
Abstract. The theory of three-wave SRS is developed, which
takes into account nonlinear dispersion of a medium for
arbitrary phases of the pump waves at the input to the
medium. The effect of interference suppression of SRS is
predicted for values of the total phase of the three-wave pump
(2n� 1)p (n � 0, �1, �2 . . .), the effect being caused by the
destructive interference of polarisations of the nonresonant
dipole-allowed transitions. The relation between the contri-
butions of the linear and nonlinear dispersions to the SRS is
found. It is shown that at a suféciently large wave detuning,
the anti-Stokes wave amplitude experiences spatial oscilla-
tions.

Keywords: stimulated Raman scattering, interference, coherence,
nonlinear dispersion, phase.

1. Introduction

Stimulated Raman scattering in the general case is a
coherent process. Coherence means that the interfering
pump and scattering waves interact, and the wave equation
for SRS cannot be reduced to equations for the wave
intensities. Often, SRS is excited by bichromatic pump
waves whose frequency difference is equal to the frequency
of a Raman transition. In this case, efécient generation of a
broad spectrum of Stokes and anti-Stokes harmonics is
observed [1]. Nonlinear dispersion of the medium deter-
mines the formation mechanism of the total phase of the
waves during their coherent interaction in the active
medium [2]. Unlike the linear dispersion when the wave-
numbers are directly proportional to real parts of linear
polarisabilities, the wavenumbers and phases are found in
this case from the solutions of the corresponding differ-
ential equations. A qualitative change in the dispersion
character, which consists in the mutual adjustment of the
phases, leads to a nonlinear trapping and phase jump [2].

It is natural to assume that the above features of
coherent SRS will be signiécantly affected by the phase
ratio of the pump waves at the medium input. Ampliécation
of the Stokes and anti-Stokes components of the sponta-

neous Raman scattering induces the phase difference. The
phase difference can also be produced in a controlled
manner in excitation of SRS by two- and three-wave
pump, i.e., it acts as an independent parameter in the
experiments. Earlier, this extra physical factor was not
taken into account when considering the SRS; the pump
waves in theoretical calculations were assumed in-phase,
and the phase relations in the experiments were not
controlled.

The aim of this the work is to énd out the qualitative
features and the degree of inêuence of the phase ratio of the
pump waves at the medium input on the three-wave SRS.
This simple version of the SRS is implemented at small
optical thickness of the amplifying medium. The medium is
a gas of quantum L-systems. We restrict our consideration
to the intensity-unsaturated SRS and study only the axial
scattering in the direction of the pump wave propagation.

2. Medium polarisation

Let us designate the two lowest states of the dipole-
forbidden Raman transition by 1 and 2, and the
unpopulated upper state by 3. The density matrix equations
in the case of homogeneous broadening have the form [3]

_r1 � gr1 � gr 0
1 �

2d1e

�h
Re ir31,

_r2 � gr2 � gr 0
2 �

2d2e

�h
Re ir32, r3 � 0,

ÿi _r31 � o31r31 �
e

�h
�d1r1 � d2r21�, (1)

ÿi _r32 � o32r32 �
e

�h
�d2r2 � d1r

�
21�,

_r21 � �G� io21�r21 �
ie

�h
�d2r31 � d1r

�
32�.

Here, rjl and ojl are the off-diagonal density matrix
elements (polarisations) and the frequency of the transitions
j$ l, respectively; r1;2 and r 0

1;2 are the current and
equilibrium level populations of the Raman transition; r3
is the population of state 3; d1;2 are the matrix elements of
dipole moment operators for nonresonant dipole-allowed
transitions 1$ 3 and 2$ 3, respectively; g and G are the
longitudinal and transverse relaxation rates of the Raman
transition; e is the electric éeld amplitude of radiation in
the medium; �h is Planck's constant.
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We will represent the éeld in the medium in the form

e�t; z� � E
X1
n�ÿ1

En�z� cosCn, Cn � ontÿ knz� jn,

(2)

on � o0 � no21, E0�0� � 1, Eÿ1�0� � gÿ1, E1�0� � g1,

where En is the dimensionless éeld amplitudes; on, kn, and
jn are the frequencies, wavenumbers, and initial phases of
the fundamental pump wave (n � 0), Stokes wave (n � ÿ1),
and anti-Stokes (n � 1) wave; z is the longitudinal
coordinate; t is the time.

We will seek the solution of equation (1) in the form

r3j �
X

s�ÿ1;1

X1
m�ÿ1

exp�isCm�R � j�sm , (3)

j � 1, 2, r21 � exp�i�Cÿ1 ÿC0��.
Substituting expressions (3) into equation (1) and using

the rotating wave approximation [4] lead to the stationary
equations, whose solution with allowance for the érst terms
nonlinear (cubic) in the éeld amplitudes have the form

r � in0kE0

ÿ
fÿ1Eÿ1 � f1e

ÿiYE1

�
,

R �1�ÿ1ÿ1 �
ad1Eÿ1
1ÿ a� e

r 0
1 , R �1�ÿ1 0 �

a

1ÿ a
�d1E0r

0
1 � d2Eÿ1r�,

R
�1�
ÿ1 1 �

a

1ÿ aÿ e

ÿ
d1E1r

0
1 � d2E0e

iYr
�
,

R
�1�
1ÿ1 �

a

1� aÿ e

ÿ
d1Eÿ1r

0
1 � d2E0r

�
,

R �1�1 0 �
a

1� a

ÿ
d1E0r

0
1 � d2E1e

iYr
�
, R �1�1 1 �

ad1E1

1� a� e
r 0
1 ,

R
�2�
ÿ1ÿ1 �

a

1ÿ a
�d2Eÿ1r 0

2 � d1E0r
��,

(4)

R
�2�
ÿ1 0 �

a

1ÿ aÿ e

ÿ
d2E0r

0
2 � d1E1e

ÿiYr �
�
,

R
�2�
ÿ1 1 �

ad2E1

1ÿ aÿ 2e
r 0
2 , R

�2�
1ÿ1 �

ad2Eÿ1
1� aÿ 2e

r 0
2 ,

R
�2�
1 0 �

a

1� aÿ e
�d2E0r

0
2 � d1Eÿ1r

��,

R
�2�
1 1 �

a

1� a

ÿ
d2E1r

0
2 � d1E0e

ÿiYr �
�
;

a � o0

o31
, e � o21

o31
, k � d1d2E

2

4�h 2GD
, D� o31

�
1

1ÿ a
� 1

1� a

�ÿ1
,

Y � �2k0 ÿ kÿ1 ÿ k1�z� F, F � jÿ1 � j1 ÿ 2j0,

n0 � r 0
1 ÿ r 0

2 , a � E

2�ho31

.

The medium polarisation is deéned as

P � 2NRe�d1r31 � d2r32��
X1
n�ÿ1
�Psn sinCn � Pcn cosCn�, (5)

where N is the concentration of active molecules; Pcn and
Psn are the real and imaginary parts of the amplitudes of
polarisation waves. Calculating the Psn and Pcn values (5)
with the help of (3), (4) yields

Psÿ1 � ÿ
b� fÿ1Eÿ1 � f1 cosYE1�E 2

0

�1ÿ a 2��1ÿ a��1� aÿ e� ,

Ps0 �
b

�1ÿ a 2�2 � f
2
ÿ1E

2
ÿ1 ÿ f 2

1 E
2
1 �E0,

Ps1 �
b� fÿ1 cosYEÿ1 � f1E1�E 2

0

�1ÿ a 2��1� a��1ÿ aÿ e� ,
(6)

Pcÿ1 �
2EN

�ho31�1ÿ a�
�

1ÿ a

1ÿ �aÿ e�2 d 2
1 r

0
1

� 1ÿ e
1� aÿ 2e

d 2
2 r

0
2

�
Eÿ1 �

b sinYE 2
0E1

�1ÿ a 2���1ÿ e�2 ÿ a 2� ,

Pc0 �
2NE

�ho31

�
1

1ÿ a 2
d 2
1 r

0
1�

1ÿ e

�1ÿ e�2 ÿ a 2
d 2
2 r

0
2

�
E0,

Pc1 �
2EN

�ho31�1� a�
�

1� a

1ÿ �a� e�2 d 2
1 r

0
1

� 1ÿ e
1ÿ aÿ 2e

d 2
2 r

0
2

�
E1 ÿ

b sinYE 2
0Eÿ1

�1ÿ a 2���1ÿ e�2 ÿ a 2� ;

f�1 �
1� a

1� aÿ e
, b � Nn0d

2
1 d

2
2 E

3

�h 3Go 2
31

�
1ÿ e

2

�2
.

Note that in the approximation under study, the real
part of polarisation Pc0 produced by the pump wave is linear
in the éeld amplitude.

3. Equations for the total phase
and slow amplitudes

Differentiation of the equations for the éeld (2) while
retaining only the érst derivatives of the amplitudes with
respect to the coordinate and substitution of the results into
the wave equation�

q 2

qz 2
ÿ 1

c 2
q 2

qt 2

�
e � 4p

c 2
q 2

qt 2
P,

where c is the speed of light, in the rotating wave
approximation yield

2

�
kn � z

dkn
dz

�
dEn

dz
�
�
2
dkn
dz
� z

d 2kn
dz 2

�
En � ÿ

4po 2
n

c 2E
Psn,

kn � z
dkn
dz
� on

c

�������������������������
1� 4p

EEn

Pcn

s
� on

c

�
1� 2p

EEn

Pcn

�
,

(7)

n � ÿ1, 0, 1.
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Use of the approximation associated with the expansion
of the square root in the last three expressions for the
wavenumbers (7) leads (as shown by the corresponding
numerical calculations) to underestimating the amplitude of
the anti-Stokes wave by approximately 5% in the region of
its output to the stationary value and virtually has no effect
on the Stokes wave amplitude and the total phase Y (4). In
what follows, we will restrict ourselves to this approxima-
tion.

Expressing the derivatives of the wavenumbers in the
érst three equations (7) from the last equations with the help
of (6) and solving this system for the érst derivatives of the
amplitudes, in a cubic éeld approximation we obtain the
equations for the amplitudes

dEÿ1
dz
�
�
1ÿ e

a

�
fÿ1� fÿ1Eÿ1 � f1 cosYE1�E 2

0 ,

dE0

dz
� ÿÿ f 2

ÿ1E
2
ÿ1 ÿ f 2

1 E
2
1

�
E0, (8)

dE1

dz
� ÿ

�
1� e

a

�
f1� fÿ1 cosYEÿ1 � f1E1�E 2

0 ;

z � Gz, G � 4pa�1ÿ e=a�2Nn0d1d2k
�1ÿ a 2�c�hnd

,

nd � 1� 4pN
ÿ
d 2
1 r

0
1 � d 2

2 r
0
2

�
�1ÿ a 2��ho31

.

Equations (8) have an integral of motion (the Manly ë
Row relations [3, 5])

E 2
ÿ1

1ÿ e=a
� E 2

0 �
E 2
1

1� e=a
� const

� 1� g 2
ÿ1

1ÿ e=a
� g 2

1

1� e=a
� U. (9)

Taking into account the parameters e and a (4), these
relations represent the sum of the ratios of the energy
densities of the waves to their frequencies and express the
law of conservation of the total number of quanta of all the
waves participating in the nonresonance SRS. Because of (9)
the intensity of the main pump wave is determined by the
intensity of the scattered waves, we will continue to track
only the behaviour of the amplitudes of the Stokes and anti-
Stokes waves.

The equation for the total phase Y (4) is derived from
equations (7) with the help of series expansion of the linear
parts of real polarisations (6) in the small parameter e up to
the second order:

dY
dz
� ÿZ� nd fÿ1 f1 sinY

�1� e=a�E 2
ÿ1 ÿ �1ÿ e=a�E 2

1

Eÿ1E1

,

Z � 2nd�3� a 2�ÿd 2
1 r

0
1 � d 2

2 r
0
2

�
�1ÿ e=2�2�1ÿ a 2�2n0kd1d2

e 2,

(10)

where Z � (2k0 ÿ kÿ1 ÿ k1)=G is a dimensionless wave
detuning caused by the real parts of polarisations that
are linear in the éeld amplitudes.

The érst and third equations in (8) with allowance for
the equality from relation (9)

E 2
0 � Uÿ E 2

ÿ1
1ÿ e=a

ÿ E 2
1

1� e=a
(11)

together with equation (10) form a closed system of
equations describing a three-wave SRS under conditions
of the nonlinear dispersion of the medium. The boundary
conditions for this equation have the form:

Eÿ1�0� � gÿ1, E1�0� � g1, Y�0� � F.

In the limit e! 0, the resulting system of equations
coincides with accuracy to notations with equations (4) from
[6]: the only difference is that the latter describe axial and
conical scattering.

4. Spatial development of SRS

We will estimate the problem parameters as applied to the
SRS on the rotational transition J � 1$ J � 3 of the
hydrogen molecules. For the initial parameters o21 �
587 cmÿ1, o0 � 1:88� 104 cmÿ1 (l � 532 nm), o31 �
105 cmÿ1, N � 2:69� 1019 cmÿ3 (pressure, 1 atm), r 0

1 �
0.493, r 0

2 � 0.249, n0 � 0:244, G � 0:1 cmÿ1, d1 � d2 � 5D,
and the 50-MW cmÿ2 intensity of the main pump
component, the calculated parameters are: a � 0:19,
e � 0:0059, D � 4:8� 104 cmÿ1, fÿ1 � 1:005, f1 � 1:007,
nd � 1:00033, G � 0:175 cmÿ1, k � 0:0137, and Z � 0:05.

The numerical solution of equations (8) ë (11) shows that
in the case of small wave detunings Z and relatively large
and close-to-the-initial values of the amplitudes of the
Stokes and anti-Stokes waves, their amplitude at z > 0:5
signiécantly depend on the initial total phase of the pump
waves F (Figs 1a, b). When F � �p, the amplitudes of both
waves vary with distance much slower than when F � 0.
Thus, the SRS is suppressed. The calculations imply that
this effect exists for gÿ1 � g1 5 0:1 and becomes more
pronounced with increasing g�1.

The physical mechanism of the SRS suppression is
clariéed on the basis of equations (8) ë (11) in the limit
Z, e! 0, f�1 ! 1. In the case of F � �p, when the phase in
the medium has a constant value Y � �p (Fig. 1c), the
factor cosY in the right-hand sides of equations (8) for the
wave amplitudes is equal to ÿ1. The system of equations
(8) ë (11) then reduces to two equations for the amplitudes:

dEÿ1
dz
� dE1

dz
� �Eÿ1 ÿ E1�E 2

0 , (12)

and equality (11).
Apart from relations (9), equations (12) have the integral

of motion

Eÿ1 ÿ E1 � const � gÿ1 ÿ g1. (13)

It follows from equations (12), (13) that in the case of
gÿ1 � g1, the derivatives of the amplitudes of the Stokes and
anti-Stokes waves are small and the SRS is suppressed. The
difference between the amplitudes (13) at Y � �p is propor-
tional to the imaginary part of the constant component of
the polarisation of the Raman transition r (4), which, as seen
from the last equation in (1) is proportional, in turn, to the
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difference between the polarisations of the nonresonant
dipole-allowed transitions. Thus, the SRS is suppressed
due to destructive interference of these polarisations that
is similar to destructive interference, which is the cause of
the coherent population trapping [7] in the case of the
resonant interaction of two waves with a dipole-allowed
transitions of the L-system.

Let us discuss the behaviour of the phase. At a small
initial phase F � 0, the phase in the medium remains
virtually unchanged up to some value z � z0 4 1, and at
the point z0 � g1=gÿ1 it experiences a jump by p and then
quickly takes the stationary value (Fig. 1c). This behaviour
has been called nonlinear trapping and phase jump [2, 6]. At
positive initial phases, F > 0, the phase jump in the medium
DY with increasing the length is positive, DY � p, and at
F4 0 ë negative, DY � ÿp. Consequently, a small change
in the initial phases from negative values to positive ones
causes a 2p phase jump at the point with the coordinate
z > z0. For jFj > 0:1, the phase jump quickly disappears.
These peculiarities in the behaviour of the phase were not
observed earlier in the literature.

The qualitative behaviour of the phase (pulling, jump,
and a quick attainment of the stationary value) is due to
fundamental changes in the mechanism of dispersion, which
in the nonlinear case is determined by differential equations
(7), (10). The main feature of equation (10) is the depend-
ence of the phase derivative on sinY, which arises due to
nonlinearity (cubic in the éeld) of the medium polarisation.
This mechanism acts as follows. In the limit Z! 0, equation
(10) can be written as

dY
dz
� h sinY, Y�0� � F, (14)

where h is the coordinate function determined by the wave
amplitudes. To simplify the situation, we set the function h
constant. In this case, equation (14) has a solution

Y � 2arccot

�
eÿhz cot

F
2

�
. (15)

The behaviour of the function Y(z,F) agrees qualita-
tively with the behaviour of the phase shown in Fig. 1c;
however, in contrast to the calculated phase, the function
Y(z,F) is more smooth and has no jumps. From the
calculations of the h(z) dependence under the conditions
adopted while plotting Fig. 1, it follows that the function
h(z) can be approximated by the expression h �
h0=�1� (zÿ z0)

2=q 2�, where h0, z0, and q are the constants.
Using this approximation in equation (14) leads to a
solution

Y � 2arccot

�
exp

�
ÿ h0q

�
arctan

zÿ z0
q

� arctan
z0
q

��
cot

F
2

�
. (16)

Expression (16) in the case q5 1 and h0q4 1, with an
appropriate choice of parameters, describes quantitatively
well the pulling (nonlinear trapping), jump, and a quick
attainment of the stationary phase Y (Fig. 1d). From
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Figure 1. Amplitudes of Stokes (a) and anti-Stokes (b) waves as well as the total phase (c, d) as functions of the dimensionless length z and the initial
total phase F at Z � 0:007, gÿ1 � 0:5, g1 � 0:49, k � 0:1, e � 0:006, a � 0:2. The phase Y (Fig. 1d) is calculated by expression (16) for h0 � 180,
q � 0:07, and z0 � 0:7.
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solutions (16) follows clear explanation of phase jumps
when changing the spatial coordinates and changing the sign
of the initial phase.

The above analysis of the phase behaviour showed that
the phase jump appears when its derivative is large (h4 1).
When gÿ1 � g1, this is due to the fact that, as follows from
the third equation in (8) with a negative right-hand side, the
amplitude of the anti-Stokes wave at z < z0 decreases
linearly from an initial value to almost zero*. Then, the
phase jump changes the signs of cosY and of the right-hand
side of the third equation in (8) for the amplitude of the anti-
Stokes waves; as a result, the amplitude remains positive
and increases. However, there is another way of increasing
the derivative of the phase ë the use of bichromatic
pumping. In this case, gÿ1 � 1, and the value of g1 is
determined by a spontaneous seed that is several orders of
magnitude smaller than the initial amplitude of the Stokes
pump. As seen from equation (10), h � gÿ1=g1 4 1 for
z � 0. Therefore, the phase jump occurs immediately at
the medium input. Figure 2 shows the numerical solution
of equations (8) ë (11) for this case. The phase behaviour in
this case (Fig. 2c) agrees with the above qualitative
considerations. Because the nonlinear dispersion begins
to affect at z5 1, ampliécation of the Stokes and anti-
Stokes waves at the medium input is determined only by a
small wave detuning Z, i.e., occurs in an optimal way in the
regime of the coherent SRS. This explains the high
eféciency of harmonic generation in the multifrequency
SRS using a bichromatic pump [1]. The dependence of the
amplitudes of scattered waves on the initial phase F
completely disappears in this case (Fig. 2a, b), and the
amplitude of the anti-Stokes waves coincides up to a factor
with the amplitude of the Stokes wave. The latter is due to
the fact that in this case, approximate equation (12), (13)
are used, where gÿ1 4 g1.

The above analysis was conducted for the case of small
dimensionless wave detunings (Z5 1), when the nonlinear
dispersion of the medium dominates. Let us now énd the
relation of linear and nonlinear dispersions, which is given
by Z. As seen from the formula for Z (10), the value of Z
increases with decreasing SRS saturation parameter k (4)
(pump power) and population difference, as well as with
increasing Raman transition frequency and angular diver-
gence of radiation [1]. Calculations show different
behaviours of the phase and amplitude of the anti-Stokes
wave with increasing detuning and varying the initial
amplitudes gÿ1 � g1. Namely, at suféciently large detunings
the phase jump Y occurs against the background of its
decrease with increasing coordinates by the law Y �
ÿZz� F, which follows from equation (10) (determined
by the nonlinear dispersion) with omitted terms in the right-
hand side. At some critical value Z � Z0, the phase jump
completely disappears. The Z0 increases with decreasing
initial amplitudes. In particular, Z0 � 3:8 and 8.2 for
gÿ1� 0:5 and 0.2, respectively.

The wave amplitudes, starting with Z ' 3ÿ 5, oscillate
with the frequency Z. Oscillations are more pronounced for
the anti-Stokes wave, and with increasing Z, their amplitude
decreases, making a few percent for large Z (Z � 80). The

amplitude of the anti-Stokes wave oscillates simultaneously
with its general decrease when the length increases up to
zero. The example of the behaviour of the wave amplitudes
and the phases for the transition values of the wave detuning
is shown in Fig. 3.

At Z > 100, the amplitude oscillations in equations (8)
are averaged, and these equations are reduced to the
equations for dimensionless wave intensities W�1 � E 2

�1:

dWÿ1

dz
� 2

�
1ÿ e

a

�
f 2
ÿ1Wÿ1

�
Uÿ Wÿ1

1ÿ e=a
ÿ W1

1� e=a

�
,

(17)

dW1

dz
� ÿ2

�
1� e

a

�
f 2
1 W1

�
Uÿ Wÿ1

1ÿ e=a
ÿ W1

1� e=a

�
.

2
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Figure 2. Amplitudes of Stokes (a) and anti-Stokes (b) waves as well as
the phase Y (c) in the case of a bichromatic pump at gÿ1 � 0:5, g1 �
0.0001, Z � 0:007, k � 0:1, e � 0:006, a � 0:2.

* Taking into account only the linear dispersion, as shows the solution of

the corresponding equations, the amplitude of the anti-Stokes wave

vanishes at point z � z0 and then becomes negative, which means a phase

jump by p.
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As a result, the SRS becomes noncoherent and phase
independent.

When e � 0, f�1 � 1, the transcendental solution of
equation (17) has the form

z � 1

2Q
ÿ
g 2

1 ÿW1

� ln

�
Uÿ 2g 2

1 ÿQ

Uÿ 2g 2
1 �Q

U�Qÿ 2W1

UÿQÿ 2W1

�
,(18)

U � 1� g 2
ÿ1 � g 2

1 ,

Q �
�������������������������������������������������������������
1� 2g 2

ÿ1 � 2g 2
1 �

ÿ
g 2
ÿ1 ÿ g 2

1

�2q
,

Wÿ1 � g 2
ÿ1g

2
1W

ÿ1
1 .

The graphical solution of (18) for different values of g 2
ÿ1

and g 2
1 shows that in all cases, the anti-Stokes wave intensity

decreases monotonically from its initial value to zero, and
the Stokes wave intensity increases monotonically to a
limiting value determined by (9).

Note that the effect of the nonlinear dispersion of the
medium on the anti-Stokes SRS component is determining
at Z4 1 and has a signiécant impact in a wide range of
values Z (1 < Z < 50), including in the case of small
saturation parameters. Therefore, the effects induced by
the nonlinear dispersion should be observed upon the SRS
not only on rotational but also on the vibrational transitions
of molecules.
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Figure 3. Amplitudes of Stokes (a) and anti-Stokes (b) waves as well as
the phase Y (c) at Z � 6, gÿ1 � 0:2, g1 � 0:19, e � 0:006, a � 0:2.
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