
Abstract. The peculiarities of two-photon nutation in a
system of coherent biexcitons in CuCl semiconductors are
considered taking into account the elastic biexciton ë biexci-
ton interaction. It is shown that depending on the system
parameters, optical nutation represents a process of periodic
transformation of photon pairs into biexcitons and vice versa.
The possibility of exercising the phase control of the optical
nutation process is predicted.

Keywords: two-photon optical nutation, biexcitons in semiconduc-
tors, elastic interparticle interactions.

1. Introduction

Optical nutation is a periodic variation in the initial state of
the system under the action of the external electromagnetic
wave éeld, the variation leading to the medium radiation
modulation [1, 2]. Burshtein et al. [3] presented the theory
of optical nutation in a system of two-level atoms
interacting with the énite number of photons in a
resonator. The authors of papers [4 ë 9] developed the
theory of optical nutation in the exciton spectral region.
They showed that at low excitation levels the nutation
frequency is determined by a constant of the excitonë
photon interaction, while at high excitation levels it
becomes dependent on the exciton density. The authors
of papers [7 ë 10] also studied nutation in a system of
coherent excitons, photons, and biexcitons in the region of
the M-band luminescence. They showed that in the limit of
the speciéed photon (exciton) density, the nutation
frequency is proportional to the electromagnetic (material)
wave amplitude.

The authors of papers [8 ë 14] constructed the theory of
two-photon nutation in a system of coherent biexcitons.
Khadzhi et al. [13, 14] showed that the nutation frequency,
even when the interparticle interaction is neglected, mark-
edly depends on the photon and biexciton density. They
predicted that nutation as a process is determined by the

initial difference in photon and biexciton phases, which
indicates the possibility of exercising the phase control of
two-photon nutation. However, a natural question arises as
to the effect of interparticle interactions on the nutation
dynamics. This problem is especially urgent at high exci-
tation levels when the biexciton density is rather high and
the processes of elastic biexciton ë biexciton interactions
come to the fore. In this connection, we study in this paper
the peculiarities of two-photon nutation in a system of
coherent biexcitons, taking into account elastic interparticle
interactions.

2. Basic equations of the theory
of two-photon nutation

Consider two-photon optical nutation in a system of
coherent photons and biexcitons in semiconductors under
the action of ultrashort resonant laser pulses. We assume
that the pulse duration tp is much smaller that the biexciton
relaxation time trel (tp 5 trel). In this case, the biexciton
relaxation processes can be neglected because they have no
time to come into action during the pulse. For this reason,
below we take into account only the processes of stimulated
emission and absorption of radiation with participation of
biexcitons. Assuming that the spectral width of the pulses is
much smaller than the binding energy of biexcitons (in the
CuCl crystal it is 30 ë 40 meV [15 ë 17]), we can neglect the
optical exciton ë biexciton conversion and exciton ë photon
interaction because the above processes are characterised by
a large detuning of its resonance energy with the photon
energy, providing two-photon generation of biexcitons. The
optical nutation phenomenon under study consists in
pairwise transformation of identical photons into biexcitons
and in radiative recombination of biexcitons with the
formation of photon pairs (Fig. 1). The interaction
Hamiltonian has the form

Hint � hm
ÿ
b̂�ĉĉ� ĉ�ĉ�b̂

�� 1

2
hvb̂�b̂�b̂b̂, (1)

where b̂ (b̂�) and ĉ (ĉ�) are the operators of biexciton and
photon annihilation (production), respectively; m is the
constant of two-photon excitation of a biexciton from the
ground state of the crystal; v is the constant of the elastic
biexciton ë biexciton interaction.

We will use the mean éeld approximation where the
mean value of the operators is nonzero: hb̂i � b 6� 0,
hĉi � c 6� 0. Here, b and c are the complex amplitudes of
the material and electromagnetic éelds. By averaging the
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Heisenberg equations of motion for the operators b̂ and ĉ,
we obtain in this approximation the equations of motion for
the corresponding amplitudes b and c. We assume that all
photons are coherent. They have the same frequency, wave
vector, and polarisation, these characteristics remaining the
same during the pulse action. The produced biexcitons are
also coherent. Thus, when the system is completely coher-
ent, we can factorise the mean value from the product of
some operators in the form of a product of mean values of
each operator. The system [derived from Hamiltonian (1)] of
nonlinear differential equations, which describes the tem-
poral evolution of the material and electromagnetic éeld
amplitudes, has the form

i _b � O0b� mcc� vb �bb, (2)

i _c � oc� 2mc �b, (3)

where O0 is the biexciton eigenfrequency; o is the photon
frequency. Because the states of the photons and biexcitons
are coherent and macroélled, we assume the parameters b
and c to be the time functions. We will supplement systems
of equations (2) and (3) by initial conditions

bjt�0 � b0 exp�ij0�, cjt�0 � c0 exp�ic0�, (4)

where each variable is characterised by the initial amplitude
(b0, c0) and phase (j0, c0).

Let us consider the particle densities N � jbj2, f � jcj2
and `polarisation' components Q � i(b �ccÿ c �c �b) and
R � b �cc� c �c �b. Using (2) and (3) we can easily obtain
a system of nonlinear evolutional equations for the intro-
duced functions:

_N � ÿmQ, _f � 2mQ, (5)

_Q � �Dÿ vN�R� 2mf�4Nÿ f�, (6)

_R � ÿ�Dÿ vN�Q, (7)

where D � 2oÿ O0 is the resonance detuning. Using (4) we
can obtain the initial conditions for the particle and
polarisation densities:

Njt�0 � N0 � jb0j2, f jt�0 � f0 � jc0j2,

Qjt�0 � Q0 � 2f0
������
N0

p
sinY0, (8)

Rjt�0 � R0 � 2f0
������
N0

p
cosY0,

where Y0 � j0 ÿ 2c0 is the initial phase difference.
Solving system (5) ë (7) with allowance for (8), we obtain

the integral of motion for the particle density

2N� f � 2N0 � f0 (9)

and the expression for Q:

Q 2 � 4N�2N0 � f0 ÿ 2N�2

ÿ
�
D
m
�NÿN0� ÿ

v

2m

ÿ
N 2 ÿN 2

0

�� 2f0
������
N0

p
cosY0

�2
. (10)

Expression (9) represents the law of conservation of the
number of particles in the system. Then, using the equation
_N � ÿmQ from (5) and expression (10) for Q, we can obtain
the solution for the function N(t). We will be interested
below in the temporal evolution of the biexciton density
N(t) at different parameters of the system. The temporal
evolution of the photon density f(t) can be easily found
from (9).

It follows from (5) and (10) that if photons are absent in
the system ( f0 � 0, N0 6� 0) at the initial instant of time,
then N(t) � N0 � const and, hence, the two-photon decay
of the biexcitons is impossible. This is caused by the fact that
equations (2) and (3) take into account only induced
transitions. On the other hand, if biexcitons are absent
in the system (N0 � 0, f0 6� 0) at the initial instant of time,
the system evolves in time.

For convenience of further investigations we will use the
normalised parameters

y � 2N

2N0 � f0
, x � f

2N0 � f0
, y0 �

2N0

2N0 � f0
,

x0 �
f0

2N0 � f0
, t � t

t0
, tÿ10 � 2m�2�2N0 � f0��1=2, (11)

a � v�2N0 � f0�1=2
8
���
2
p

m
, b � Dt0.

Then, the integral of motion (9) is reduced to the form

x� y � x0 � y0 � 1, (12)

while the basic equation for the temporal evolution of the
normalised biexciton density y(t) can be written in the form�

dy

dt

�2
�W�y� � 0, (13)

where

W�y� � ÿy�1ÿ y�2 � �b�yÿ y0� ÿ a
ÿ
y 2 ÿ y 2

0

�
� x0

�����
y0
p

cosY0

�2
. (14)

0

o

o

O0Biexciton

Figure 1. Scheme of quantum transitions from the ground state of the
crystal into the biexciton state.
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Expression (13) can be treated as the equation of
oscillations of a nonlinear oscillator, where (dy=dt)2 and
W(y) are the kinetic and potential energies of the oscillator,
respectively. The behaviour of the function y(t) can be
qualitatively established by studying the dependence of the
potential energy W of the nonlinear oscillator on y at
different values of the parameters. The function y(t) can
vary in the region of y values, where W(y)4 0, and we can
obtain from (5) and (8) the initial condition for the rate of
change of this function. The sign of the derivative
(dy=dt)jt�0 is determined only by the initial phase difference
Y0. At p(2k� 1)4Y0 4 2p(k� 1), we have (dy=dt)jt�0
> 0, while at 2pk4 Y0 4 p(2k� 1), k � 0, 1, 2, . . . , we
have (dy=dt)jt�0 < 0. One can see that the evolution of the
system is determined by the initial particle densities x0 and
y0, the initial phase difference Y0, normalised resonance
detuning b, and nonlinearity parameter a. The case a � 0
was studied in [13]. Consider the peculiarities of the
temporal evolution of the system at a 6� 0 under conditions
of the exact resonance b � 0. The form of the solution of
y(t) depends on the parameters a and y0. Unlike the case
a � 0 [13], the potential energy W(y) of the nonlinear
oscillator contains, apart from the term ÿy(1ÿ y)2, a
positively deéned term �a(y 2 ÿ y 2

0 )ÿ x0
�����
y0
p

cosY0�2 whose
presence signiécantly changes the behaviour of the potential
energy. This term has a minimum at point y � (y 2

0�
x0

�����
y0
p

aÿ1 cosY0)
1=2, where it vanishes and leads to the

fact that at a � 0 the twofold square y � 1 of the equation
W(y) � 0, responsible for the motion of the phase point
along the separatrix, splits at a 6� 0 to two different squares,
thereby ensuring the oscillatory evolution regime. Thus, we
can assert that allowance for elastic interparticle interactions
in the system leads to replacement of aperiodic evolution
regimes by periodic ones.

3. Basic results

We will consider érst the case when the initial phase
difference Y0 � p=2. At small a and éxed y0, the equation
W(y) � 0 has four positive roots ymin 4 ymax < y3 < y4,
where ymin < y0, y0 < ymax < 1, y4 > y3 4 1. At a! 0 we
obtain ymin � a 2y 4

0 , ymax � 1ÿ a(1ÿ y 2
0 ), y3 � 1� a(1ÿ

y 2
0 ), y4 � aÿ2. As a increases, the root y3 increases,

while y4 decreases, and it turns out that

y3 � y4 � yc � 1�
��������������
1ÿ y 2

0
3

q � �������������
1� y0

3
p

�
�������������
1ÿ y0

3
p �

at some critical value of the nonlinearity parameter a � ac,
which is determined by the parameter y0:

a 2
c � 4

h
�1� y0�4=3 � �1ÿ y0�4=3 � �1ÿ y 2

0 �2=3
iÿ3

.

As a further increases, there remain only two real roots,
ymin and ymax, while the roots y3 and y4 prove complex-
conjugated: y3;4 � u� iz. When a 2 < a 2

c , i.e., when all the
four roots of the equation W(y) � 0 are real, the solution of
equation (13) has the form:

y � ymin�y4 ÿ ymax� � y4�ymax ÿ ymin�sn2j
y4 ÿ ymax � �ymax ÿ ymin�sn2j

, (15)

where

j � 1

2
a��y4 ÿ ymax��y3 ÿ ymin��1=2t� F�j0; k�;

j0 � arcsin

� �y4 ÿ ymax��y0 ÿ ymin�
�ymax ÿ ymin��y4 ÿ y0�

�1=2
;

k 2 � �ymax ÿ ymin��y4 ÿ y3�
�y4 ÿ ymax��y3 ÿ ymin�

;

snj is the elliptic Jacobi function [18, 19]; F(j0, k) is the
inexact elliptic integral of the érst kind with the modulus k
[18, 19]. The oscillation amplitude A and period T of the
function y(t) are determined by the expressions

A � ymax ÿ ymin,
T

t0
� 4K�k�

a��y4 ÿ ymax��y3 ÿ ymin��1=2
, (16)

where K(k) is the total elliptic integral of the érst kind with
the modulus k [18, 19]. In the limit a! 0, we obtain from
(15) y � tanh 2(t=2� arctanh

�����
y0
p

). At some critical values
of the nonlinearity parameter a � ac, the solution of (15) is
reduced to the form

y � ymin�yc ÿ ymax� � yc�ymax ÿ ymin� sin 2 j
�yc ÿ ymax� � �ymax ÿ ymin� sin 2 j

; (17)

where

j � 1

2
a��yc ÿ ymin��yc ÿ ymax��1=2t� j0;

j0 � arcsin

� �yc ÿ ymax��y0 ÿ ymin�
�ymax ÿ ymin��yc ÿ y0�

�1=2
,

and the oscillation period T of the function y(t) is

T

t0
� 2p

ac��yc ÿ ymin��yc ÿ ymax��1=2
. (18)

Finally, at a > ac we obtain the solution

y � ymaxn
00�1ÿ cnj� � yminn

0�1� cnj�
n 0 � n 00 � ÿn 0 ÿ n 00

�
cnj

, (19)

where

j � a
���uÿ ymin��uÿ ymax� � z 2

�2 � z 2�ymax ÿ ymin�2
	1=4t

�F�j0; k�;

k 2 � 1

2
��

1ÿ �uÿ ymin��uÿ ymax����uÿ ymin��uÿ ymax�� z 2
�2� z 2�ymax ÿ ymin�2

	1=2�;
j0 � arccos

n 00�ymax ÿ y0� ÿ n 0�y0 ÿ ymin�
n 00�ymax ÿ y0� � n 0�y0 ÿ ymin�

;

n 0 � ��uÿ ymax�2 � z 2
�1=2

; n 00 � ��uÿ ymin�2 � z 2
�1=2

;
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u and z are the real and imaginary parts of two complex-
conjugated roots. The oscillation period T is determined by
the expression

T � 4K�k�
a
���uÿ ymin��uÿ ymax� � z 2

�2 � z 2�ymax ÿ ymin�2
	1=4 .
(20)

At some critical value of the parameter a � ac, when k � 0,
z � 0, and u � yc, we again arrive to solution (17).

Figure 2 presents the dependences of the temporal
evolution of the normalised biexciton density y(t) on the
nonlinearity parameter a at some values of the initial
biexciton density y0 for solutions with the sign `ÿ' in the
argument of the function because the solutions with the sign
`�' differ only in the phase shift. The plots of the temporal
evolution at b � 0 as a function of the parameter a are
symmetric, i.e., y(ÿ a) � y(a). One can see from Fig. 2 that
at a � 0 the evolution of the system is aperiodic. The
biexciton density y(t) rapidly decreases with time. At
t � 2arctanh

�����
y0
p

, the density vanishes and then increases,
and at t!1 it asymptotically tends to unity. (Note that
the solution with sign `�' increases with time and at t!1
it also tends to unity.) Thus, at large times the solution y(t)
at a � 0 tends to unity, which indicates that all the photons
are transformed into biexcitons, thereby completing the
evolutional process. At a 6� 0 the evolution of the system is

periodic with a period dependent on the parameters a and
y0. Therefore, at a 6� 0 the optical nutation is a periodic
process of pairwise transformation of photons into biexci-
tons and vice versa. Figure 3 shows the periods and
amplitudes of the biexciton density oscillation as functions
of the parameter a at a different initial biexciton density. As
jaj increases, the amplitude and period of the biexciton
density oscillations decreases at a éxed y0, these changes
being slow at small y0. It follows from Fig. 2 that at large y0
(y0 4 1) the function y(t) changes most drastically in the
region of small values of the nonlinearity parameters jaj. At
large jaj and y0 4 1 the oscillation amplitude A of the
function y(t) is approximately expressed by the formula A �
(1ÿ y0)=jaj, i.e., it decreases with increasing a and y0. At
y0 � 1 the oscillation amplitude vanishes, which means that
oscillations are absent. The oscillation period T, inénite at
a � 0, slowly decreases with increasing jaj (Figs 2, 3). Thus,
we can conclude that at Y0 � (2k� 1)p=2 the account for
biexciton ë biexciton interactions leads to disappearance of
the aperiodic evolution of the system and to a decrease in
the amplitude of the biexciton density oscillations with
increasing nonlinearity parameter a.

Consider now the case Y0 � 0. At éxed y0 and a <
ac � (ÿ 1� 3y0 � 2b

�����
y0
p

)=(4y0
�����
y0
p

), the equation W(y) � 0
has four real positive roots: ymin < y0 < y3 < y4. At ac <
a < ad, this equation has four real roots: y0 <
ymax < y3 < y4. Note that the parameter ac is determined

c

0

0.4

0.2

0.6

0.8

N

N0 � 0:5f0

a

0
ÿ10

a 10 0
3

6
9

t=t0
0

0.4

0.2

0.6

0.8

N

N0 � 0:5f0

0
3

6
9

t=t0

ÿ8
0

a 8

b

0

0.4

0.2

0.6

0.8

N

N0 � 0:5f0

0
ÿ8 ÿ4

4 a 0
3

6
9

t=t0

Figure 2. Temporal evolution of the biexciton density N�t� as a function of the parameter a atY0 � �p=2��2k� 1� (k � �0, 1, 2, . . .) and y0 � 0 (a), 0.4
(b), and 0.8 (c).
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from the condition of equality of the érst two roots,
ymin � y0, and the parameter ad ë from the condition of
equality of the last two roots, i.e., y3 � y4. As the parameter
a (a > ad) increases, the equation has two real positive roots
(y0 < ymax) and two complex-conjugated roots (y3;4 �
u� iz). We will numerically calculate them below.

If a < ac, the solution of equation (13) has the form:

y � ymin�y4 ÿ y0� � y4�y0 ÿ ymin�sn2j
y4 ÿ y0 ÿ �y0 ÿ ymin�sn2j

, (21)

where

j � 1

2
a��y4 ÿ y0��y3 ÿ ymin��1=2t;

k 2 � �y0 ÿ ymin��y4 ÿ y3�
�y4 ÿ y0��y3 ÿ ymin�

.

The amplitude A and period T of the function y(t)
oscillations are found from the expressions

A � y0 ÿ ymin,
T

t0
� 4K�k�

a��y4 ÿ y0��y3 ÿ ymin��1=2
. (22)

When the nonlinearity parameter lies in the interval
ac < a < ad, the solution of equation (13) takes the form:

y � y0�y4 ÿ ymax� � y4�ymax ÿ y0�sn2j
y4 ÿ ymax � �ymax ÿ y0�sn2j

, (23)

where

j � 1

2
a��y4 ÿ ymax��y3 ÿ y0��1=2t;

k 2 � �ymax ÿ y0��y4 ÿ y3�
�y3 ÿ y0��y4 ÿ ymax�

;

A � ymax ÿ y0;
T

t0
� 4K�k�

a��y4 ÿ ymax��y3 ÿ ymax��1=2
. (24)

At a � ac the solution of the basic equation, as follows
from (21) and (23), is given by the equality y � y0 � const.
This means that when the initial densities of biexcitons and

photons are nonzero, the particle density stops oscillating at
a � ac and y � y0. In this case, upon passing through some
critical point, the oscillation period changes continuously.
The phase centre corresponds to this regime on the phase
trajectory. As a increases, the phase trajectory (which has
the shape of an ellipse-like closed curve) slowly shrinks and
at a � ac collapses to a point. Then, at a > ac a new ellipse-
like trajectory develops from this point, which increases with
increasing a. Thus, at a � ac the system is at rest although
the photon and biexciton densities are nonzero at the initial
instant of time.

At a critical value of the nonlinearity parameter a � ad,
when y3 � y4, the solution of the basic equation is reduced
to the form

y � y0�y3 ÿ ymax� � y3�ymax ÿ y0� sin 2 j
y3 ÿ ymax � �ymax ÿ y0� sin 2 j

,

where

j � 1

2
a��y3 ÿ y0��y3 ÿ ymax��1=2.

In this case, the oscillation period is expressed as

T

t0
� 2p

a��y3 ÿ ymax��y3 ÿ y0��1=2
:

Finally, at a > ad we arrive to the solution

y � ymaxn
00�1ÿ cnj� � y0n

0�1� cnj�
n 0 � n 00 � �n 0 ÿ n 00�cnj , (25)

where

j � a
���uÿ y0��uÿ ymax� � z 2�2 � z 2�ymax ÿ y0�

	1=4t;
k 2 � 1

2

�
�
1ÿ �uÿ y0��uÿ ymax� � z 2���uÿ y0��uÿ ymax� � z 2

�2 � z 2�ymax ÿ y0�2
	1=2�;

n 0 � ��uÿ ymax�2 � z 2
�1=2

; n 00 � ��uÿ y0�2 � z 2
�1=2

;

ÿ4 ÿ2 0 2 4 a

A

ÿ4 ÿ2 0 2 4 a
a b

T

t0

1
23

4

1

23

4

0

5

10

15

20

0

0.2

0.4

0.6

0.8

Figure 3. Dependences of the period (a) and amplitude (b) of the biexciton density oscillations atY0 � �p=2��2k� 1� (k � 1, 3, 5, . . .) on the parameter
a at y0 � 0 ( 1 ), 0.4 ( 2 ), 0.8 ( 3 ), and 0.9 ( 4 ).

Peculiarities of two-photon optical nutation of biexcitons 911



u and z are the real and imaginary parts of two complex-
conjugated roots. The oscillation amplitude A and period T
are expresses as

A � ymax ÿ y0,
(26)

T � 4K�k�
a
���uÿ y0��uÿ ymax� � z 2

�2 � z 2�ymax ÿ y0�
	1=4 .

Figure 4 shows the normalised biexciton density versus
time and nonlinearity parameter a at the initial phase

difference Y0 � 0 and a different initial biexciton density.
Figure 5 presents the period and amplitude of the biexciton
density oscillations as a function of a at different éxed y0.
One can see that at y0 � 0 and in the absence of interparticle
interaction (a � 0) the system evolves aperiodically: all
photons transform into biexcitons, thereby terminating
the evolution (Fig. 4a). When y0 6� 0 the aperiodic oscil-
lation regime is displaced with respect to the zero with
increasing the parameter a (Figs 4b ë d and Fig. 5a).

When the parameter of the interparticle interaction is
nonzero, the system behaviour is mainly determined both

a b

c d

0

0.4

0.8

N

N0 � 0:5f0

ÿ10 ÿ5 0 5 a
0

3
6

9
T=t0

N

N0 � 0:5f0

0

0.4

0.8

T=t0

0
3

6
9

ÿ10 ÿ5 0 5
a

N

N0 � 0:5f0

0

0.4

0.8

ÿ5
0

5
a

0

3

6

9

T=t0
0

0.4

0.8

N

N0 � 0:5f0

ÿ5

0

5

a

0

3

6

9
T=t0

Figure 4. Temporal evolution of the biexciton density N�t� as a function of the parameter a at Y0 � pk (k � �0, 1, 2, . . .) and y0 � 0 (a), 0.2 (b), 1/3
(c), and 0.5 (d).
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Figure 5. Dependences of the period (a) and amplitude (b) of the biexciton density oscillations at Y0 � pk (k � �0, 1, 2, . . .) on the parameter a at
y0 � 0 ( 1 ), 0.2 ( 2 ), 1/3 ( 3 ), 0.4 ( 4 ), and 0.8 ( 5 ).
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by the initial photon density and a. One can see from
Figs 4b ë d that at a < ac the oscillations take place below
the plane y � y0. In this interval the oscillation amplitude
érst increases with increasing a and then decreases
becoming zero at a � ac (Fig. 5b). The oscillation period
at a � ac monotonically increases with increasing the
parameter a (Fig. 5a). At a � ac the system is at rest,
i.e., the biexciton density does not change with time. At
a > ac the oscillations take place above the plane y � y0.

At y0 � 1 the equation W(y) � 0 has a twofold root
y ' 1. In this case, the divergence of the oscillation period
emerges at y � �����

y0
p

=(1� y0), i.e., shifts to the positive a
(Fig. 4a). At y0 � 1 we obtain a � 0:5. The parts of the
curves with T=t0 !1 approach asymptotically this point.
Therefore, at y0 6� 0 the aperiodic regime shifts to positive
nonzero a. Thus, at y0 ! 1 the system evolves in a
complicated manner in the vicinity of a � 0, while at
jaj4 1 the evolution is reduced to small-amplitude oscil-
lations of the biexciton density above or below the initial
density f0. In addition, one can see from Fig. 5 that the
oscillation amplitudes at different y0 have zero values both
at a < 0 and a > 0. Indeed, the position of the amplitude
zero on the a axis is given by the expression a �
ac � (1ÿ 3y0)=(4y0

�����
y0
p

). Of interest is also the fact that
at y0 � 1=3 the system is at rest when a � 0, i.e., in the
absence of interparticle interactions.

4. Conclusions

Account for interparticle interactions in two-photon
nutation of biexcitons leads to the fact that the temporal
evolution of the system changes qualitatively: it transforms
from aperiodic at a � 0 into periodic at a 6� 0, the nutation
amplitude and period decreasing monotonically with
increasing jaj (see Fig. 2). Note also that as jaj increases,
the biexciton self-trapping is absent in the temporal
evolution of the system. Indeed, the self-trapping typical
of the evolution of Bose-condensed atom density in a two-
well potential is absent here. But nevertheless we can énd
some similarities. The atoms are self-trapped in one of the
wells when the values of the interatom interaction
parameter are larger than the critical ones. In this case,
the amplitude of the atom oscillations decreases stepwise
and continues decreasing with increasing this parameter
[20, 21]. In our case we deal only with a monotonic change
in the amplitude oscillation with increasing jaj, which, in
our opinion, is related but not identical to the self-trapping
phenomenon. In this case, the larger the y0 the faster
(depending on a) the regime of small-amplitude oscillations
of the system density.
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