consisting
of microcavities élled with atoms and photons. He showed
that interaction of an external éeld under Raman resonance
conditions with an optically forbidden atomic transition
involving photons of the microcavity is described in some
cases by ordinary MB equations for single-photon reso-
nance. In this case, atoms and photons in microcavities are
treated as a new elementary emitter ë an atomëphoton
cluster on the states of which the irreducible representations
of dynamic symmetry algebra are implemented, i.e., third-
order polynomial algebra.

7. Conclusions

The sequential use of the IST has lead to the discovery
many equations that produce soliton solutions. The soliton
solutions, as a rule, are stable with respect to collisions and
small perturbations (although this stability is not asymp-
totic ë small perturbations remain small, while the solitons
themselves can change their parameters). This property
makes the search for such equations attractive for the
development of the nonlinear wave theory. Physics has few
models based on completely integrable systems; therefore,
these systems can be considered as the érst order of the
perturbation theory. The authors of papers [167, 168]
developed a special perturbation theory for equations
close to integrable, this theory being widely used in
different éelds of physics including nonlinear optics.

There exists a éeld of nonlinear optics where the term
`soliton' is used to designate stable (robust soliton) electro-
magnetic pulses. The systems of equations describing their
propagation and interaction are not integrable and even the
perturbation theory is not efécient here. The most known
example is the gap (Bragg) solitons which can propagate in
periodic nonlinear media. Apart from these solitons, vortex
(topological) and parametric (in particular, quadratic)
solitons, solitons in photonic crystals and in ébre gratings,
dissipative and noncoherent solitons are being studied.
Recent books [223 ë 226] are devoted to all these so-called
solitons.
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