Оптимальные частоты следования импульсов возбуждения в лазере на парах тулия

В.А.Герасимов, В.В.Герасимов, А.В.Павлинский

Определены оптимальные частоты следования импульсов (ЧСИ) возбуждения в газоразрядном лазере на парах тулия (ЛПТ) с непрямым заселением верхних лазерных уровней. Показано, что при одинаковых условиях возбуждения оптимальные ЧСИ тем выше, чем меньше дефект энергии между верхним лазерным уровнем-акцептором и ближайшим резонансным уровнем-донором. Обсуждаются причины ограничения оптимальных ЧСИ в ЛПТ. Показано, что максимальная средняя мощность излучения ЛПТ может в несколько раз превышать мощность лазера на парах меди при одинаковых условиях возбуждения и одинаковых газоразрядных трубках.

Ключевые слова: лазер на парах тулия, частотно-энергетические характеристики, столкновительная передача возбуждения, релаксация метастабильных состояний.

1. Введение

Лазер на парах тулия (ЛПТ) относится к газоразрядным лазерам на парах редкоземельных металлов (РЗМ). В периодической таблице РЗМ образуют особую группу из 13 элементов, в атомах которых достраивается внутренняя 4f-оболочка при полностью заполненной внешней 6s-оболочке (Ce-Yb). Это обуславливает существование в атомах РЗМ как неэкранированных (например, $4f^{13}({}^{2}F^{0}_{7/2})6s6p({}^{1}P^{0}_{1}))$, так и экранированных (например, 4f¹²(³H₅)5d_{5/2}6s²) возбужденных состояний. Наличие экранированных возбужденных состояний обуславливает, в свою очередь, существование переходов, линии которых не уширяются или мало уширяются при столкновении атомов РЗМ в таких состояниях с тяжелыми частицами [1,2]. Лазерное излучение было получено в парах семи РЗМ: Eu, Sm, Tm, Yb [3,4], Ho, Dy и Er [5-7], в видимой и ближней ИК областях спектра.

Особенностью лазеров на парах P3M является то, что большинство лазерных переходов в них (из более 50, на которых получена генерация) в качестве верхних лазерных уровней имеют уровни той же четности, что и основное состояние, и не могут возбуждаться электронным ударом из основного состояния. По этой причине верхние лазерные уровни заселяются в процессах столкновительной передачи возбуждения от близкорасположенных резонансных уровней в следующих реакциях [8]:

В.В.Герасимов. Томский государственный университет, Россия, 634050 Томск, просп. Ленина, 36; Институт мониторинга климатических и экологических систем СО РАН, Россия, 634055 Томск, просп. Академический, 10/3; e-mail: gvvsnake@mail.ru

А.В.Павлинский. Институт сильноточной электроники СО РАН, Россия, 634055 Томск, просп. Академический, 2/3;

e-mail: wf@inbox.ru

Поступила в редакцию 28 июня 2010 г., после доработки – 5 октября 2010 г.

$$\mathbf{M}_{i}^{*} + \mathbf{M}_{0} \leftrightarrow \mathbf{M}_{k}^{*} + \mathbf{M}_{0} \pm \Delta E, \tag{1}$$

$$\mathbf{M}_{i}^{*} + \mathbf{B} \leftrightarrow \mathbf{M}_{k}^{*} + \mathbf{B} \pm \Delta E, \tag{2}$$

где M_i^* и M_k^* – атомы РЗМ в близких по энергии возбужденных состояниях *i* и *k*; M_0 – атом РЗМ в основном состоянии; В – атом инертного газа; ΔE – дефект энергии между состояниями *i* и *k*. Процессы (1) и (2) эффективны при условии $\Delta E < k_B T_g$, где k_B – постоянная Больцмана, а T_g – температура газа. Схема формирования инверсии населенности в указанных лазерах представлена на рис.1. Если резонансный уровень R является экранированным, то столкновительная передача возбуждения с него на верхний лазерный уровень UL может происходить только за счет реакции (2). С другой стороны, с неэкранированного резонансного уровня передача возбуждения на верхний лазерный уровень осуществляется преимущественно за счет реакции (1) [8].

Рис.1. Схема заселения верхнего лазерного уровня UL за счет столкновительной передачи возбуждения в реакциях (1) и (2) от близкорасположенного резонансного уровня R:

LL – нижний лазерный уровень; λ_{gen} – длина волны лазерного перехода; ΔE – дефект энергии между уровнями R и UL.

В.А.Герасимов. Институт оптики атмосферы им. В.Е.Зуева СО РАН, Россия, 634021 Томск, пл. Акад. Зуева, 1

Средняя мощность генерации P_{las} в импульсных лазерах определяется следующим выражением:

$$P_{\rm las} = E_{\rm c} V f = E_{\rm pul} f,\tag{3}$$

где $E_{\rm pul}$ и $E_{\rm c}$ – энергия импульса и удельный энергосъем лазерного излучения соответственно; И-объем активной среды; f – частота следования импульсов возбуждения (ЧСИ). Величины $E_{\rm c}$ и $E_{\rm pul}$ и, следовательно, $P_{\rm las}$ сильно зависят от f. При заданных условиях возбуждения в диапазоне рабочих частот f можно выделить три характерные частоты для каждого лазерного перехода: оптимальную по энергии импульса лазерного излучения ($f_{opt}(E_{pul})$), оптимальную по мощности излучения $(f_{opt}(P_{las}))$ и предельную (f_{lim}). Частоты $f_{\text{opt}}(E_{\text{pul}})$ и $f_{\text{opt}}(P_{\text{las}})$ определяются соответственно началом спада энергии импульса E_{pul} и мощности P_{las} лазерного излучения с увеличением f, а частота flim соответствует частоте, при которой генерация лазерного излучения прекращается. Систематических исследований частотно-энергетических характеристик лазеров на парах РЗМ с непрямым возбуждением верхних лазерных уровней не проводилось.

Целью настоящей работы являлось исследование особенностей поведения частот $f_{opt}(E_{pul})$ и $f_{opt}(P_{las})$ в зависимости от дефекта энергии ΔE между резонансным и верхним лазерным уровнями и давления буферного газа гелия в ЛПТ.

2. Экспериментальная часть

Для экспериментального исследования был выбран ЛПТ [9] из-за большого числа лазерных переходов (более 20) с нерезонансными верхними лазерными уровнями и разнообразия дефектов энергии ΔE_{R-UL} между верхними лазерными и близкими по энергии резонансными уровнями в атоме тулия. Исследовались четыре лазерных перехода, на которых происходила генерация при давлении насыщенного пара тулия 0.1 Тор. Схема исследованных переходов представлена на рис.2. Дефекты энергии ΔE_{R-UL} имели разброс значений от 27 до 461 см⁻¹ (табл.1) [10, 11]. Заселение верхнего уровня UL1 лазерного перехода с длиной волны λ_1 осуществлялось в процессе реакции (1) с двух неэкранированных резонансных уровней R1 и R2. Заселение верхних уровней UL2-UL4 остальных лазерных переходов с длинами волн $\lambda_2 - \lambda_4$ происходило за счет реакции (2) с двух экранированных резонансных уровней R3 и R4. Отметим, что переходы с λ_2 и λ_4 являются конкурирующими, поскольку имеют общий нижний лазерный уровень LL2.

Рис.2. Схема исследованных лазерных переходов в атоме тулия. Штриховые стрелки показывают заселение резонансных уровней из основного состояния электронным ударом в разряде, а сплошные - лазерные переходы. Дробное число рядом с уровнем - полный момент Ј.

Лазер работал в саморазогревном режиме. Теплоизолированная газоразрядная керамическая трубка (ГРТ) из Al₂O₃ имела внутренний диаметр 20 мм и длину активной зоны 300 мм (V = 94.25 см³). Кусочки металлического тулия (с содержанием основного вещества 99.83%) располагались на внутренней поверхности ГРТ по всей ее длине. Рабочая емкость 2.35 нФ, заряженная до напряжения 14 кВ, коммутировалась на ГРТ водородным тиратроном ТГИ1-1000/25. Давление буферного газа гелия p_{He} менялось в диапазоне 1-3 Тор, а ЧСИ – в диапазоне 1-30 кГц. Для выделения отдельных линий генерации использовался перестраиваемый резонатор с дифракционной решеткой 300 штр./мм в качестве глухого зеркала и стеклянной пластиной в качестве выходного зеркала. Более подробно схема экспериментальной установки описана в работе [12]. Методика измерений энергетических характеристик лазера определялась саморазогревным режимом его работы. После выхода лазера в оптимальный температурный режим ЧСИ кратковременно изменялась, и проводилось осциллографическое измерение амплитуды и длительности лазерного импульса. Температура газоразрядного канала за это время измениться не успевала. Толщина теплоизолирующего слоя ГРТ не позволяла контролировать

Габл.	1.	Спектроскопич	неские параметры	и исследованных	лазерных	переходов в	атоме	тулия	[10), 1	1].
-------	----	---------------	------------------	-----------------	----------	-------------	-------	-------	-----	------	-----

табл.т. спектрос	газл.т. енектроскопические нараметры исследованных лазерных переходов в атоме тулих [10, 11].										
	Резонансный уровень R		Верхний лазерный уровень UL		Нижний лазерный уровень LL		$\Delta E_{\rm R-III}$				
Длина волны	Энергия Электронная <i>E</i> _R (см ⁻¹) конфигурация		Энергия <i>E</i> _{UL} (см ⁻¹)	Электронная конфигурация	Энергия <i>E</i> _{LL} (см ⁻¹)	Электронная конфигурация	(cm ⁻¹)				
λ ₁ = 1101.115 нм	25745.117 25656.019	$\begin{array}{c} 4f^{13}(^{2}\mathrm{F}^{0}_{7/2})6\mathrm{s}6\mathrm{p}(^{1}\mathrm{P}^{0}_{1})\\ 4f^{13}(^{2}\mathrm{F}^{0}_{5/2})6\mathrm{s}6\mathrm{p}(^{3}\mathrm{P}^{0}_{0}) \end{array}$	25536.116	$4f^{12}(^{3}\mathrm{H}_{6})6\mathrm{s}^{2}6\mathrm{p}_{3/2}$	16456.913	$4f^{12}(^{3}\mathrm{H}_{6})5\mathrm{d}_{5/2}6\mathrm{s}^{2}$	209.001 119.903				
λ ₂ = 1310.06 нм	22929.717 22791.176	$\frac{4f^{12}({}^{3}\mathrm{H}_{5})5\mathrm{d}_{5/2}6\mathrm{s}^{2}}{4f^{12}({}^{3}\mathrm{H}_{5})5\mathrm{d}_{3/2}6\mathrm{s}^{2}}$	22902.127	$4f^{12}(^{3}H_{6})6s^{2}6p_{1/2}$	15271.002	$4f^{12}(^{3}\text{H}_{6})5\text{d}_{3/2}6\text{s}^{2}$	27.590 -110.951				
λ ₃ = 1069.39 нм	22929.717 22791.176	$\frac{4f^{12}({}^{3}\mathrm{H}_{5})5\mathrm{d}_{5/2}6\mathrm{s}^{2}}{4f^{12}({}^{3}\mathrm{H}_{5})5\mathrm{d}_{3/2}6\mathrm{s}^{2}}$	22468.046	$4f^{12}(^{3}H_{6})6s^{2}6p_{1/2}$	13119.610	$4f^{12}(^{3}\mathrm{H}_{6})5\mathrm{d}_{3/2}6\mathrm{s}^{2}$	461.671 323.130				
λ ₄ = 1338.01 нм	22929.717 22791.176	$\frac{4f^{12}({}^{3}\mathrm{H}_{5})5\mathrm{d}_{5/2}6\mathrm{s}^{2}}{4f^{12}({}^{3}\mathrm{H}_{5})5\mathrm{d}_{3/2}6\mathrm{s}^{2}}$	22742.777	$4f^{13}({}^{2}\mathrm{F}^{0}_{7/2})5d6s({}^{3}\mathrm{D})$	15271.002	$4f^{12}(^{3}\mathrm{H}_{6})5\mathrm{d}_{3/2}6\mathrm{s}^{2}$	186.940 48.399				

среднюю мощность лазерного излучения при высоких ЧСИ вследствие перегрева ГРТ.

3. Результаты и их обсуждение

На рис.3 представлены зависимости измеренной в эксперименте энергии импульсов генерации E_{pul} от ЧСИ f для выбранных переходов в атоме тулия. Из полученных данных хорошо видно, что при одинаковых условиях возбуждения и концентрациях тулия и гелия уменьшение E_{pul} с увеличением f начинается тем раньше, чем больше дефект энергии ΔE_{R-UL} между верхним лазерным уровнем-акцептором и ближайшим резонансным уровнем-донором, с которого преимущественно и заселяется данный лазерный уровень. Так, при давлении гелия $p_{He} = 3$ Top (рис.3,a)

спад энергии E_{pul} на переходе с λ_3 ($\Delta E_{R-UL} = 323.130$ см⁻¹) начинается уже с частоты $f_{opt}(E_{pul}) = 2$ кГц, а на переходе с λ_1 ($\Delta E_{R-UL} = 119.903$ см⁻¹) – с частоты $f_{opt}(E_{pul}) = 6$ кГц. На переходах с λ_4 ($\Delta E_{R-UL} = 48.399$ см⁻¹) и λ_2 ($\Delta E_{R-UL} = 27.590$ см⁻¹), имеющих общий нижний лазерный уровень LL2 (рис.2), спад E_{pul} при увеличении f до 30 кГц не наблюдался, и их оптимальные частоты $f_{opt}(E_{pul})$ больше максимальной ЧСИ, использованной в эксперименте. При $p_{He} = 2$ Тор (рис.3, δ) на переходах с λ_2 и λ_4 спад E_{pul} становится заметным, а генерация излучения с λ_3 прекращается. При $p_{He} = 1$ Тор (рис.3, θ) наблюдались только две сильные линии с λ_1 и λ_2 , причем предельная частота $f_{lim} = 24$ кГц на переходе с λ_2 находилась уже в пределах использованных в эксперименте ЧСИ. На рис.4 показаны зави-

Рис.3. Зависимости энергии импульсов генерации E_{pul} на исследованных переходах для ЛПТ от ЧСИ *f* при давлениях гелия $p_{He} = 3 (a)$, 2 (*б*) и 1 Тор (*в*).

Рис.4. Зависимости средней мощности генерации P_{las} от ЧСИ f при давлениях гелия $p_{\text{He}} = 3$ (a), 2 (δ) и 1 Тор (b). Ввиду малости мощностей P_{las} на переходах с λ_1 и λ_3 их значения на рис.4,a увеличены в 5 и 20 раз соответственно.

Рис.5. Зависимости оптимальных ЧСИ $f_{opt}(E_{pul})$ от давления гелия p_{He} для переходов с λ_1, λ_2 и λ_4 .

симости средней мощности генерации P_{las} от ЧСИ f. Мощности P_{las} были вычислены по формуле (3), поскольку, как отмечалось в разд.2, перегрев ГРТ не позволял измерять мощность при больших f. Хорошо видно, что поведение рассчитанных оптимальных частот $f_{\text{opt}}(P_{\text{las}})$ качественно повторяет поведение экспериментальных частот $f_{\text{opt}}(E_{\text{pul}})$. На рис.5 представлены зависимости оптимальных ЧСИ $f_{\text{opt}}(E_{\text{pul}})$ от давления гелия p_{He} для переходов с λ_1, λ_2 и λ_4 .

Анализ экспериментальных данных (рис.3 и 5) также приводит к выводу, что основной причиной ограничения ЧСИ в ЛПТ является скорость релаксации нижних лазерных (метастабильных) уровней соответствующих переходов в межимпульсный период. При этом расселение, по крайней мере экранированных метастабильных состояний (табл.1), происходит при столкновениях с атомами гелия. Действительно, с одной стороны, частота $f_{opt}(E_{pul})$ для лазерного перехода с λ₁ малочувствительна к изменению $p_{\rm He}$, поскольку заселение верхнего уровня UL1 этого перехода определяется реакцией (1) и плотность паров тулия в эксперименте не менялась. Однако, с другой стороны, с увеличением р_{не} растет частота, при которой генерация возможна (рис.3). Таким образом, чем больше концентрация атомов гелия, тем эффективнее расселяется нижний лазерный уровень LL1 в межимпульсный период и тем, следовательно, выше предельная ЧСИ flim. Верхние уровни UL2 и UL4 лазерных переходов с λ_2 и λ_4 заселяются в процессе реакции (2), поэтому увеличение концентрации гелия приводит к повышению для них как предельных ЧСИ f_{lim} , так и оптимальных ЧСИ $f_{\text{opt}}(E_{\text{pul}})$. Тем не менее нельзя исключать и другие возможные механизмы ограничения ЧСИ. Например, в лазерах на самоограниченных переходах паров марганца и меди основной причиной ограничения ЧСИ является малая скорость рекомбинации плазмы в межимпульсный период [13].

Характер зависимости $f_{opt}(E_{pul})$ от p_{He} для конкурирующих переходов с λ_2 и λ_4 (рис.5) позволяет предположить, что релаксация их общего экранированного уровня LL2 происходит не сразу в основное состояние, а по каналу заселения их верхних лазерных уровней в обратном направлении, т.е. при столкновениях с атомами гелия атомы с нижнего лазерного уровня переходят на верхний лазерный уровень, а затем за счет реакции (2) – на ближайший резонансный уровень, который оптически распадается в основное состояние в межимпульсный период. В этом случае скорость заселения dN_R/dt резонансного уровня R в реакции (2) определяется известным уравнением [14]

$$\frac{\mathrm{d}N_{\mathrm{R}}}{\mathrm{d}t} = N_{\mathrm{UL}} \langle \sigma_{\mathrm{UL-R}} \bar{v}_{\mathrm{He}} \rangle N_{\mathrm{He}}.$$
(4)

Здесь σ_{UL-R} – сечение передачи возбуждения с верхнего лазерного уровня UL на близкорасположенный резонансный уровень R (рис.1); \bar{v}_{He} – средняя тепловая скорость атомов гелия; N_{He} – концентрация атомов гелия. Концентрация атомов тулия N_{UL} на уровне UL находится интегрированием по межимпульсному периоду 1/f уравнения для скорости заселения этого уровня

$$\frac{\mathrm{d}N_{\mathrm{UL}}}{\mathrm{d}t} = N_{\mathrm{LL}} \langle \sigma_{\mathrm{LL}-\mathrm{UL}} \bar{v}_{\mathrm{He}} \rangle N_{\mathrm{He}},\tag{5}$$

где σ_{LL-UL} – сечение передачи возбуждения с нижнего лазерного уровня LL на верхний уровень UL; N_{LL} – концентрация атомов тулия на уровне LL (рис.1). Расселение уровня LL2 по предложенному каналу объясняет общие закономерности в поведении частотных характеристик генерации на переходах с λ_2 и λ_4 (рис.5). Небольшое расхождение в значениях $f_{opt}(E_{pul})$ для этих переходов объясняется различием в дефектах энергии ΔE_{R-UL} . Тем не менее данное предположение требует дополнительной проверки.

Еще одной отличительной особенностью полученных результатов является значительный рост с увеличением f энергии E_{pul} (или E_{c}) на переходе с λ_2 . При изменении f от 2 до 30 кГц энергия импульса на этом переходе возрастает в четыре раза (рис.3, а). Если измеренный в эксперименте удельный энергосъем E_c при f = 2 кГц составил 5 мкДж/см³, то при f = 30 кГц он увеличился до 20 мкДж/см³. Ранее в лазерах на самоограниченных переходах такого явления не наблюдалось. В качестве примера на рис.6 приведено типичное для лазера на парах меди (ЛПМ) поведение энергосъема E_c при увеличении f [15]. Для выяснения энергетических возможностей ЛПТ с непрямым заселением верхних лазерных уровней сравнивались средние мощности излучения ЛПТ и ЛПМ при одинаковых условиях возбуждения и одинаковых ГРТ. На рис.7 приведены зависимости P_{las} от f для зеленой линии ЛПМ и ИК линии ЛПТ. Мощности $P_{las}(f)$ для ЛПМ вычислялись по формуле (3) при известных значениях удельного энергосъема E_c (рис.6) [15], а мощности $P_{las}(f)$ для ЛПТ оценивались по полученным данным (рис.3,а). Хорошо видно, что средняя мощ-

Рис.6. Зависимость удельного энергосъема лазерного излучения $E_{\rm c}$ от ЧСИ f для ЛПМ ($\lambda_{\rm Cu}$ = 510.6 нм) [15].

Рис.7. Зависимости расчетной средней мощности генерации P_{las} от ЧСИ *f* для ЛПМ ($\lambda_{\text{Cu}} = 510.6$ нм) [15] и ЛПТ ($\lambda_2 = 1310.06$ нм).

ность ЛПТ начинает превышать среднюю мощность ЛПМ уже при $f \approx 5 \ \kappa \Gamma \mu$. При $f = 30 \ \kappa \Gamma \mu$ средняя мощность $P_{\rm las}(\lambda_2) \approx 60 \ {\rm Br}$, и это значительно превышает возможности ЛПМ с аналогичной ГРТ ($P_{\rm las}(\lambda_{\rm Cu}) \approx 10 \ {\rm Br}$). Таким образом, ЛПТ может стать перспективным источником когерентного излучения в ИК области спектра, если решить проблему с отводом тепла от ГРТ.

Поведение средней мощности $P_{\text{las}}(f)$ в ЛПМ обусловлено характером изменения энергии импульсов E_{pul} (или $E_{\rm c}$) при изменении ЧСИ f (рис.6). Причина гораздо большей мощности четырехуровневого ЛПТ по сравнению с трехуровневым ЛПМ заключается в большей эффективности преобразования в ЛПТ энергии возбуждения резонансных и верхних лазерных уровней в излучение. В работе [16] было показано, что в ЛПМ в лазерное излучение преобразуется небольшая часть энергии верхнего лазерного уровня (всего несколько процентов), что связано с «уходом» спонтанного излучения на стенки ГРТ. Такое сильное расселение резонансного уровня обусловлено его малым временем жизни (~7 нс) (без учета пленения излучения, которое не наступает из-за небольшого расстояния до стенки ГРТ). В случае ЛПТ время жизни резонансного уровня, с которого заселяется верхний лазерный уровень, составляет ~260 нс [17] и превышает длительность импульса тока. Поэтому резонансный уровень является надежным резервуаром энергии возбуждения во время формирования импульса генерации.

4. Заключение

Итак, основные результаты настоящей работы сводятся к следующему.

1. Основной причиной ограничения ЧСИ в ЛПТ является скорость релаксации нижних лазерных (метастабильных) уровней соответствующих переходов в межимпульсный период. Экранированные метастабильные уровни расселяются в столкновениях с атомами буферного газа гелия. Увеличение концентрации гелия приводит к повышению как оптимальных ЧСИ $f_{opt}(E_{pul})$ и $f_{opt}(P_{las})$ для лазерных переходов, так и предельных ЧСИ $f_{\rm lim}$. Релаксация, по крайней мере общего нижнего лазерного уровня переходов с λ_2 и λ_4 , происходит не сразу в основное состояние, а по каналу заселения их верхних лазерных уровней в обратном направлении. Необходимо отметить, что эти выводы имеют предварительный характер и требуют дополнительных экспериментальных исследований.

2. В ЛПТ с непрямым заселением верхних лазерных уровней оптимальные ЧСИ возбуждения $f_{opt}(E_{pul})$ и $f_{opt}(P_{las})$ определяются дефектом энергии ΔE_{R-UL} между верхним лазерным уровнем-акцептором UL и ближайшим резонансным уровнем-донором R. При одинаковых условиях возбуждения оптимальные частоты тем выше, чем меньше дефект ΔE_{R-UL} .

3. Сравнение энергетических характеристик ЛПМ (для $\lambda_{Cu} = 510.6 \text{ нм}$) и ЛПТ (для $\lambda_2 = 1310.06 \text{ нм}$) показывает, что расчетная максимальная средняя мощность ЛПТ ($P_{las}(\lambda_2) \approx 60 \text{ Вт}$) в несколько раз превышает среднюю мощность ЛПМ ($P_{las}(\lambda_{Cu}) \approx 10 \text{ Вт}$) при схожих условиях возбуждения и одинаковых ГРТ. Хотя режим саморазогрева реализуется при меньших *f*, чем использованные в эксперименте (30 кГц), мощность $P_{las}(\lambda_2) > P_{las}(\lambda_{Cu})$ уже при *f* \approx 5 кГц. Это позволяет рассматривать ЛПТ как перспективный источник когерентного ИК излучения.

Работа выполнена при финансовой поддержке АВЦП Министерства образования и науки РФ №2.1.1/12999, ФЦП «Научные и научно-педагогические кадры инновационной России» (контракт №02.740.11.0238) и в рамках проекта СО РАН № VII.63.3.1 с частичной финансовой поддержкой по совместному проекту фундаментальных исследований НАНБ-СО РАН № 10 от 2010 г.

- Александров Е.Б., Котылев В.Н., Василевский К.П., Кулясов В.Н. Оптика и спектроскопия, 54, 3 (1983).
- Александров Е.Б., Веденин В.Д., Кулясов В.Н. Оптика и спектроскопия, 56, 596 (1984).
- 3. Cahuzac Ph. Phys. Lett. A, 27, 473 (1968).
- 4. Cahuzac Ph. Phys. Lett. A, 31, 541 (1970).
- 5. Герасимов В.А. Оптика и спектроскопия, 87, 156 (1999).
- 6. Герасимов В.А., Старкова Л.Н. Оптика и спектроскопия, **92**, 335 (2002).
- Герасимов В.А., Павлинский А.В. Письма в ЖТФ, 29 (23), 51 (2003).
- Gerasimov V.A., Gerasimov V.V., Pavlinskiy A.V. Phys. Rev. A, 76, 034701 (2007).
- Герасимов В.А., Юнжаков Б.П. Квантовая электроника, 16, 2386 (1989).
- Martin W.C., Zalubas R., Hagan L. Natl. Stand. Ref. Data Ser. (US, Natl. Bur. Stand.), 60, 344 (1978).
- 11. http://physics.nist.gov/PhysRefData/ASD/levels_form.html.
- 12. Герасимов В.А., Старкова Л.Н. Письма в ЖТФ, 27 (2), 51 (2001).
- Бохан П.А., Силантьев В.И., Соломонов В.И. Квантовая электроника, 7, 1264 (1980).
- Вайнштейн Л.А., Собельман И.И., Юков Е.А. Возбуждение атомов и уширение спектральных линий (М.: Наука, 1979).
- Бохан П.А., Герасимов В.А., Соломонов В.И., Щеглов В.Б. Квантовая электроника, 5, 2162 (1978).
- 16. Климкин В.М., Прокопьев В.Е. ЖТФ, 49, 2260 (1979).
- Andersen H.M., Den Hartog E.A., Lawler J.E. J. Opt. Soc. Am. B, 13, 2382 (1996).