
Abstract. Methods for solving analytically and numerically
the problem of multiscale modelling of the laser hyperthermia
processes in a medium with nanoparticles are developed with
regard to composite spherical nanoparticles (nanoshells). The
features of the laser radiation éeld localisation on nanoscale
inhomogeneities are investigated. Issues related to the control
of the tissue hyperthermia processes by choosing the
parameters of spatiotemporal localisation of the laser beam
and of the absorbing nanoparticles are discussed.

Keywords: time-dependent temperature éeld modelling, laser
hyperthermia, composite nanoparticles.

1. Introduction

Laser therapy belongs to the promising areas of modern
medicine. In many cases the therapeutic effect of laser
radiation is inseparably linked with the process of tissue
hyperthermia, which may be a principal effect as well as a
concomitant one [1 ë 3]. The development of models for
calculating the temperature éeld of the tissue exposed to
laser radiation made it possible to carry out investigations,
basing on which the methods of hyperthermia have been
proposed and justiéed not only for surface but also for
subcutaneous layers of biotissue [1, 4, 5]. However, an
essential disadvantage of currently used techniques of
cancer hyperthermia is their limited selectivity and low
spatial resolution. This implies that, when heating the
cancer, the undesired heating of a considerable area of
surrounding healthy tissue simultaneously occurs.

One of the novel and efécient methods of localisation of
external and internal heat generation areas is photothermal
labelling of a cancer tumour with gold nanoparticles of
various shape and structure, e.g., nanoshells, nanorods,
nanocells, etc. [6 ë 14]. In this case, due to the strong
absorption of laser radiation by nanoparticles in certain

spectral regions (referred to as the plasmon resonance
absorption), cells labelled with these particles are locally
and selectively heated, which substantially reduces the
probability of undesired injuring of a healthy surrounding
tissue.

It should be noted, that in this case the sizes of absorbing
particles and, therefore, the degree of heat load localisation,
are as large as tens of nanometres. The necessity to solve the
problem simultaneously for macroscopic (millimetre and
tens of millimetres) and microscopic (fractions of a micro-
meter) objects makes the existing models of temperature
éeld calculation unacceptable for practical use and provid-
ing efécient control of hyperthermia processes.

Generally, the interaction of radiation with a biological
tissue containing absorbing nanoparticles is a rather com-
plex process having multiple aspects (see, e.g., [3, 6, 7]).
Strong scattering by the biotissue itself essentially trans-
forms the characteristics of the probing light. Thus, for a
picosecond or smaller duration of the illuminating pulse,
inside the biotissue the pulse duration increases up to
nanoseconds [3], and a near-isotropic angular distribution
of the scattered light intensity can settle down (the so-called
diffusion regime [3]).

The analysis of the kinetics of temperature éelds, addi-
tionally arising in the biotissue when doped with absorbing
nanoparticles, is also nontrivial. For very small particles
(with characteristic size less than 10 nm, see below) the
optical and thermal characteristics can no longer be
determined by extrapolation of data for bulk samples of
the corresponding materials and should be found with
quantum-mechanical calculations. Moreover, the consider-
ation of fast thermal processes in a condensed medium
requires separate analysis of the temperature dynamics for
the electrons and the crystal lattice of the sample.

Naturally, the formulation of speciéc recommendations
for clinical practice requires performing a variety of studies,
namely, modelling the hyperthermia in a biological tissue,
containing absorbing nanoparticles, with all above-men-
tioned factors taken into account and careful testing of the
results, basing on the comparison with the data of experi-
ments and subsequent preclinical trials. In the present paper,
focusing the attention on the calculation technique within
the framework of the two-scale approach developed (cal-
culation of both the locally averaged temperature éeld and
the temperature gradients within the individual nanopar-
ticles and in their immediate proximity), we deliberately
divert our attention away from the rigorous account for
some of above-mentioned factors, using the following
simpliécations.
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We restrict our consideration to the analysis of relatively
long illuminating pulses (not less than nanosecond dura-
tion), acting on the nanoparticles with the typical size
noticeably larger than 10 nm. As justiéed in Ref. [15],
the calculation of optical characteristics of such particles
still does not require the involvement of the quantum-
mechanical approach, and these characteristics appear to be
close to those of bulk samples, with proper correction for
plasmon resonance absorption [16], for which the heating
dynamics is quite satisfactorily described by the common
classical heat conduction equation (without separate con-
sideration of the temperatures of electron and crystal lattice
fractions), as demonstrated in [11]. Finally, for simplicity we
neglect the scattering properties of the medium, surrounding
the nanoparticles. The light éeld in the medium is modelled
with a locally plane electromagnetic wave, which allows one
to visualise the heat source distribution details in the
composite nanoparticles under consideration.

Note, that due to the linearity of the optical part of the
problem considered, the account for the scattering of
radiation by the medium would, in fact, be reduced to
the summation of a continuum of such plane waves, acting
on a nanoparticle, with a given angle distribution of their
intensities. This distribution (close to an isotropic one in the
diffusion regime of scattering) may be found using known
methods (see, e.g., [3 ë 5]). In addition, by choosing the
duration of the heating pulses in the nanosecond range, we
substantially account for the inêuence of tissue scattering
properties on the propagating pulse, which, whatever short
initially, appears within the tissue already `broadened', and
for tissues as thick as a few centimeters such `broadening'
amounts to a few nanoseconds.

The present paper is devoted to further development of
methods for solving analytically and numerically the prob-
lem of multiscale modelling of the laser hyperthermia
process in a medium, containing nanoscale particles
[13, 14, 17], with regard to composite spherical nanopar-
ticles (nanoshells). The features of the laser radiation éeld
localisation at nanoscale inhomogeneities and the corre-
sponding distributions of the thermal loss density are
studied and the time-dependent temperature éelds under
the irradiation in the pulsed regime are calculated. The
factors that cause the need for using a multiscale approach
to provide reliable control of the spatial distribution of the
temperature éeld both inside the absorbing nanoparticles
and in the surrounding medium are determined.

2. Mathematical formulation of the problem

In correspondence with the approximations assumed, we
considered an ensemble of nanoparticles, embedded in an
optically isotropic and homogeneous substance, irradiated
with laser light. The thermal éeld, arising in such a system,
was modelled using the solution of the time-dependent heat
conduction equation (see, e.g., [3, 18])

cr
qT
qt
� div�kgradT � �Q. (1)

Here, c, r, and k and are the local values of the speciéc
heat, density, and heat conductivity coefécient, respectively;
T is the temperature; t is the time; Q � oe 00jE j2(8p)ÿ1 is the
intensity of the heat sources due to the absorption of

radiation [19], averaged over the period of the optical éeld
oscillation; o and E are the circular frequency and the local
value of the electric éeld amplitude; e 00 is the imaginary part
of the medium permittivity.

Direct solution of Eqn (1) with appropriate boundary
and initial conditions for a macroscopically large number of
nanoparticles is a matter of signiécant mathematical difé-
culties. The problem is complicated by sharp drops of the
optical and thermal characteristics, observed at the nano-
particle ë surrounding medium interface and within the
nanoparticles (the latter is typical, particularly, of nano-
shells). In connection with this, we applied the approach,
analogous to that used in [8] for the analysis of the thermal
éeld in a system of nanorods. Namely, érst we average Eqn
(1) over physically small volumes. The solution of the
resulting equation allows one to study the kinetics of the
medium heating in a practically interesting case of a
macroscopically large number of nanoparticles. However,
as discussed above, in this case the information about the
small-scale inhomogeneity of the heating is lost. To remove
this defect, we estimated the kinetics of temperature
gradients both within the nanoparticles and in the surround-
ing medium using the solution of Eqn (1) for a single
nanoshell at different durations of the irradiating pulse.

The model of a distributed medium (macroscale model-
ling). Under the typical experimental conditions [6, 7] the
suspensions of nanoparticles with small concentrations
N0 � 109 ÿ 1010 cmÿ3 were used. In this case one can
assume that the thermal characteristics (c, r, k) of such a
composite medium coincide with those of a medium without
nanoparticles. As before, the kinetics of the thermal éeld
will be described by Eqn (1), in which, however, T and Q
should be understood not as exact local values of the
temperature and the intensity of heat sources, but as the
values of these variables, averaged over physically small
volumes, containing, at the same time, a suféciently large
number of nanoparticles.

The model for calculating the small-scale inhomogeneity
of the temperature éeld (microscale modelling). At small
concentrations N0 of nanoparticles, the mean distance
between them (� N

ÿ1=3
0 � 104 nm) considerably exceeds

their characteristic size � 102 nm [6, 7]. In this case, the
small-scale inhomogeneity of the temperature éeld can be
estimated using the solution of Eqn (1) for a single particle.
Naturally, in contrast to the distributed medium model, now
it is necessary to account not only for the thermal character-
istics of the surrounding medium (cm, rm, km) but also for
those of the nanoparticle itself. The latter was considered to
be a nanoshell with the core made of fused silica (thermal
characteristics c1, r1, k1) covered with gold (c2, r2, k2). The
solution of Eqn (1) should satisfy the conditions of
continuity for the temperature T and the heat êow
ÿkgradT at the interface between the media.

3. Results of the modelling

3.1 Analytical solution of the model macroscopic level
problem

First we considered a simpliéed distributed medium model,
assuming that the absorbing nanoparticles localised in a
certain volume V are imbedded in an inénite nonabsorptive
medium. Then, for an arbitrary spatiotemporal dependence
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of the absorption Q(r, t), the solution of Eqn (1) may be
written in the form (see, e.g., [18])

T�r; t� � T0 �
�
V

d3r 0
� t

0

dt 0
Q�r 0; t 0�

cr
�
2a

������������������
p�tÿ t 0�p �3

� exp

�
ÿ jrÿ r 0j2
4a 2�tÿ t 0�

�
. (2)

It is assumed here that at the initial moment of time t � 0,
the temperature at all points has the same value T0;
a 2 � k=(cr) being the thermal diffusivity of the medium.

Considering a rectangular irradiating pulse with the
duration tp which is by many orders of magnitude higher
than the period of the optical éeld oscillation � 1=o, and
neglecting the spatial inhomogeneity of the radiation
absorption in the whole volume V, we will use the
approximation: Q(r, t) � Q0 at 0 < t4 tp and Q(r, t) � 0
at t > tp. And, énally, for simplicity let us consider the
volume V to have the shape of a sphere with the radius R.

The simpliécations accepted allow one to perform ana-
lytically the necessary integration in Eqn (2). As a result, the
sought-for temperature appears to be dependent only on the
distance r from the centre of the sphere and on the time t:

T�r; 0 < t4 tp� � T0 �
Q0R

2

2k

�
�
1ÿ 1

3
u 2 � F�uÿ; t� ÿ F�u�; t�

�
for 0 < u � r

R
< 1,

T�r; 0 < t4 tp� � T0 �
Q0R

2

2k

(3)

�
�
2

3

1

u
� F�uÿ; t� ÿ F�u�; t�

�
for u � r

R
5 1,

where u� � u� 1,

F�u�; t� � erf�BRu��
�
1

3

u 3
�
u
ÿ 1

2
u 2
� ÿ

1

4�BR�2
�
� 1

BR
���
p
p

� exp
�ÿ �BRu��2�� 13 u 2

�
u
ÿ 1

2
u� ÿ

1

6�BR�2u

�
; (4)

B � 1

2a
��
t
p ; erf�x� � 2���

p
p
� x

0

exp
ÿÿx 2

�
dx

is the error integral. Here, we restricted ourselves to writing
down the form of the solution in the most interesting region
0 < t4 tp, while at t > tp the solution quickly decays
(Fig. 1). The character of the obtained solution is partially
displayed in Figs 1 and 2.

It was assumed in the calculations that in the transparent
medium with the refractive index nm � 1:33, far from the
boundaries of the medium there is a spherical absorptive
region with the radius R � 0:5 cm, homogeneously élled
with nanoparticles with the concentration N0 � 5�
109 cmÿ3. As in the experiments [6, 7], these particles are
nanoshells with a fused silica core (with the refractive index
n1 � 1:46 and the radius R1 � 70 nm), coated with a gold
layer (with the refractive index n2 � 0:15� i4:64 and the

layer thickness d � 20 nm, so that the total radius of the
core with the coating is R2 � 90 nm). At the initial moment
of time, the medium with nanoparticles has the temperature
T0 � 26 8C and is irradiated by a rectangular laser pulse
having the intensity I � 4 W cmÿ2 and the duration
tp � 300 s. The laser radiation wavelength is l � 800 nm.
The following thermal characteristics of the medium were
used: c � 4182 J kgÿ1 degÿ1, r � 103 kg mÿ3, k �
0.6 W degÿ1 mÿ1. In correspondence with the considered
approximation of a distributed medium, the intensity of heat
sources is averaged over the physically small volume:

Q � 2ptN0Vcove
00
2 hbiI=l. (5)

Here, t � jEmj2=jE0j2 is the transmission coefécient of the
medium, surrounding the nanoparticles, onto which the
laser beam (approximated by a plane linearly polarised
wave with the complex amplitude E0) is incident from the
vacuum; Em is the complex amplitude of the light in the
medium; e2 � n 2

2 and e 002 is the dielectric constant of the
gold coating and its imaginary part, respectively; the
dimensionless coefécient

hbi � Vÿ1cov

�
Vcov

d 3rb

is the quantity b � jE2j2=jEmj2, averaged over the volume of
the nanoparticle coating Vcov � 4p(R 3

2 ÿ R 3
1 )=3 and propor-

tional to the ratio of the energy density of the electric éeld,
diffracted into the shell of the nanoparticle, to that of the
irradiating éeld in the medium; E2 is the vector complex
amplitude of the electric éeld in the corresponding region.
We should note, that, érst, in Eqn (5) only single scattering
of the irradiating light by the ensemble of nanoparticles is
taken into account, and only the golden coating is assumed
to absorb radiation. Second, together with the quantity E2,
the parameter b appears to be spatially inhomogeneous,
which is discussed at the end of the present subsection.
Third, the expressions obtained for the quantities b and hbi
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Figure 1. Kinetics of heating of a spherical volume (R � 0:5 cm) of
localisation of nanoscale particles ( 1 ë 4 ) and the surrounding medium
( 5 , 6 ) under the action of a rectangular radiation pulse with the
intensity 4 W cmÿ2 and duration 300 s at the distance r � 0 ( 1 ), 0:5R
( 2 ), 0:75R ( 3 ), R ( 4 ), 2R ( 5 ), and 3R ( 6 ) from the centre of the
localisation volume.
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as a result of the calculation of the diffraction of a plane
wave on the nanoshells in the quasi-electrostatic approx-
imation (see, e.g., [15]), are presented in Appendix. Finally,
the Fresnel transmission coefécient 4=(1� nm)

2 was used
for t.

Thus, the essential inhomogeneity of heating of both the
region, where the absorption of radiation occurs, and the
surrounding medium is apparent (Fig. 1). Note that all
dependences are obtained in a relatively simple analytical
form and satisfactorily agree with appropriate experimental
curves presented in Refs [6, 7] (see, in particular, Fig. 5
from Ref. [6]). The temperature distribution, which appears
to be maximal at the centre of the radiation-absorbing
region, has the simplest form in the steady-state regime.
Such a regime is implemented at pulse durations tp 4
R 2=(4a 2) in the interval tp > t4R 2=(4a 2), when the con-
tribution of the functions F(u�, t), describing the transient
behaviour, appears to be inessential in Eqn (3).

The corresponding illustration is presented in Fig 2 for
the steady-state distributions of the temperature T and of
the magnitude of the heat êow density jJj � j ÿ kHT j. Thus,
in Fig. 2 the radial temperature distribution inside the
sphere (04 r4R) is described by a parabolic law. At
the boundary of the absorbing region, the excess of the
temperature over its initial value T0 � 26 8C amounts to 2/3
of the corresponding excess at the centre. Outside the sphere
(r > R), with the growth of r the temperature decreases
following a hyperbolic law (Fig. 2a). Correspondingly, the
heat êow density grows linearly inside the sphere and
decreases as � 1=r 2 outside it (Fig. 2b). The eféciency of
the light energy conversion into heat in the steady state may
be characterised by the ratio of the heat êow density at the
boundary to the intensity of irradiating light. Then for the
case under consideration this value is � 14% (Fig. 2b).

Consider now the radiation absorption within the golden
shell of a separate nanoparticle, which will be used in
Subsection 3.3 for the analysis of temperature gradients
in the framework of the microscale approach. In this case,
the local intensity of heat sources may be presented in the
form

Q1 � 2pte 002 bI=l. (6)

The results of calculation using Eqn (6) for linearly
polarised irradiating light are partially presented in Fig. 3.
Alongside with the axial symmetry of the picture (no
dependence on the azimuthal angle j), the pronounced
inhomogeneity of the light absorption is clearly seen both
across the shell thickness [curves ( 1 ë 3 )] and, particularly,
with respect to the polar angle, namely, the absorption is
maximal at the `equator' (at y � 908) and is practically zero
at the `poles' (at y � 0 and y � 1808). This angular depend-
ence can be also easily seen directly from the expression for
b given in Appendix in the case je2j4 je1j, jemj, considered
here, for relatively thin shells (R2 ÿ R1 5R1), when a rough
estimate yields Q1(y) � sin2 y [see Eqn (A.2)].

Thus, the analysis of temperature gradients in nanoshells
with the considered structure and in the surrounding
medium generally requires accounting for the spatial
inhomogeneity of the local intensity of heat sources within
these shells, mentioned above. We plan the implementation
of such an improved analysis for the future, whereas in
Subsection 3.3 of the present paper we, for simplicity,
restrict ourselves to considering the intensity of thermal
sources within the nanoshells to be constant:

hQ1i � 2pte 002 hbiI=l, (7)

where the expression for hbi is given in Appendix.

3.2 Finite-element macroscale modelling of heating the
biotissue with absorbing nanoparticles

We proceed to considering a more general case, when the
region where nanoparticles are localised has the shape of an
ellipsoid of revolution with the major axis of 15 mm and the
minor axes of 10 mm, one of the latter being coincident
with the axis of the laser beam (z axis). The heat conduction
equation (1) is solved by the énite-element method using
the bundled software COMSOL [20]. Again, only the

0 1 2 3 r=R

0 1 2 3 r=R

a

b

T
�
8C

jJ j�W cmÿ2

30

65

100

0.6

0.3

Figure 2. Spatial steady-state distribution of the temperature T (a) and
the magnitude of the heat êow density jJj (b) for the absorbing medium
whose parameters are presented in Fig. 1.

Q1�r; y� (rel. units)

0 45 90 135 y
�
deg

1

2

3

1.0

0.5

Figure 3. Distribution of the local intensity of heat sources in a spherical
nanoshell at the distance r � R1 ( 1 ), r � �R1 � R2�=2 ( 2 ), and r � R2

( 3 ) from its centre versus the polar angle y between the polarisation
vector of the irradiating light and the direction vector pointing at the
observation point. The geometrical and optical characteristics of the
nanoshell have the same values as above.
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radiation absorption by the nanoparticles appearing in the
laser beam is taken into account. It is assumed that the heat
generation in the biotissue free of nanoparticles is
negligible. The shape of the calculation domain (geo-
metrical model) and its énite-element discretization are
illustrated in Fig. 4.

The adiabatic boundary condition qT1=qnjS1
� 0 is

imposed on the solution at the outside plane surface S1

of the medium, through which the laser irradiation is
introduced, where T1 � Tÿ T0; T0 is the temperature of
the medium in the unperturbed region (far from heat
sources); n is the normal vector to the surface S1. At the
rest part S2 of the calculation domain surface the boundary
condition is T1jS2

� 0. The initial condition at t � 0 in the
calculation domain V is taken to have the form T1jV � 0.
The calculation results of the time-dependent temperature
éeld are shown in Figs 5 ë 7.

The analysis of the obtained numerical results allows one
to conclude that they agree quite well with the kinetics of the
temperature variations, observed experimentally [6, 7] in the
medium with nanoparticles, irradiated with a laser beam.
The fast growth of the temperature at the beginning of the
exposure time substantially slows down during the sub-
sequent 1 ë 2 minutes. Approaching a steady state occurs
with the rates of the temperature growth of the order of a
few Celsius degrees per minute or less. As the estimates
show, the steadying of the temperature at the assumed
parameters of the laser beam and the concentration of
nanoparticles may take a few tens of minutes.

At the same time, it may be seen from Figs 5 and 6 that
the temperature éeld in the region of localisation of nano-
particles, irradiated with the laser beam, is characterised by
a considerable spatial inhomogeneity (in the interval
5 mm < z < 15 mm at the end of the exposure time the
temperature drop approaches 18 8C). This effect should be
necessarily taken into account when estimating the inêuence
of hyperthermia or thermolysis on a tissue and choosing the
exposure duration. Obviously, the reduction of the spatial
inhomogeneity of the temperature éeld in the region of
nanoparticle injection would improve the possibility to
control hyperthermia and photothermolysis and make the
inêuence of different factors less critical when determining
the exposure duration. The potential possibilities to control
the laser beam action on the medium can be enhanced by

L
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nanoparticles

0.01

ÿ0:01
0

0
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�
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ÿ0:01
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�
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�
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Figure 4. Three-dimensional énite-element grid in the calculation
domain. The grid spacing is smaller in the zone of laser beam propaga-
tion; the grid is additionally condenced in the region of absorbing
nanoparticles injection to reduce the numerical computation error [17].
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Figure 5. Distribution of temperature T1 in the longitudinal sectional
view of the macroscopic calculation domain (passing through the beam
axis z) at the moment of time t � 300 s, corresponding to the end of light
exposure. The maximal temperature is T max

1 � 50:3 8³. The zero of the
image grayscale corresponds to the temperature T0 � 26 8C.
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Figure 6. Distribution kinetics of the temperature T1 along the axis of
the laser beam irradiating a medium with nanoparticles.
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Figure 7. Change in the temperature T1 in the calculation domain with
the maximal temperature as a function of the dimensionless time
normalised to the exposure time t0 � 300 s.
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using a pulsed regime instead of a cw one. The features of
tissue heating in pulsed regime are considered below.

3.3 Finite-element microscale modelling
of heating the medium with absorbing nanoparticles

In correspondence with the approach described above, the
microscale modelling is used to account for the local
gradients of the temperature T2 arising due to the
inhomogeneity of local heat generation in the nanoshells,
absorbing the electromagnetic radiation. In spite of a
substantial thermal resistance of the layer, surrounding an
individual particle (its thickness depending on the concen-
tration of nanoparticles and typically having the order of
103 ÿ 104 nm [3, 8]), the temperature gradient as such is
caused both by the speciéc heat load density in the
nanoparticle shell and by the medium inertia (thermal
conductivity parameters).

Figure 8 presents the results of calculation of local
variations in the temperature T2 (the increments of temper-
ature during the laser pulse) in the microscopic domain
`nanoparticle and its neighbourhood' as a function of the
pump pulse duration and the laser beam intensity, provided
that the magnitude of the heat pulse (i.e., the amount of heat
energy) is constant. The geometrical parameters of the
composite nanoparticles and the thermal properties of
the medium are given in Subsection 3.1. The following
thermal parameters were used: k1 � 1:4 W mÿ1 Kÿ1,
1 � 2400 J kgÿ1 Kÿ1, r1 � 2200 kg mÿ3 for the fused silica
core and k2 � 300 W mÿ1 Kÿ1, c2 � 130 J kgÿ1 Kÿ1,
r2 � 19300 kg mÿ3 for the golden shell. The size of the
énite elements for the discretization of the calculation
domain is not less than 0.1 of the thickness of the golden
shell, in which the heat generation occurs; the volume of the
calculation domain is two orders of magnitude larger than
the volume of a nanoparticle.

Though, in correspondence with curve ( 2 ) in Fig. 8, the
reduction of the pulse duration with a simultaneous increase
in the intensity I does not change the amount of the thermal
energy, generated in the nanoparticle per pulse, no temper-
ature equivalence of the regimes is observed, namely, the
amount of the additional temperature increment T max

2 in the
vicinity of the nanoparticle considerably grows, as seen from
curve ( 1 ) in Fig. 8. If the additional increase in the

temperature by 1 8³ due to fast processes of heating and
relaxation under the pump pulse action is taken to be a
signiécance test, the pulse duration of 10 ms will be a
landmark, as follows from curve ( 1 ). Curve ( 2 ) in
Fig. 8 allows one to determine the intensity I of the laser
beam, corresponding to this duration (I � 1 kW cmÿ2). At
the pulse duration 2 ns and the intensity I � 5 MW cmÿ2,
the increment T2 reaches already 100 8³, etc.

From the results of our calculations we conclude that a
drastic reduction of the magnitude of thermal pulses is
possible when using nanosecond pulse regimes of laser
irradiation that provide the required level of hyperthermia.
In this case, the inhomogeneity of the temperature distri-
bution in the irradiation zone, caused by macroscopic
diffusion processes and considered in the previous two
subsections, can be minimised. Simultaneously, the zone
of undesired overheating of the healthy tissue is reduced.
These factors indicate that the effect of the absorbed laser
radiation power localisation may have promising applica-
tions.

The results of calculation of the temperature éeld,
presented in Figs 9 and 10, allow one to estimate the
spatiotemporal parameters of transient thermal processes
in a composite nanoparticle and in its vicinity.

At the onset of the pump pulse, a minimum of the
temperature T2 is observed in the central part of the
nanoparticle core (Fig. 10, lower curves). At the end of
the pulse, this minimum vanishes, and the temperature
within the entire core becomes practically equal to that
of the golden shell (upper curves in Fig. 10 and the
distribution of T2 in Fig. 9).

The cause of such a behaviour is that the énite heat-êow
velocity in the core material (characterised by thermal
diffusivity [21]) and the core size determine the limiting
pulse duration t limp , above which the temperature gradients
inside the core of the composite nanoparticle can be
neglected (the heat energy of the pulse being constant).
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Figure 8. The maximal temperature increment T max
2 in the microscopic

domain `nanoparticle and its neighbourhood' ( 1 ) and the intensity of the
laser beam I, providing the same magnitude of the heat pulse ( 2 ), versus
the pump pulse duration.

T2

�
8C

0 1 2 3 x
�
102 nm

y
�
102 nm

0

1

2

3

4

5

0

2

4

6

8

10

12

Figure 9. Distribution of the temperature increment T2 in the microsco-
pic domain `golden nanoshell and its neighbourhood' at the end of the
100-ns pump pulse under the action of the irradiating laser beam with the
intensity I � 100 kW cmÿ2. (Due to the distribution symmetry, we consi-
der one quarter of the cross section of the spherical microscopic domain;
the points with 04 r < 70 nm lie in the core, 704 r4 90 nm in the
shell, and 90 < r4 450 nm in the microscopic domain of the medium,
surrounding the nanoparticle.) The maximal temperature is T max

2 �15 8³.

1086 Yu.A. Avetisyan, A.N. Yakunin, V.V. Tuchin



Accepting the value of 1 8³ to be a signiécance test of the
temperature increment, for the considered nanoparticles the
limiting pulse duration will be t limp � 20 ns, as follows from
the analysis of curves in Fig. 10. The reduction of the pulse
duration below t limp with a simultaneous increase in the
intensity I leads to a considerable spatial inhomogeneity of
the temperature éeld during the whole time of action of the
irradiating pulse. This is represented in Fig. 11, where the
results of calculation for the pulse duration of 1 ns are
displayed.

A considerable time delay is clearly seen between the
heating of the major part of the core material and that of the
golden shell of the nanoparticle, and by the end of the pulse
the corresponding temperature difference within the nano-
particle reaches the value of � 130 8C.

The essential inhomogeneity of the temperature distri-
bution inside a composite nanoparticle in the course of the
pulses with tp < t limp allows one to predict the possibility of
shell melting before the core of the nanoparticle could heat
up to the softening temperature of the core material. The
result found by numerical calculations explains the exper-
imentally observed picture of destruction of composite

nanoparticles [22], not yet interpreted physically, namely,
the melting of the shell and the formation of liquid gold
drops on the core of the nanoparticle (Fig. 12).

4. Conclusions

Based on the two-scale modelling presented, the character-
istic features of time-dependent temperature éelds, formed
in media with absorbing nanoparticles, are investigated.
The proposed technique of using the effects of the absorbed
laser radiation power localisation and the algorithms for
calculating the parameters of spatiotemporal thermal action
seem promising for synthesis and development of compu-
terised systems, providing the level estimation and the
adaptive control of the processes of dosing hyperthermia of
relatively large regions of biotissue, as well as of separate
cells (e.g., at the injection of a certain absorber directly into
the tumour tissue, or at the accumulation of functionalised
nanoparticles in the tumour tissue under systemic admin-
istration).
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Appendix

As well known (see, e.g., [15]), the quantity b used above
and proportional to the ratio of the energy density of the
electric éeld, diffracted into the shell of a nanoparticle, to
that of the irradiating éeld in the surrounding medium, may
be easily found within the framework of quasi-electrostatic
approximation:

b � jE2j2
jEmj2

� jC j2 � 1ÿ 3 cos 2 y
r 3

2Re�DC ��j

� 1� 3 cos 2 y
r 6

jD j2, (A1)

C � ÿ3em�e1 � 2e2�
D

, D � 3em�e1 ÿ e2�R 3
1
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Figure 10. Distribution kinetics of the temperature T2 along the radial
coordinate in the microscopic domain `composite nanoparticle and its
neighbourhood' during the 100-ns pump pulse.
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bourhood' during the 1-ns pump pulse.
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obtained by means of transmission electron microscopy. Adopted from
[22].
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D � �e1 � 2e2��e2 � 2em� � 2

�
R1

R2

�3
�e1 ÿ e2��e2 ÿ em�.

Here, Em is the complex electric-éeld amplitude of the
electromagnetic wave, propagating in the medium and
linearly polarised in the direction of the vector v; y is the
angle between this vector and the direction vector pointing
at the observation point located at the distance r
(R1 4 r4R2) from the centre of a spherical nanoshell;
ej � n 2

j are the dielectric constants of the corresponding
media ( j � 1, 2, m).

In the case je2j4 je1j, jemj for relatively thin shells
(R2 ÿ R1 5R1), the expression for the quantity b can be
essentially simpliéed, and Eqn (A1) yields the following
rough estimate

b�y� � 9

4
jCj2 sin 2 y. (A2)

The elementary averaging of Eqn (A1) over the volume
of the nanoparticle shell Vcov � 4p(R 3

2 ÿ R 3
1 )=3 yields the

expression

hbi � V ÿ1cov

�
Vcov

d 3rb � jC j2 � 2

�R1R2�3
jD j2. (A3)
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