ЛАЗЕРНАЯ БИОЛОГИЯ

PACS 42.25.Ja, 42.25.Lc, 47.63.Jd, 42.25.Fx, 42.25.Kb, 42.30.Wb

Лазерная диагностика анизотропии двулучепреломляющих сетей биологических тканей в различном физиологическом состоянии

Ю.А.Ушенко, Ю.Я.Томка, А.В.Дуболазов

Исследована возможность дифференциации оптико-анизотропных свойств биологических тканей в различном физиологическом состоянии путем статистического анализа координатных распределений нового аналитического параметра – комплексной степени взаимной анизотропии внеклеточной матрицы, образованной сетью двулучепреломляющих нитеобразных протеиновых кристаллов.

Ключевые слова: поляризация, двулучепреломление, корреляция, биологическая ткань, статистика.

1. Введение

Традиционно лазерные методы исследования структуры биологических тканей (БТ) делятся на три группы:

 – спектрофотометрические методы [1–3], базирующиеся на анализе пространственных или временных изменений интенсивности лазерного излучения, рассеянного БТ;

поляризационные методы, основанные на использовании матрицы когерентности комплексной амплитуды
 [4, 5] и на анализе степени поляризации как фактора корреляции комплексных ортогональных компонент электромагнитных колебаний в одной из точек поля рассеянного лазерного излучения [3, 6–21];

 корреляционные методы, построенные на анализе степени корреляции параллельных поляризационных компонент световых колебаний в разных точках объектного поля [7, 21–26].

Для комплексного анализа поляризационно-неоднородных полей лазерного излучения в [5, 22, 26–31] предложен новый подход, который базируется на обобщении матрицы когерентности { $K(r, \tau)$ } поляризационной матрицей когерентности { $\Phi(r_1, r_2, \tau)$ } для двух точек (r_1, r_2):

$$\{K(r,\tau)\} \to \{\Phi(r_1, r_2, \tau)\}. \tag{1}$$

В развернутом виде (1) можно переписать следующим образом:

$$\left\| \begin{array}{c} \langle U_{x}(r,\tau) U_{x}^{*}(r,\tau) \rangle \left\langle U_{x}(r,\tau) U_{y}^{*}(r,\tau) \rangle \\ \langle U_{y}(r,\tau) U_{x}^{*}(r,\tau) \rangle \left\langle U_{y}(r,\tau) U_{y}^{*}(r,\tau) \rangle \right\rangle \end{array} \right\|$$

$$\rightarrow \left\| \begin{array}{c} \langle U_{x}(r_{1},\tau) U_{x}^{*}(r_{2},\tau) \rangle \left\langle U_{x}(r_{1},\tau) U_{y}^{*}(r_{2},\tau) \rangle \\ \langle U_{y}(r_{1},\tau) U_{x}^{*}(r_{2},\tau) \rangle \left\langle U_{y}(r_{1},\tau) U_{y}^{*}(r_{2},\tau) \rangle \right\|.$$

$$(2)$$

Ю.А.Ушенко, Ю.Я.Томка, А.В.Дуболазов. Черновицкий национальный университет им. Юрия Федьковича, Украина, 58012 Черновцы, ул. Коцюбинского, 2; e-mail: yuriyu@gmail.com, tomka.yuriy@gmail.com

Поступила в редакцию 13 сентября 2009 г., после доработки – 19 ноября 2010 г.

Здесь угловыми скобками обозначена операция усреднения по времени τ ортогональных составляющих U_x , U_y комплексной амплитуды электромагнитной волны в точках с координатами (r_1, r_2) .

В [23] согласованность между состояниями поляризации объектного поля в точках r_1, r_2 с интенсивностями $I(r_1, \tau)$, $I(r_2, \tau)$ характеризуется новым параметром – комплексной степенью взаимной поляризации (КСВП) $V(r_1, r_2, \tau)$ следующего аналитического вида:

$$V(r_1, r_2, \tau) = 4 \frac{v_1^2 + v_2^2 + v_3^2}{I(r_1, \tau) I(r_2, \tau)},$$
(3)

где коэффициенты v_i определяются как разности видностей интерференционных картин, сформированных идущими от точек r_1 , r_2 электромагнитными волнами:

$$v_{1} = \frac{\langle U_{x}(r_{1},\tau) U_{x}^{*}(r_{2},\tau) \rangle - \langle U_{y}(r_{1},\tau) U_{y}^{*}(r_{2},\tau) \rangle}{2},$$

$$v_{2} = \frac{\langle U_{x}(r_{1},\tau) U_{y}^{*}(r_{2},\tau) \rangle - \langle U_{y}(r_{1},\tau) U_{x}^{*}(r_{2},\tau) \rangle}{2},$$

$$v_{3} = i \frac{\langle U_{x}(r_{1},\tau) U_{y}^{*}(r_{2},\tau) \rangle - \langle U_{y}(r_{1},\tau) U_{x}^{*}(r_{2},\tau) \rangle}{2}.$$
(4)

Данные параметры последовательно измеряются при различных ориентациях поляризационного фильтра, размещенного перед фотодетектором. Коэффициент v_1 определяется разностью видности для углов вращения плоскости пропускания анализатора 0°, 90° относительно плоскости падения; v_2 – для углов 45°, 135°; v_3 – для поворотов оси, соответствующей наибольшей скорости четвертьволновых пластинок, на углы +45° (правоциркулярно поляризованная волна) и –45° (левоциркулярно поляризованная волна).

Можно показать, что в случае стационарного поля рассеянного лазерного излучения выражение (3) для КСВП приобретает вид

$$V(r_1, r_2) = \frac{\left(U_x(r_1) \, U_x^*(r_2) + \, U_y(r_1) \, U_y^*(r_2)\right)^2}{I(r_1)I(r_2)}.$$
(5)

171

Теоретический подход (1)–(5) был распространен на координатный анализ поляризационно-неоднородных лазерных изображений БТ человека [25, 26, 32]. В [25] предложен метод прямого поляризационного измерения действительной части КСВП для точек r_1, r_2 изображения оптически тонких (коэффициент ослабления $\tau \leq 0.1$) слоев БТ:

Re
$$V \equiv \tilde{V}(r_1, r_2)$$

$$= \frac{\{U_x(r_1)U_x(r_2) - U_y(r_1)U_y(r_2)\cos[\varphi(r_1) - \varphi(r_1)]\}^2}{I(r_1)I(r_2)},$$
(6)

где $\varphi(r_1)$ и $\varphi(r_1)$ – фазовые сдвиги между ортогональными компонентами U_x , U_y амплитуды в точках r_1 , r_2 . На основании (6) в [26] разработан метод поляризационно-корреляционного картографирования (поляризационного измерения двумерных распределений $\tilde{V}(x, y)$) лазерных изображений БТ.

В результате исследований [26, 32] были определены актуальные для диагностики онкологического состояния соединительной ткани человека диапазоны изменения статистических моментов первого-четвертого порядков распределений $\tilde{V}(x, y)$ ее лазерных изображений. Однако такие методы анализа $\tilde{V}(x, y)$ не учитывают двулучепреломления протеиновых фибрилл как основного физического механизма формирования поляризационно-неоднородных изображений БТ [3, 11, 13, 18, 33, 34]. Поэтому актуальным представляется поиск новых диагностических параметров, которые непосредственно характеризуют степень согласованности ориентаций оптических осей и двулучепреломления различных точек сети протеиновых кристаллов БТ [3,6,7,12,14,18,24,34,35]. В дальнейшем по аналогии с [23] будем называть такой параметр комплексной степенью взаимной анизотропии (КСВА).

Настоящая работа направлена на создание и обоснование метода поляризационно-корреляционного картографирования двулучепреломляющих сетей БТ для диагностики их физиологического состояния путем статистического анализа координатных распределений КСВА.

2. Теоретический анализ механизмов преобразования параметров лазерного излучения сетью двулучепреломляющих оптически одноосных протеиновых кристаллов

Процессы взаимодействия лазерного излучения с БТ рассматриваем в следующем модельном приближении [3, 6, 7]:

1. Согласно классификации Ковина [36] морфологически все ткани человека делятся на четыре основных типа (соединительная, мышечная, эпителиальная и нервная), каждый из которых имеет двухкомпонентную аморфнокристаллическую структуру.

2. Кристаллическая компонента БТ, или внеклеточная матрица, сформирована сетью коаксиальных цилиндрических протеиновых (коллаген, эластин, миозин и др.) фибрилл [3,6–8].

3. С оптической точки зрения протеиновые фибриллы обладают свойствами одноосных кристаллов с показателем двулучепреломления Δn (рис.1), параметры анизотро-

Рис.1. Двулучепреломляющая (Δn) фибрилла с диаметром сечения $d; \rho_i$ – направления оптической оси в плоскости слоя БТ.

пии $\rho(r)$, $\delta(r)$ которых в каждой точке r описываются оператором Джонса [4, 35]

$$\{D\} = \left\| \begin{array}{c} d_{11}(r) & d_{12}(r) \\ d_{21}(r) & d_{22}(r) \end{array} \right\| \\ = \left\| \begin{array}{c} \theta^2 + \eta^2 \exp(-i\delta(r)) & \theta\eta[1 - \exp(-i\delta(r))] \\ \theta\eta[1 - \exp(-i\delta(r))] & \eta^2 + \theta^2 \exp(-i\delta(r)) \end{array} \right\|.$$
(7)

Здесь $\theta = \cos \rho(r); \eta = \sin \rho(r); \rho(r) - угол (ориентация) оптической оси, определяемый направлением укладки двулуче$ $преломляющей протеиновой фибриллы с поперечным геометрическим размером <math>d(r); \delta(r) = (2\pi/\lambda)\Delta n d(r) - \phi$ азовый сдвиг между ортогональными составляющими U_{0x} , U_{0y} амплитуды U_0 лазерного излучения с длиной волны λ в точке с координатой r.

Аналитически процесс трансформации амплитуды и фазы лазерного пучка протеиновым кристаллом внеклеточной матрицы БТ в точке с координатой *r* можно описать уравнением

Здесь δ_0 – фазовый сдвиг между составляющими U_{0x} и U_{0y} ; tan $\Omega_0 = U_{0y}/U_{0x}$.

Анализ выражений (8) обнаруживает зависимость ортогональных составляющих $U_x(r)$, $U_y(r)$ комплексной амплитуды от угла поворота Ω_0 плоскости поляризации освещающей лазерной волны либо от угла вращения γ самого слоя БТ относительно направления облучения. Данное обстоятельство затрудняет проведение сравнительного диагностического анализа КСВА внеклеточных матриц различных БТ. Единственным исключением является случай облучения БТ циркулярно поляризованной лазерной волной U_0 :

$$U_0 = \begin{pmatrix} U_{0x} \\ U_{0y} \end{pmatrix} \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}.$$
 (9)

В связи с этим для определения аналитического выражения для КСВА $W(r_1, r_2)$ точек r_1, r_2 внеклеточной мат-

рицы БТ воспользуемся соотношениями (5), (7) с учетом соотношений (8), (9):

$$W(r_1, r_2) = \{ [d_{11}(r_1) + id_{12}(r_1)] [d_{11}(r_2) + id_{12}(r_2)]^* + [d_{21}(r_1) + id_{22}(r_1)] [d_{21}(r_2) + id_{22}(r_2)]^* \}^2 / I(r_1) I(r_2),$$
(10)

где

$$I(r_{1}) = \{ [d_{11}(r_{1}) + id_{12}(r_{1})] [d_{11}(r_{1}) + id_{12}(r_{1})]^{*} + [d_{21}(r_{1}) + id_{22}(r_{1})] [d_{21}(r_{1}) + id_{22}(r_{1})]^{*} \};$$

$$I(r_{2}) = \{ [d_{11}(r_{2}) + id_{12}(r_{2})] [d_{11}(r_{2}) + id_{12}(r_{2})]^{*} + [d_{21}(r_{2}) + id_{22}(r_{2})] [d_{21}(r_{2}) + id_{22}(r_{2})]^{*} \}.$$
(11)

Выделив действительные части $\operatorname{Re} d_{ik}(r) \equiv \tilde{d}_{ik}(r)$ элементов матрицы Джонса (соотношения (7)), получим выражение для реальной части КСВА $\operatorname{Re} W(r_1, r_2) \equiv \widetilde{W}(r_1, r_2)$ внеклеточной матрицы слоя БТ. Для этого осуществим прямые поляризационные измерения:

$$\widetilde{W}(r_1, r_2) = \{ [\widetilde{d}_{11}(r_1)\widetilde{d}_{11}(r_2) - \widetilde{d}_{12}(r_1)\widetilde{d}_{12}(r_2)] + [\widetilde{d}_{21}(r_1)\widetilde{d}_{21}(r_2) - \widetilde{d}_{22}(r_1)\widetilde{d}_{22}(r_2)] \}^2 / I(r_1)I(r_2), \quad (12)$$

где

$$\tilde{d}_{11}(r) = \cos^2 \rho(r) + \sin^2 \rho(r) \cos \delta(r);$$

$$\tilde{d}_{12,21}(r) = \cos \rho(r) \sin \rho(r) (1 - \cos \delta(r));$$
(13)

$$\tilde{d}_{22}(r) = \sin^2 \rho(r) + \cos^2 \rho(r) \cos \delta(r).$$

В табл.1 приведены основные характеристические значения КСВА $\widetilde{W}(r_1, r_2)$ в произвольных точках r_1, r_2 внеклеточной матрицы слоя БТ.

Табл.1. Характеристические значения КСВА $\widetilde{W}(r_1, r_2)$ внеклеточной матрицы БТ и КСВП $\widetilde{V}(r_1, r_2)$ ее лазерного изображения

Фазовые сдви	КСВА	КСВП	
$\overline{\delta(r_1) = \delta(r_2)}$	$\delta(r_1) = \delta(r_2) = 0$	1.0	1.0
	$\delta(r_1) = \delta(r_2) = 0.5\pi$	1.0	1.0
	$\delta(r_1) = \delta(r_2) = \pi$	1.0	1.0
$\delta(r_1) = 0.5\pi + \delta(r_2)$	$\delta(r_1) = 0.5\pi, \delta(r_2) = 0$	0.5	0.5
	$\delta(r_1) = \pi, \delta(r_2) = 0.5\pi$	0.5	0.5
	$\delta(r_1) = 1.5\pi, \delta(r_2) = \pi$	0.5	0.5
$\delta(r_1) = \pi + \delta(r_2)$	$\delta(r_1) = \pi, \delta(r_2) = 0$	0	0
	$\delta(r_1) = 1.5\pi, \delta(r_2) = 0.5\pi$	0	0
	$\delta(r_1) = 2\pi, \delta(r_2) = \pi$	0	0

Из анализа приведенных данных следует, что в случае однократного рассеяния лазерного излучения существует однозначная взаимосвязь между характеристическими значениями КСВА $\widetilde{W}(r_1, r_2)$ слоя БТ и КСВП $\widetilde{V}(r_1, r_2)$ ее лазерного изображения.

3. Оптическая схема и методика экспериментального измерения двумерных распределений КСВА внеклеточной матрицы биологической ткани

Экспериментальные исследования координатных распределений КСВА проводились в схеме классического поляриметра, основные узлы и элементы которого приведены на рис.2.

Поляризационный осветитель (четвертьволновые пластинки 3, 5 и поляризатор 4) последовательно формировал совокупность зондирующих линейно лазерных пучков с азимутами $\alpha_0 = 0, +45^\circ, 90^\circ$ и правоциркулярно поляризованную ($\delta_0 = 90^\circ$) волну. Соответствующие поляризационные изображения слоя БТ 6 микрообъективом 7 проецировались в плоскость светочувствительной площадки 600×800 пикселей цифровой камеры 10, которая обеспечивала измерение структурных элементов в интервале 2–2000 мкм. Поляризационный анализ изображений БТ осуществлялся системой четвертьволновая пластинка 8– поляризатор 9.

Первоначально по классической методике, приведенной в [6], измерялось двумерное распределение действительных частей элементов матрицы Джонса $\tilde{d}_{ik}(m \times n)$ гистологического среза БТ 6. Далее посредством вращения плоскости пропускания анализатора 9 в пределах $\Theta = 0-180^{\circ}$ определялись минимальный ($I_{\min}(r_{jk})$) и максимальный ($I_{\max}(r_{jk})$) уровни интенсивности для каждого пикселя (r_{jk}) ССD-камеры 10

$$\begin{pmatrix} r_{11} & \dots & r_{1m} \\ \dots & \dots & \dots \\ r_{n1} & \dots & r_{nm} \end{pmatrix}$$

- координаты совокупности *m*×*n* пикселей этой камеры.

Таким образом получали массивы экстремальных значений интенсивности $I_{\min}(m \times n)$, $I_{\max}(m \times n)$ лазерного изображения гистологического среза БТ 6 и соответствующие им углы поворота $\Theta_{\min}(m \times n) \leftrightarrow I_{\min}(m \times n)$ анализатора 9. На основе полученных данных вычисляли координатные распределения значений азимута $\alpha(m \times n)$ и эллиптичности $\beta(m \times n)$ поляризации и определяли двумерные распределения фазовых сдвигов $\delta(m \times n)$ с помощью следующих алгоритмов:

Рис.2. Оптическая схема поляриметра для измерения координатных распределений КСВА БТ:

I – Не – Ne лазер ($\lambda = 0.6328$ мкм); 2 – коллиматор; 3, 5, 8 – четвертьволновые пластинки; 4, 9 – поляризаторы; 6 – гистологический срез БТ; 7 – проекционный микрообъектив; I0 – CCD-камера; I1 – компьютер.

$$\alpha(r) = 0.5\pi - \Theta(r),$$

$$\beta(r) = \arctan \frac{I_{\min}(r)}{I_{\max}(r)},$$
(14)

$$\delta(r) = \arctan \frac{\tan 2\beta(r)}{\tan \alpha(r)}.$$

Значение КСВА $\tilde{W}(r_1, r_2 = r_1 + \Delta r)$ двух смещенных на интервал Δr точек $(r_1, r_1 + \Delta r)$ сети протеиновых кристаллов вычислялось с использованием алгоритма (12), (13).

Координатное распределение $\tilde{W}(x, y)$ внеклеточной матрицы всего слоя БТ определялось путем сканирования с шагом $\Delta r = 1$ пиксель в двух взаимно перпендикулярных направлениях (x = 1, ..., m, y = 1, ..., n) массивов $\tilde{d}_{ik}(m \times n)$ и $\delta(m \times n)$.

4. Экспериментальные исследования двумерных распределений КСВА внеклеточной матрицы БТ в различном физиологическом состоянии

Отметим, что структура анизотропной составляющей различных типов БТ достаточно сложна и многообразна [3,6,7,12,13,18,34–36]. Поэтому актуальным является статистический подход – исследование взаимосвязей статистических моментов первого–четвертого порядков, которые характеризуют координатные распределения $\tilde{W}(x,y)$ внеклеточной матрицы БТ с патологически измененной ориентационно-фазовой структурой.

В качестве объектов исследования были выбраны гистологические срезы здорового и патологически измененного дермального слоя кожи (ДСК). Особенностью структуры внеклеточной матрицы здорового ДСК является хаотическое распределение направлений ($\rho(n \times m)$) оптических осей протеиновых кристаллов (рис.3). Внеклеточная матрица патологически измененного ДСК характеризуется совокупностью упорядоченных «новообразованных» коллагеновых фибрилл с большим показателем двулучепреломления [12].

На рис.4 приведены серии координатных распределений физиологически нормальных и патологически измененных образцов ДСК. Анализ полученных данных показал, что координатные распределения КСВА (рис.4,*a*,*c*) образованы локальными участками (доменами $\tilde{W} \approx \text{const}$, рис.4, δ , ∂) с максимально возможным интервалом изменения 0,0 $\leq \tilde{W} \leq 1,0$ (рис.4,*e*,*e*).

Полученные экспериментальные данные удовлетворительно коррелируют с результатами предложенного мо-

Рис.3. Изображение ДСК в параллельных (*a*) и скрещенных (*б*) осях поляризатора и анализатора.

Рис.4. Координатные распределения (600×800 пикселей – фрагменты a, c; 50×50 пикселей – фрагменты δ, d) и гистограммы (фрагменты e, e) значений $\widetilde{W}(x, y)$ физиологически нормального (a-e) и патологически измененного (e-e) гистологических срезов ДСК.

дельного анализа структуры внеклеточных матриц с помощью КСВА. Так, в сети протеиновых фибрилл всегда найдутся точки $(r, r + \Delta r)$, определяющие такие соотношения между параметрами анизотропии r, δ (см. табл.1), которым соответствуют экстремальные значения КСВА

$$\widetilde{W}(r,r+\Delta r) = \begin{cases} 0,0\\1,0. \end{cases}$$

Специфика морфологического строения внеклеточной матрицы БТ проявляется также в различной вероятности тех или иных значений $\tilde{W}(x,y)$. Для хаотически ориентированной сети коллагеновых фибрилл ДСК (рис.4,*a*, δ) гистограммы значений $\tilde{W}(x,y)$ слоя ДСК представляют собой достаточно равновероятные распределения (рис.4,*в*).

Патологические изменения коллагеновых структур ДСК проявляются (рис.4,*г*, *d*) в некоторой локализации распределений случайных величин КСВА (рис.4,*e*) в области экстремальных значений ($\tilde{W} = 0.4-0.6$).

Следующим этапом было проведение сравнительных исследований диагностической эффективности методов КСВП ($\tilde{V}(x,y)$) и КСВА ($\tilde{W}(x,y)$) в условиях однократного и многократного рассеяния лазерного излучения слоями БТ в различном физиологическом состоянии.

5. Сравнительный статистический анализ двумерных распределений КСВА внеклеточной матрицы дермального слоя кожи и КСВП их лазерных изображений

С целью определения диапазонов изменения статистических моментов, характеризующих координатные распределения $\tilde{W}(x,y)$ и $\tilde{V}(x,y)$, были сформированы две груп-

Табл.2. Статистические моменты первого-четвертого порядков распределений КСВА и КСВП оптически тонких ($\tau = 0.09$) и оптически толстых ($\tau = 0.75$) (в скобках) слоев физиологически нормальных и патологически измененных образцов ДСК

ДСК	Метод измерения	M_1	M_2	M_3	M_4
Норма	КСВА	0.38±0.04 (0.45±0.051)	0.10±0.02 (0.16±0.014)	9.4±0.87 (8.65±0.83)	99.5±9.63 (43.3±4.88)
(20 образцов)	КСВП	0.27±0.03 (0.37±0.041)	0.07±0.008 (0.27±0.033)	14.7±1.16 (0.77±0.082)	76.9±6.98 (1.13±0.15)
Патология	КСВА	0.33±0.04 (0.63±0.057)	0.085±0.009 (0.18±0.021)	21.7±1.96 (12.1±1.18)	36.9±4.08 (29.7±3.07)
(19 образцов)	КСВП	0.31±0.03 (0.41±0.039)	0.063±0.008 (0.23±0.025)	19.4±1.78 (1.08±0.09)	42.6±4.17 (0.86±0.09)

пы гистологических срезов образцов ДСК – нормальных (20 образцов) и патологически измененных (19 образцов).

Статистические моменты первого-четвертого порядков распределений

$$Q = \begin{cases} \tilde{V} \\ \tilde{W} \end{cases}$$

вычислялись с помощью программного продукта MATLAB на основе следующих алгоритмов [11]:

$$M_{1} = \frac{1}{N} \sum_{i=1}^{N} |Q_{i}|, \quad M_{2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} Q_{i}^{2}},$$

$$M_{3} = \frac{1}{M_{2}^{3}} \frac{1}{N} \sum_{i=1}^{N} Q_{i}^{3}, \quad M_{4} = \frac{1}{M_{2}^{2}} \frac{1}{N} \sum_{i=1}^{N} Q_{i}^{4},$$
(15)

где $N = m \times n$ – число пикселей светочувствительной площадки цифровой камеры.

В табл.2 приведены результаты вычислений среднего (M_1) , дисперсии (M_2) , асимметрии (M_3) и эксцесса (M_4) распределений КСВА $\tilde{W}(x, y)$ слоев ДСК различной оптической толщины и КСВП $\tilde{V}(x, y)$ их лазерных изображений.

Из полученных данных о координатных распределениях КСВА оптически тонких слоев БТ следует.

1. Среднее и дисперсия координатных распределений $\tilde{W}(x,y)$ оптически тонких слоев здоровых и патологически измененных ДСК различаются незначительно – от 1.3 (M_1) до 1.5 (M_2) раз. Для двумерных распределений $\tilde{V}(x,y)$ КСВП соответствующих лазерных изображений различия между значениями их статистических моментов первого и второго порядков практически отсутствуют.

2. Значения асимметрии координатных распределений $\tilde{W}(x, y)$ исследуемых образцов БТ различаются в 2.1 раза, эксцесса – в 3.2 раза. Для распределений КСВП $\tilde{V}(x, y)$ значения 3-го и 4-го статистических моментов изменяются для M_3 в 1.3 раза, для M_4 – в 1.8 раза. Кроме того, с увеличением кратности светорассеяния вследствие перекрестной интерференции различно поляризованных когерентных волн $U_j(r)$ изменяются распределения азимутов и эллиптичностей поляризации объектного поля БТ. В результате «разрушается» однозначность взаимосвязи параметров $\tilde{W}(x, y)$ и $\tilde{V}(x, y)$.

3. В качестве диагностически актуальных параметров физиологического состояния оптически толстых БТ могут быть использованы статистические моменты высших порядков. Значения асимметрии координатных распределений $\tilde{W}(x,y)$ для нормального и патологически измененного ДСК различаются в 1.4 раза, эксцесса M_4 – в 1.45 раза.

4. Статистические моменты 3-го и 4-го порядков двумерных распределений $\tilde{V}(x, y)$ КСВП объектного поля оптически толстых слоев БТ мало зависят от их физиологиче-

ского состояния и на порядок меньше значений асимметрии и эксцесса КСВП $\tilde{W}(x, y)$.

6. Заключение

Для оценки степени согласованности параметров сети оптически одноосных двулучепреломляющих протеиновых фибрилл биологических тканей предложен новый параметр – комплексная степень взаимной анизотропии. Разработан метод поляризационного измерения координатных распределений комплексной степени взаимной анизотропии биологических тканей. Показано, что статистический подход к анализу распределений $\tilde{W}(x, y)$ биологических тканей в диапазоне оптических толщин $\tau = 0.09 - 0.75$, что соответствует условиям как одноразового, так и многократного рассеяния, является более чувствительным и эффективным при дифференциации их физиологического состояния в сравнении с исследованиями комплексной степени взаимной поляризации соответствующих лазерных изображений.

- 1. Patterson M.S., Andersson-Engels S., Wilson Brian C., Osei E.K. Appl. Opt., 34, 22, (1995).
- Alfano R.R., Fujimoto J.G. (Eds). Advances in Optical Imaging and Photon Migration (Topics in Optics and Photonics Series) (Washington: Opt. Soc. of America, 1996, Vol. 2).
- Ushenko A.G., Pishak V.P., in *Handbook of Coherent-Domain* Optical Methods: Biomedical Diagnostics, Environmental and Material Science (Boston: Kluwer Acad. Publ., 2004, Vol. 1, pp. 93–138).
- Gori F., Santarsiero M., Vicalvi S., Borghi R., Guattari G. Pure Appl. Opt., 7, 941 (1998).
- 5. Wolf E. Phys. Lett. A., 312, 263, (2003).
- Angelsky O.V., Ushenko A.G., Ushenko Yu.A., Pishak V.P., in *Optical Correlation Techniques and Applications* (Washington: Soc. Photo-Opt. Instrum. Eng., 2007, pp.213–266).
- Angelsky O.V., Ushenko A.G., Ushenko Yu.A., Pishak V.P., Peresunko A.P., in *Diagnostics of the Structure and Physiological State of Birefringent Biological Tissues. Handbook of Photonics for Biomedical Science* (New York: CRC Press, 2010, pp.21–67).
- 8. Ushenko A.G. Opt. Eng., 34 (4), 1088 (1995).
- Ушенко А.Г., Ермоленко С.Б., Бурковец Д.Н., Ушенко Ю.А. Оптика и спектроскопия, 87 (3), 434 (1999).
- Ангельский О.В., Ушенко А.Г., Архелюк А.Д., Ермоленко С.Б., Бурковец Д.Н., Ушенко Ю.А. Оптика и спектроскопия, 89 (6), 973 (2000).
- 11. Ushenko A.G. Stokes-correlometry of Biotissues, 10 (5), 1286 (2000).
- 12. Ushenko A.G. Laser Phys., 10 (5), 1143 (2000).
- Ushenko A.G., Burkovets D.N., Ushenko Y.A. Laser Phys., 11 (5), 624 (2001).
- Ангельский О.В., Ушенко А.Г., Бурковец Д.Н., Ушенко Ю.А. Оптика и спектроскопия, 90 (3), 458 (2001).
- 15. Ушенко А.Г. Оптика и спектроскопия, 91 (2), 313 (2001).
- 16. Ушенко А.Г. Оптика и спектроскопия, 91 (6), 937 (2001).
- 17. Ушенко А.Г. Оптика и спектроскопия, 91 (6), 932 (2001).
- Angelsky O.V., Ushenko A.G., Ushenko Yu.A. J. Holography Speckle, 2 (2), 72 (2002).
- Angelsky O., Ushenko A., Burkovets D., Pishak V., Ushenko Yu., Pishak O. Laser Phys., 10 (5), 1136 (2000).
- 20. Ушенко А.Г. Оптика и спектроскопия, 92 (2), 227 (2002).

- Angelsky O.B., Ushenko A.G., Ushenko Yu.A. J. Holography Speckle, 2 (1), 26 (2005).
- 22. Ellis J., Dogariu A., Ponomarenko S., Wolf E. *Opt. Lett.*, **29**, 1536 (2004).
- 23. Ellis J., Dogariu A. Opt. Lett., 29, 536 (2004).
- Angelsky O.V., Tomka Yu.Ya., Ushenko A.G., Ushenko Yu.A. J. Phys. D: Appl. Phys., 38 (23), 4227 (2005).
- Angelsky O.V., Ushenko A.G., Ushenko Ye.G. J. Biomed. Opt., 10 (6), ID 060502 (2005).
- Angelsky O.V., Ushenko A.G., Ushenko Ye.G. Phys. Med. Biol., 50, 4811 (2005).
- 27. Tervo J., Setala T., Friberg A. Opt. Express, 11, 1137, (2003).
- Movilla J.M., Piquero G., Martínez-Herrero R., Mejías P.M. Opt. Commun., 149, 230 (1998).

- 29. Mujat C., Dogariu A. J. Opt. Soc. Am. A., 21 (6), 1000 (2004).
- 30. Gori F. Opt. Lett., 23, 241 (1998).
- 31. Mujat M., Dogariu A. Opt. Lett., 28, 2153 (2003).
- Angelsky O.V., Ushenko A.G., Angelska A.O. Ukrainian J. Phys. Opt., 8 (2), 105 (2002).
- Ушенко А.Г., Бурковец Д.Н., Ушенко Ю.А. Оптика и спектроскопия, 93 (3), 449 (2002).
- Angelsky O.V., Ushenko A.G., Burkovets D.N., Ushenko Yu.A. J. Biomed. Opt., 10 (1), ID 014010 (2005).
- Angelsky O.V., Ushenko A.G., Burkovets D.N., Ushenko Yu.A. Optica Applicata, 32 (4), 591 (2002).
- 36. Cowin S.C. J. Biomed. Eng., 122, 553 (2000).
- 37. Olar E.I., Ushenko A.G., Ushenko Yu.A. Laser Phys., 14, 1012 (2004).