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Abstract.  Using the radiative transfer theory and Monte Carlo 
simulations, we analyse the effect of scattering in a medium and of 
the size of the detector pinhole on the formation of the fluorescent 
signal in standard two-photon fluorescence microscopy (TPFM) 
systems. The theoretical analysis is based on a small-angle diffu-
sion approximation of the radiative transfer equation, adapted to 
calculate the propagation of focused infrared radiation in media 
similar to the biological tissues in their optical properties. The 
accuracy of the model is evaluated by comparing the calculated 
excitation intensity in a highly scattering medium with the results 
of Monte Carlo simulations. To simulate a tightly focused Gaussian 
beam by the Monte Carlo method, the so called ‘ray-optics’ 
approach that correctly takes into account the finite size and shape 
of the beam waist is applied. It is shown that in the combined confo-
cal and two-photon scanning microscopy systems not equipped with 
an external ‘nondescanned’ detector, the scattering significantly 
affects both the nonlinear excitation efficiency in the medium and 
the fluorescence collection efficiency of the system. In such sys-
tems, the rate of the useful TPFM signal in-depth decay is 1.5 – 2 
times higher than in systems equipped with a ‘nondescanned’ detec-
tor. 

Keywords: two-photon fluorescence microscopy, multiple scattering, 
radiative transfer theory, small-angle diffusion approximation, Monte 
Carlo simulation, focused Gaussian beam.

1. Introduction 

Among the optical methods of biomedical diagnostics, which 
use near-IR radiation ( lex = 700 – 1000 nm), two-photon flu-
orescence microscopy (TPFM) is distinguished by a unique 
combination of submicron spatial resolution, high-contrast 
imaging and visualisation of the biotissue structure at depths 
of up to 1 mm [1]. The TPFM is mainly used to observe the 
signals of the collective or individual activity of neurons in 
the brain of laboratory animals in vitro and in vivo [2], as well 
as for three-dimensional visualisation of unstained integu-
mentary tissues in vivo [3]. The theoretically predicted maxi-
mum observation depth of the TPFM method is limited by 
the multiple scattering effects [4, 5]; however, to achieve it in 
practice, maximisation of the fluorescence excitation and 
detection efficiency is required. The first problem can be 

solved by using fluorophores with the maximum in the two-
photon excitation near lex = 1000 nm*, that are characterised 
by a large absorption cross section and photobleaching 
resistance. At present, quantum dots meet these requirements 
[6], but their use in in vivo experiments requires a further 
study of their accumulation, excretion, and toxicity. More 
acceptable from the standpoint of security and functionality 
are coloured proteins that fluoresce in the visible range when 
excited in the region from 850 to 1000 nm [2], but their two-
photon absorption cross section is two orders of magnitude 
lower than that of quantum dots. In this way, efficient detec-
tion of a fluorescence signal is an urgent problem that also 
involves optimisation of the collection efficiency of the imag-
ing system. 

Laser scanning microscopy (LSM) systems equipped with 
the so-called nondescanned detector measuring the fluore
scence signal as close to the objective exit as possible [7] have 
the highest collection efficiency. At the same time, some LSM 
setups (in particular, the systems combining confocal and 
two-photon fluorescence microscopy) are equipped with a 
universal confocal detector with a pinhole whose size is 
adjustable in a wide range [8]. As in the case of confocal imag-
ing, the two-photon excited fluorescence (TPEF) signal in 
such systems is ‘descanned’ (i.e., passes back through the 
same scanning optical elements as the probe beam), but its reg-
istration requires maximal opening of the detector pinhole. In 
visualising transparent objects, the presence of a confocal pin-
hole does not affect the collection efficiency of the combined 
LSM system; however, scattering reduces the TPEF detection 
efficiency [9]. It is known that this leads to a decrease in the 
working depths of the systems operating in the multiphoton 
regime; nevertheless, the quantitative estimates of this effect 
are absent in the literature. 

Reducing the collection efficiency in scattering media with 
depth was studied mainly experimentally [7, 9, 10] or with the 
help of the numerical Monte Carlo (MC) simulation [10 – 12]. 
This effect was theoretically evaluated in [12] within the diffu-
sion approximation of the radiative transfer theory. However, 
in biological tissues the small-angle rather than the diffuse 
scattering dominates in the range of working depths of the 
TPFM method. In this paper, we propose an improved ana-
lytical model to describe the TPEF signal measured from the 
scattering medium by two types of receivers: a nondescanned 
(NDS) receiver and a descanned receiver with an adjustable 
confocal pinhole (DSCP). The proposed model is based on 
the calculation of the light field in a scattering medium in the 
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*  Despite the higher rate of water absorption, the penetration depth of 
radiation in the biological tissue at this wavelength is higher than that 
of radiation in range from 700 to 800 nm.
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small-angle diffusion approximation for the radiative transfer 
equation. The validity of the developed model is confirmed by 
Monte Carlo simulations of the fluorescence signal, adapted 
to the transverse profile of the probe beam intensity and the 
type of receiver (NDS or DSCP). The completed study made 
it possible to compare quantitatively the characteristics of the 
signals detected by the TPFM imaging systems with different 
types of receivers. 

2. Analysis of two-photon excitation 		
of the fluorophore in a scattering medium 

2.1. Models of an excitation beam 

According to [8, 13], the number of fluorescence photons Q, 
generated in the volume V per unit time (photon s–1) due to 
two-photon excitation of the fluorophore by a train of short 
pulses with a duration t and a repetition rate F, is defined by 
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where q(r) is the spatial density of the two-photon fluore
scence sources; a is the form factor of the pulse; S 2*  is a dynamic 
two-photon absorption cross section (cm4 s photon–1); Pex is 
the average excitation power (photon s–1) at a wavelength lex; 
C(r) is the local concentration of the fluorophore; Iex (r) is the 
intensity distribution (normalised to Pex) in the studied volume 
[5, 13]. Two-photon fluorescence generation requires a high local 
instantaneous intensity (of the order of 1030 photon s–1 cm–2), 
and so the excitation beam is usually sharply focused by an 
objective with a numerical aperture NA > 0.6. In a transpar-
ent medium, the intensity in the focused unit-power beam can 
be described by a Gaussian distribution: 
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is the beam cross section at different depths z in a medium 
with the refractive index n; zf is the depth of the beam waist 
location. The intensity distribution at any depth meets the 
normalisation condition 
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When a focused Gaussian beam propagates in the tissue, 
its structure is distorted due to scattering (we neglect the linear 
absorption of IR radiation in the range of TPFM working 
depths). The total intensity in the excitation unit-power beam 
in a medium with the scattering coefficient mex is the sum of 
unscattered or ballistic (Ib) and scattered (Is) components [14]: 
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The component Is can be found by solving the radiative 
transfer equation taking into account the pronounced scatter-
ing anisotropy in biological tissues (the mean cosine of the 
single-scattering angle g > 0.8). In our previous paper [5] we 
considered the solution for the Is in the form of a Gaussian 
distribution [15]: 
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The power Ps of the scattered intensity component and its 
cross section correspond to the integral characteristics of the 
beam of an arbitrary shape, calculated in the small-angle dif-
fusion approximation [15]: 
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Here, 2g  is the dispersion of the small-angle scattering phase 
function. However, this solution ignores the fact that the source 
power for the diffuse intensity component, which is determined 
by the ballistic component of the focused beam, depends on 
the depth: near the focus the number of the scattered photons 
should increase because the density of unscattered photons 
is maximal there. In this paper, we compare the calculation 
results of the Is structure, obtained using a standard small-
angle diffusion approximation, with its modification proposed 
in [16], where the source of the scattered photons is distributed 
in depth. In the modified small-angle diffusion approximation, 
the expression for Is has the form: 
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2.2. Model of a phase function 

For further calculations, it is necessary to specify the model 
phase function, which would reflect the characteristics of single 
scattering in biological tissues. Traditionally, biotissue optics 
utilises the Henyey – Greenstein phase function [17] 

, ,
cos

p g
g g

g

1 2

1
/HG

2 3 2

2

g
g

=
+ -

-
^ h

6 @
	 (7)

satisfying the normalisation condition 
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This function is convenient because the single parameter – the 
mean cosine of the scattering angle g – is used to specify it in 
the whole range of scattering angles g. Indeed, the Henyey – 
Greenstein function well approximates many real phase func-
tions in the region of small angles, but the corresponding 
parameter g turns out to be much larger than the anisotropy 
factor calculated from the measured phase function, and func-
tion (7) underestimates the integral value of the probability of 
scattering in the backward hemisphere. As alternative models, 
Sharma and Banerjee [18] proposed multicomponent phase 
functions; however, the number of independent parameters 
determining the partial contribution of the components and 
their shape increases. In this paper, we analyse a two-term 
phase function, consisting of small-angle and isotropic parts 
[5, 15]: 

,p bp b11g g= + -^ ^ ^h h h 	 (8)

where as the p1(g) component we use a ‘narrow’ Henyey – 
Greenstein function pHG(g, g' ), corresponding to the anisotropy 
factor g' = (g + 1)/2 [19]. The parameter b =  2g/(1 + g) is 
determined from the equality of the anisotropy factors for the 
measured phase function and approximation (8). This model 
describes well the real phase functions of biotissues (Fig. 1) and 
also allows one to separate the contributions of scattering by 
small and large angles. For biotissues with g > 0.7, the scat-
tering angle dispersion of the small-angle function p1 is related 
to the anisotropy factor of the total phase function by the 
phenomenological expression: 

2g  =~ . .g0 72 1-^ h 	 (9)

We subsequently used the modified Henyey – Greenstein 
phase function to simulate the propagation of the focused 
beam in a scattering medium by the Monte Carlo method and 
to compare the results of simulation and theory. 

2.3. Monte Carlo simulation of propagation of a tightly 
focused excitation beam in a scattering medium 

To test the analytical models of the excitation beam scattering 
we  compared the beam profiles, calculated by formulas of 
standard [(3) – (5)] and modified [(3), (6)] small-angle diffusion 

approximations, with the results of the Monte Carlo simula-
tion. The latter method is widely used in problems of biomed-
ical optics, acting as a ‘numerical experiment,’ but is mainly 
employed for studying the propagation of radiation from col-
limated sources. Simulation of tightly focused beams is sig-
nificantly simplified: the beam waist is usually considered to 
be a point [21, 22]. However, in calculating the signals recorded 
by different optical microscopy systems, the finiteness of the 
radius of the focused beam waist is an important factor deter-
mining, in particular, the longitudinal and transverse resolu-
tion of the method. At the same time, the classical implemen-
tation of the Monte Carlo simulation of light propagation in 
transparent and scattering media [23] suggests that the photons 
do not have the wave properties and propagate along straight 
paths in free space (or between scattering events). This makes 
the description of the diffraction pattern of a Gaussian beam 
extremely difficult. 

In this paper, we simulated the beam focused by an objec-
tive with a numerical aperture NA ³ 0.6 with the help of the 
‘ray-optics’ approach [24], which in a transparent medium 
ensures the correspondence of the beam profile to expression (2) 
at any depth. In accordance with this approach, the initial 
position of the photon (x0, y0) in the plane of the output pin-
hole of the objective (z0 = 0) is determined by the Box – Muller 
transform: 
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where e1 and e2 are the independent random variables uni-
formly distributed on the interval (0,1]. This transformation 
provides a Gaussian intensity distribution in the plane of the 
output pinhole of the objective with a width a(0) =~ zfNA/(pn). 
The initial direction of photons is determined by the vector 
connecting a point in the plane z0 = 0 and a point in the focal 
plane of the objective (zf), defined by the same transform: 
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where e3 and e4 are the independent random variables uni-
formly distributed on the interval (0,1]; а0 = 0.61 lex /NA is the 
waist radius. 

The ray-optics approach to simulation of the tightly 
focused Gaussian beam allows one to accurately reproduce 
the intensity profile (calculated by the analytical formula) in a 
nonscattering medium (Fig. 2). The main parameters of the 
Gaussian beam – the position of the waist, its longitudinal and 
transverse dimensions – correspond to analytical quantities. 
This allows one to effectively use this approach for simulating 
the propagation of the focused beam in a scattering medium. 

Figures 3 and 4 show the axial and transverse profiles of 
the focused excitation beam in a scattering medium, calculated 
using Monte Carlo simulation and the formulas of standard 
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Figure 1.  Scattering phase function (PF) of the rat brain sample [20], 
characterised by the anisotropy factor g = 0.88 and its approximation by 
the standard Henyey – Greenstein phase function (HGPF) and modified 
HGPF (8) for the same value of g. 
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and modified small-angle diffusion approximations (indicated in 
the figures as the SSADA and MSADA, respectively). 250 mil-
lion photons were used in simulations. After generating the 
initial position and direction of the photon propagation in 
accordance with the above procedure, further propagation of 
the photons in a scattering medium was simulated using stan-
dard algorithms [21, 23]. The change in the direction of a pho-
ton in  each scattering event was determined in accordance 
with the phase function (8). One can see from the plots that 
for the depths from the medium surface to the focal beam 
waist, the modified theory better agrees with the simulation 
results than the standard small-angle diffusion approxima-
tion; however, behind the focus, the both models demonstrate 
the discrepancy with the numerical results. Nevertheless, the 
modified theory has an advantage consisting in the fact that it 
more accurately describes the transverse intensity profile, 
whereas the SSADA model gives underestimated intensities 
near the beam axis (Figs 4a, c). At the same time, at depths 
exceeding 1 mm, the analytically calculated intensity for stan-
dard and modified small-angle diffusion approximations is 
significantly lower than the intensity calculated using Monte 
Carlo simulations (Fig. 3c). This is explained by the fact that 
at depths of more than one transport length lt = [ mex(1 – g)] –1, 
the evolution of the beam shape is determined not by small-
angle but by diffuse scattering, which is neglected both in 
SSADA and MSADA. For the chosen parameters of the 
medium, the transport length is 1 mm. Note also that in the 

whole range of the depths examined, the intensity in the beam 
focus is determined mainly by ballistic photons (see Fig. 3). 
However, when the focusing depth is close to one transport 
length, the total intensity near the medium surface becomes 
comparable with the intensity in the waist (Fig. 3c), which 
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Figure 2.  Transverse intensity profiles at different depths z (a) and 
longitudinal axial intensity profiles of the Gaussian beam focused to a 
depth zf = 0.1 mm in a nonscattering medium at lex = 800 nm for dif
ferent numerical apertures NA of the objective (b). Curves are calcula-
tions by formula (2), points are the result of Monte Carlo simulations 
using the ray-optics approach. 
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Figure 3.  Axial intensity profiles in a Gaussian beam focused in a scat-
tering nonabsorbing medium with the refractive index n = 1.33, the 
scattering coefficient mex = 10 mm–1, and the anisotropy factor g = 0.9 
at NA = 1, lex = 800 nm, and zf = 100 (a), 500 (b), and 1000 mm (c). 
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hinders the observation of deep-seated layers. In general, we 
can conclude that in the medium regions involved signifi-
cantly in the formation of the TPEF signal, the MSADA 
model better agrees with the results of the Monte Carlo simu-
lation and is, therefore, more preferable for further use. 

2.4. TPEF signal distribution in a bulk fluorescent medium 

Using the beam model developed, we can analyse which 
regions of the strongly scattering and fluorescence medium 
make the main contribution to the TPEF signal, if the fluoro-

phore is uniformly distributed in the medium. This corre-
sponds to the problem of observation of thick tissue samples 
when fluorophore accumulates in the tissue volume. The 
TPEF power Q = Q(zf) is a function of the observation depth, 
determined by the position of the excitation beam focus in the 
medium. The authors of [4, 5, 25] showed that in a bulk fluo-
rescent medium, interference of the near-surface fluorescence 
signal with a useful signal becomes significant. To study this 
effect, we consider the axial TPEF power distribution W(z, zf), 
which can be calculated by integrating the density of the fluo-
rescence sources q(r) along the transverse coordinate: 
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To analyse quantitatively Q and W, the intensity , ,I r z zex f=^ h 
in the excitation beam will be calculated by MSADA formu-
las (3), (6). Figure 5 shows the TPEF power Q(zf) on the 
focusing depth in the scattering medium, and Fig. 6 shows the 
profiles of the axial distribution of the fluorescence power 
W(z, zf), corresponding to the various positions of the beam 
focus. If we assume that the fluorescence in the medium 
occurs only due to the nonlinear excitation of the fluorophore 
in the vicinity of the focus by unscattered light, then accord-
ing to the Lambert – Beer law, the function Q(zf) should 
decrease with depth as exp(–2mexzf), which corresponds to a 
square-law decay of the intensity Ib in the focus. However, the 
behaviour of the curve in Fig. 5 differs from the described 
law: the decay near the surface is close to exponential but is 
characterised by a somewhat lower rate, and at some depth the 
rate of the signal decay slows down. Comparing the curves in 
Figs 5 and 6, we can see that the first difference is due to the 
influence of scattered light on the intensity in the focus, and 
the second difference is due to the emergence of a high-power 
TPEF signal near the boundary, which is first comparable 
with the signal from the focus region, and then begins to 
exceed it. The local near-surface TPEF powers are small, but 
the region that produces this signal is considerably larger than 
the region of the focal volume. The influence of the near-sur-
face illumination can be reduced by limiting the detector pin-
hole, as envisaged in the DSCP schemes; however, when such 
a pinhole is absent (for example, in systems equipped with the 
NDS-detector), the visualisation depth by the high-contrast 
TPFM method is limited (Fig. 7). 
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Figure 4.  Transverse intensity profiles in a Gaussian beam (NA = 1, 
lex = 800 nm) focused at a depth zf = 500 mm in a scattering nonabsorb-
ing medium with n = 1.33, mex = 10 mm–1, and g = 0.9. The profiles are 
calculated in the planes z = 250 (a), 500 (b), and 750 mm (c). 
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Figure 5.  TPEF power as a function of the excitation beam focusing 
depth (NA = 1, lex = 800 nm) in a scattering medium with n = 1.33, mex = 
10 mm–1, g = 0.9 (solid curve); the dashed curve is the exponential as-
ymptote exp(–2mex zf). 
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3. Evaluation of the fluorescence collection 
efficiency of laser scanning microscopy setups 
equipped with nondescanned and descanned 
detector in a scattering medium 

3.1. Analytic and numerical calculations of the fluorescence 
collection efficiency of TPFM systems 

The TPFM image is characterised by the fluorescence power, 
which is measured from the medium at a given position of the 
focus rf = (rf^, zf) [15]: 

, , , .d d dP A q L sr r s r s r r r r s r2PM f f z
2

0= -= = =l l l^ ^ ^ ^h h h hy y 	 (11)

Here, the function ,L r r s0 -= l^ h describes the spatial-angular 
distribution of fluorescence in the plane of the medium 
boundary at point r̂  and in the direction s from the unit-
power isotropic source located in the medium at point r' ; 
A(r̂ , s) is the spatial-angular characteristic of the receiver. 
Formula (11) takes into account that the receiver pinhole illu-
minated by fluorescence is oriented parallel to the medium 
boundary and has an outer normal in the direction of the z axis. 
For a point fluorophore positioned in the focus, q(r', rf)  = 
Qd(r' – rf), and formula (11) takes the form: 
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The integrand in (12) is the collection efficiency of the 
TPFM imaging system, which is the ratio of the number of 
fluorescence photons reaching the photodetector to the num-
ber of photons produced in a fluorescent medium due to two-
photon absorption: 

, , .d dA L sr r s r r s r sf f z0
2h = -= = =^ ^ ^h h hy 	 (13)

Under the scattering conditions, the collection efficiency depends 
not only on the characteristics of the receiver but also on the 
optical parameters of the medium at the fluorescence wave-
length. 

We will use the scattering model developed in the previous 
section to assess quantitatively the collection efficiency of two 
types of recording systems: a wide receiving pinhole (corre-
sponding to a TPFM system equipped with a NDS-receiver) 
and a limited receiving pinhole (corresponding to a TPFM 
system with a DSCP-receiver). We assume that generation 
of  the fluorescence photons due to two-photon absorption 
occurs mainly in the region of the focal volume, which does 
not exceed a few cubic micrometres in the case of tight focus-
ing, and to simplify the resultant formulas, the fluorescence 
source can be treated as a point source. In a scattering medium, 
this assumption is valid for depths corresponding to the work-
ing range of the TPFM method, i.e. when the fluorescence 
from the beam waist is much higher than the volume fluore
scence signal from the near-surface region. For a medium 
with a known scattering coefficient mex, the maximum focus-
ing depth satisfying this condition can be determined from the 
dependence in Fig. 7. For greater depths, the collection effi-
ciency should be calculated using expression (11) with allow-
ance for the nonlocal distribution of the TPFM sources. 

In the standard small-angle diffusion approximation, the 
function L0 in the medium at a distance r from a point isotro-
pic source is given by [26]
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where j is the angle of the vector deviation s from the radial 
direction; mem is the scattering coefficient at the wavelength of 
fluorescence emission lem; 3D rem

2m g= /  is the angular dis-
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Figure 6.  Axial distribution function of the TPEF power W for different 
excitation beam focusing depths (NA = 1, lex = 800 nm) in a scattering me-
dium with n = 1.33, mex = 10 mm–1, g = 0.9 at zf = 250 (a) and 500 mm (b). 
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Figure 7.  Maximum depth zmax (limited by the near-surface illumina-
tion) of visualisation of the scattering and bulk fluorescent medium 
structure by the TPFM method at NA = 1, lex = 800 nm, g = 0.9, and 
n = 1.33. 
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persion of the scattered radiance component. We will charac-
terise the system measuring the optical signal by two param-
eters: the opening angle qNA of the numerical aperture of the 
objective (in TPFM systems, fluorescence is excited and mea-
sured by the same objective) and the quantity ac, which is the 
effective field of view radius in the focal plane of the objective 
(Fig. 8). The value of ac is related to a physical radius of the 
detector pinhole R through the parameters of the optical 
magnification of the objective (Mo) and microscope (Mm): ac 
= R/(MoMm) [27]. In addition to the above parameters, the 
collection efficiency of a real system depends on the transmis-
sion characteristics of the objective and other optical ele-
ments, but this dependence can be easily taken into account 
by multiplying by appropriate coefficients. In turn, the depen-
dence of h on ac will be more complicated because the quan-
tity ac limits the region of the angular sensitivity in the confocal 
detection scheme [11]. Formally, the influence of the confocal 
pinhole can be described by the presence of the angular filter 
of the fluorescence photons with the transmission characteris-
tic 

T =~ ,exp
cosa

r

c
2 2

2 2

q

j
-e o

where q is the angle between the symmetry axis and the direc-
tion to a point of photon emission from a scattering medium 
(Fig. 8). The nondescanned detector contains no limiting pin-
hole and allows one to take all the photons that fall within the 
numerical aperture of the objective. Therefore, in the case of 
NDS-receiver, the quantity ac is chosen infinitely large. By 
this means the restriction on the direction of the arrival of 
photons involved in the formation of the fluorescence signal 
from a scattering medium is removed. 

The objective pinhole spatially restricts the area, from 
which the fluorescence flow is recorded, by a circle with an 
outer radius r*^ = zf cos qNA. Thus, the spatial-angular charac-
teristic of the receiver A can be represented in the form: 

, , ,exp
cos sin

cosA r
a

r
z r

c
f NA2 2 2

2 2

q j
q q

j
qF= - -=

=
=^ e ^h o h 	 (15)

where F (·) is the Heaviside function, and the collection effi-
ciency is expressed by the formula 
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This expression is based on the calculation of radiance using 
a standard small-angle diffusion approximation. However, 
the above comparison of the small-angle diffusion approxi-
mation with Monte Carlo simulations showed that the theory 
gives underestimated values of the local intensity near the 
symmetry axis of the system. In this case, it will lead to an 
underestimation of the collection efficiency of the imaging 
system. Therefore, we have refined expression (15) by analogy 
with formula (6), taking into account the distribution of the 
source of scattered photons in the case of a standard small-
angle diffusion approximation: 
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For a nonscattering medium from (16) and (17), we can 
obtain an obvious result: h0 = (1 – cos qNA)/2. For scattering 
media, Fig. 9 presents the calculation results of the collection 
efficiency of the systems equipped with NDS- and DSCP-
receivers, and data of MC simulations. The numerical simula-
tion was based on the calculation of the transport of photons 
(generated by a point isotropic source in the excitation beam 
focus) to the boundary of a scattering medium with the scat-
tering coefficient mem and the scattering phase function (8), 
and on the spatial-angular filtration of outgoing photons in 
accordance with condition (15). For convenience of calcula-
tions, the value of ac is given in units of the Airy disk radius 
(AU) for a given lem and numerical aperture of the objective. 
The receiver pinhole, which opens one Airy disk in the focal 
plane of the objective (1 AU = 0.61lem /NA), provides ideal 
confocal detection of the fluorescence signal; for a system with 
a NDS-receiver, ac ® ¥ (indicated as “NDS” in the figure). 

Comparing the results of analytical calculations of the 
collection efficiency with the data of Monte Carlo simulations 
confirms the validity of model (17) in the studied range of 
localisation depths of a small fluorescent object. In general, 
the given dependences show that limiting the detection region 
by the confocal pinhole substantially affects the h*. The col-
lection efficiency of an ideal confocal pinhole (ac = 1 AU) 
decreases exponentially with depth; however, an increase in the 
pinhole size by 10 and even 25 times did not significantly alter 
the rate of h*(zf), which decreases only at pinholes with ac > 
100 AU. In this case, even for a pinhole of this size the collec-
tion efficiency turns to be significantly lower than h0, if the 
fluorophore is located at a depth of more than a few scatter-
ing lengths, lem = 1/mem. 

Quantitative assessment of the effect of scattering on 
the collection efficiency of the TPFM system is performed for 
the Carl Zeiss LSM 510 setup. The maximum physical size of 
the receiving pinhole in such a setup (2R = 1000 mm) corre-

ac

r

zf

j

q
qNA

Figure 8.  Scheme of the fluorescence signal detection in setups with a 
limited field of view [12]. 
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sponds to the field of view with a diameter 2ac = (300/Мo) mm 
in the focal plane of the objective. For a standard water-
immersion objective 20´/1.0 (Mo = 20, NA = 1), the trans-
verse size of the detection system sensitivity is 15 mm, which 
corresponds to ac = 25 AU for lem = 500 nm. With such a field 
of view, the collection efficiency of the TPFM system from 
depths, exceeding one scattering length, is close to that of the 
confocal detection scheme and decreases with depth approxi-
mately according to the law exp(– mem zf) (Fig. 9a). 

3.2. Effect of the fluorescence collection efficiency on the 
TPFM signal 

A decrease in the collection efficiency with increasing the 
focusing depth in the scattering medium will affect the rate of 
the TPFM signal decay. The brightness of each pixel of the 
TPFM image is determined by the number of fluorescence 
photons N(zf), arriving at the receiver during the dwell-time 
Dt of signal accumulation: 

N(zf) = P2PM(zf) Dt =~ Q(zf) h(zf) Dt.

This relation is applicable in a situation when two-photon 
excitation of the fluorophore is concentrated in the vicinity 
of  the focus, and the effects of surface illumination can be 

neglected. Figure 10 demonstrates the dependence of the 
TPFM signal, measured in a scattering medium by systems 
equipped with a NDS- or DSCP-receiver, on the focusing 
depth. It is obvious that the rate of the signal decay in systems 
with a NDS-receiver is much lower than in systems with a 
receiving pinhole whose size coincides with the diameter of 
the Airy disk (ideally confocal detection). However, increasing 
the size of the confocal receiving pinhole to 10 – 20 AU has 
virtually no effect on the change in the rate of TPFM signal 
decay. Thus, in the LSM systems equipped with a DSCP-
receiver, the change in the detector pinhole size within accept-
able limits does not lead, in practice, to a significant increase 
in the TPFM signal level achieved in systems with a NDS-
detector. In the first approximation, the dependence of the 
TPFM signal on the depth can be evaluated for systems with 
a NDS-receiver as NNDS(zf) ~ exp(–2mex zf). With allowance 
for the above, the TPFM signal in systems with an adjustable 
confocal pinhole decreases as NDSCP(zf) ~ exp[–(2mex – mem)zf]. 
For most biological tissues, the scattering coefficient ms is 
either independent of the wavelength in the range from 500 to 
1000 nm [20] or decreases in accordance with the law that is 
close to the power law: ms ~ l–m, where m = 0.5 – 2 [28]. For 
excitation in the near-IR region and fluorescence detection in 
the visible region, the scattering coefficients are related 
approximately as mem /mex ~ 1 – 2. This implies that the total 
attenuation of the TPFM signal recorded by a receiver with a 
limited pinhole is 2mex + mem = (3 – 4) mex and is 1.5 – 2 times 
higher than the attenuation of the TPFM signal recorder by 
the NDS-detector. 

4. Conclusions 

Analysis of the scattering effect on the image characteristics 
of optically thick biotissue samples, formed by two-photon fluo-
rescence microscopy, requires a careful choice of the theoreti-
cal model. In this paper, by comparing the results of calcula-
tions with those of Monte Carlo simulations we have demon-
strated the effectiveness of the modified small-angle diffusion 
approximation. This theoretical approach has been used to 
study the features of two-photon fluorescence excitation in a 
strongly scattering sample and to analyse the collection effi-
ciency of the TPFM system. The results obtained make it pos-
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Figure 9.  Collection efficiency of the TPFM system in a scattering  
medium (mem = 10 mm–1, g = 0.9, n = 1.33) as a function of the focusing 
depth for different values of ac, measured in units of the Airy disk 
radius (AU) at lem = 500 nm, NA = 1 (a) and 0.8 (b). Lines correspond 
to theoretical calculations; points, to Monte Carlo simulations for the 
same values of ac. 
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Figure 10.  TPFM signal as a function of the focusing depth in a scatter-
ing medium, detected with the help of a NDS-receiver (solid line) and a 
DSCA-receiver (dashed lines) with the mentioned pinhole parameters at 
mex = 10 mm–1, mem = 15 mm–1, g = 0.9, n = 1.33, Mo = 20, and NA = 1.
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sible to predict the nature of the fluorescence signal attenua-
tion in TPFM setups equipped with various types of detectors. 
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