PACS 42.55.Ks; 33.50.-j; 82.50.-m

Кинетика образования $O_2(^{1}\Sigma)$ в реакции $O_2(^{1}\Delta) + O_2(^{1}\Delta) \rightarrow O_2(^{1}\Sigma) + O_2(^{3}\Sigma)$

М.В.Загидуллин, Н.А.Хватов, А.Ю.Нягашкин

Измерена зависимость отношения удельных мощностей димольного излучения синглетного кислорода в полосе 634 нм и излучения в полосе b-X молекулы $O_2({}^{1}\Sigma)$ в смеси $O_2(X) - O_2({}^{1}\Delta) - O_2({}^{1}\Sigma) - H_2O - CO_2$ от концентрации CO_2 . В результате определена константа скорости реакции $O_2({}^{1}\Delta) + O_2({}^{1}\Delta) \rightarrow O_2({}^{1}\Sigma) + O_2({}^{3}\Sigma)$ при температуре ~ 330 K, составившая $(4.5 \pm 1.1) \times 10^{-17}$ см³·c⁻¹.

Ключевые слова: кислородно-иодный лазер, димольное излучение, синглетный кислород, реакция пуллинга.

1. Введение

Газофазные реакции с участием молекул синглетного кислорода $O_2(a^1\Delta)$ представляют интерес при исследовании физики атмосферы [1], электрического разряда в кислороде [2], кинетики химического кислородно-иодного лазера [3]. В частности привлекает внимание процесс столкновения двух молекул $O_2(a)$, приводящий к образованию молекул кислорода в основном ($X^3\Sigma$) и во втором электронно-возбужденном ($b^1\Sigma$) состояниях (реакция пуллинга):

$$O_2(a) + O_2(a) \rightarrow O_2(b) + O_2(X).$$
 (1)

В химическом кислородно-иодном лазере источником молекул О₂(а) является химический газогенератор синглетного кислорода (ГСК), основанный на реакции хлора со щелочным раствором перекиси водорода. Усиление в активной среде кислородно-иодного лазера реализуется на переходе ${}^{2}P_{1/2} - {}^{2}P_{3/2}$ атома иода, который образуется при смешении молекулярного иода с синглетным кислородом. Согласно некоторым кинетическим моделям процесс образования атомов иода а активной среде кислородно-иодного лазера начинается в реакции $O_2(b) + I_2 \rightarrow O_2(X) + 2I$ [4, 5], скорость которой пропорциональна концентрации молекул О₂(b). По достижении некоторой критической концентрации атомов иода в этой реакции [5] и, возможно, в других инициирующих реакциях [4] начинается цепной процесс диссоциации молекул иода, активным участником которого являются атомы иода. Стационарная концентрация молекул O₂(b) на выходе ГСК есть

$$n_{\rm b} = k_1 n_{\rm a}^2 / K_{\rm b},\tag{2}$$

где k_1 – константа скорости реакции (1); K_b – суммарная вероятность гибели O₂(b) в гомогенных и гетерогенных тушащих процессах; n_a , n_b – концентрация молекул кис-

Поступила в редакцию 9 сентября 2010 г., после доработки – 11 ноября 2010 г.

лорода O₂(а) и O₂(b). Полученные ранее значения k_1 при комнатной температуре составили ~2×10⁻¹⁷ см³·с⁻¹ [2, 6] и (2.7±0.4)×10⁻¹⁷ см³·с⁻¹ [7]. Зависимость k_1 от температуры исследована в [8,9]. Согласно теоретическим оценкам $k_1 \approx 10^{-16}$ см³·с⁻¹ [10] и 10⁻¹⁷ см³·с⁻¹ [11]. В условиях, когда справедлива формула (2), определение k_1 сводится к измерения K_b , n_a , n_b [2, 6, 7]. Систематические погрешности измерений этих величин отражаются на точности определения k_1 .

В настоящей работе измерено отношение удельных мощностей димольного излучения молекулы $O_2(a)$ и излучения в полосе b–X молекулы $O_2(b)$ в смеси $O_2(X)$ – $O_2(a)-O_2(b)-H_2O-CO_2$, пропорциональное отношению n_a^2/n_b . В условиях, когда доминирующим тушителем молекулы $O_2(b)$ является молекула CO_2 , величина k_1 определяется с помощью соотношения (2). В экспериментах использовалась газовая смесь $O_2(X)-O_2(a)-O_2(b)-H_2O-CO_2$ с достаточно большой концентрацией $O_2(a)$, малым содержанием H_2O и контролируемой концентрацией CO_2 .

2. Эксперимент и измерения

Схема экспериментальной установки представлена на рис.1. Газовая смесь $O_2(X) - O_2(a) - H_2O$ создавалась в результате реакции потока хлора со струями щелочного раствора перекиси водорода в струйном ГСК [12]. Далее поток газа $O_2(X) - O_2(a) - H_2O$ проходил через ловушку па-

Рис.1. Схема экспериментальной установки:

I – ГСК; 2 – ЛПВ; 3 – ванна с этанолом при температуре –90°С,
 4 – ОДС, 5 – каретка, 6 – спектрометр AvaSpec-3648, 7 – германиевый детектор; 8 – расходное отверстие; 9 – форвакуумный насос.

М.В.Загидуллин, Н.А.Хватов, А.Ю.Нягашкин. Самарский филиал Физического института им. П.Н.Лебедева РАН, Россия, 443011 Самара, ул. Ново-Садовая, 221; e-mail: marsel@fian.smr.ru

ров воды (ЛПВ), имеющую температуру около -90°С, и втекал в оптическую диагностическую секцию (ОДС). Газопроточная часть ОДС представляла собой прямоугольный канал высотой 25 мм, шириной 8 мм и длиной 120 мм. Боковые стенки ОДС сделаны из фторопласта, верхняя и нижняя стенки – из кварца толщиной 2.5 мм. Между ЛПВ и ОДС к потоку O₂(X)-O₂(a)-H₂O подмешивался углекислый газ. Излучение газовой смеси О₂(X)-О₂(a)-H₂O-СО2 из ОДС в диапазоне длин волн 600-800 нм регистрировалось оптоволоконным спектрометром AvaSpec-3648 (Avantes, Holland) с линейкой ПЗС-детекторов. Приемный конец оптоволокна размещался вплотную к кварцевой стенке, посередине между фторопластовыми стенками, и закреплялся на каретке, которая могла перемещаться вдоль ОДС. Оптическая система оптоволокно-спектрометр перехватывала излучение только тех молекул, которые находились в ОДС в конусе с углом 15° и вершиной на приемном конце волокна. Одновременно регистрировались спектры димольного излучения (ДИ) (0,0-0,0) O₂(a,0) + $O_2(a,0) \rightarrow O_2(X,0) + O_2(X,0) + hv (\lambda = 634 нм), и полосы$ b-X(0-0) ($\lambda = 762$ нм) излучения молекул O₂(b). Абсолютная спектральная чувствительность $R(\lambda)$ спектрометра сертифицирована его изготовителем с точностью 9.5% для всего спектрального диапазона 600-800 нм. В дополнение к абсолютной калибровке была измерена относи-

тельная спектральная чувствительность $r(\lambda)$ системы оптоволокно–спектрометр–ПЗС-линейка с помощью излучения вольфрамовой лампы с цветовой температурой 2850 К. Оказалось, что отношение $R(\lambda)/r(\lambda)$ постоянно в диапазоне длин волн 600–800 нм с точностью 2%. Поэтому мы полагаем, что отношение $r(\lambda_1)/r(\lambda_2)$ для любых значений длин волн λ_1 , λ_2 в диапазоне 600–800 нм нам известно с точностью не хуже 4%.

Удельная спектральная мощность излучения из объема газа определялась по формуле $i(\lambda)$ [фот.·см⁻³·c⁻¹·нм⁻¹] = $4t^{-1}L^{-1}\varepsilon^{-1}C(\lambda)R(\lambda)$, где $C(\lambda)$ – число отсчетов пикселя ПЗСлинейки; L = 2.5 см – высота ОДС; $\varepsilon \approx 0.93$ – пропускание кварцевой стенки; t – время экспозиции спектров. Удельные мощности излучения в полосах b – X(0–0) и ДИ(0,0–0,0) определялись по формулам

$$I_{\rm b} = A_{\rm b} n_{\rm b} = \int_{\rm b-X} i(\lambda) \mathrm{d}\lambda, \quad I_{\rm D} = k_{\rm D} n_{\rm a}^2 = \int_{\rm DE} i(\lambda) \mathrm{d}\lambda, \quad (3)$$

где A_b – коэффициент Эйнштейна для перехода b – X(0–0); k_D – константа скорости ДИ. Интегралы в (3) берутся в пределах соответствующей спектральной полосы. Температура газа в ОДС определялась по виду частично разрешенной вращательной структуры спектра полосы b – X(0–0) или по ширине спектра димольного излучения, как описано, например, в [13]. Германиевый фотоприемник, расположенный на расстоянии 5 см от места подмешивания СО₂, регистрировал излучение полосы а – X молекул кислорода O₂(а).

Откачка газа из ОДС осуществлялась через расходное отверстие форвакуумным насосом с объемной производительностью 5 л/с, которая не зависела от давления газа в пределах его значений в настоящих экспериментах. Перед поступлением газа в насос его температура принимала температуру стенок газопроточного тракта, равную ~295 К. Таким образом, давление на входе в насос было прямо пропорционально молярному расходу газа через ОДС. Давления в ОДС и на входе газа в насос измерялись с погрешностью 1.5%.

М.В.Загидуллин, Н.А.Хватов, А.Ю.Нягашкин

3. Результаты экспериментов и их обсуждение

Расход хлора в экспериментах составлял ~0.8 ммоль с⁻¹, при этом эффективность утилизации хлора превышала 97%. Через несколько секунд после запуска ГСК, когда устанавливались стационарные значения давлений газа по всему газопроточному тракту и отклика германиевого фотоприемника, CO₂ подмешивался к потоку O₂(X)– O₂(a)–H₂O. После вторичной стабилизации параметров потока начиналось сканирование спектров излучения в течение времени экспозиции t = 5 с. После этого подача хлора в ГСК прекращалась и измерялось давление в потоке чистого CO₂ перед форвакуумным насосом. Концентрация CO₂ в смеси O₂(X)–O₂(a)–H₂O–CO₂ находилась по формуле

$$n_{\rm CO_2} = \frac{p_{\rm CO_2}}{p} \frac{p_{\rm ODS}}{k_{\rm B}T},$$

где p, p_{CO_2} – давления в потоке $O_2(X)-O_2(a)-H_2O-CO_2$ и в потоке чистого CO_2 перед входом в форвакуумный насос; p_{ODS} , T – давление и температура в потоке $O_2(X)$ – $O_2(a)-H_2O-CO_2$ в ОДС; k_B – постоянная Больцмана. Данный расчет n_{CO_2} верен при условии полного перемешивания потока CO_2 с потоком $O_2(X)-O_2(a)-H_2O$.

На рис.2 представлены типичные спектры, полученные в случае, когда каретка отстоит от точки подмешивания CO_2 на расстояние 11 см, концентрация $n_{CO_2} = 3.8 \times 10^{16}$ см⁻³, полное давление газа составляет 15 Top, а его температура равна ~320 К. С использованием $k_D = 6 \times 10^{-23}$ см³·c⁻¹ [14], $A_b = 8.8 \times 10^{-2}$ с⁻¹ [15] и формул (3) в данном эксперименте были получены следующие концентрации: $n_a \approx 10^{17}$ см⁻³, $n_b \approx 2.5 \times 10^{13}$ см⁻³.

Согласно уравнению (2) и формулам (3)

$$\frac{I_{\rm D}}{I_{\rm b}} = \frac{k_{\rm D} n_{\rm a}^2}{A_{\rm b} n_{\rm b}} = \frac{k_{\rm D}}{k_{\rm 1} A_{\rm b}} K_{\rm b},\tag{4}$$

где $K_b = K + k_{CO_2} n_{CO_2}$; k_{CO_2} – константа скорости реакции тушения $O_2(b) + CO_2 \rightarrow O_2(X) + CO_2$; K – суммарная вероятность дезактивации $O_2(b)$ на стенке и на других моле-

Рис.2. Спектры удельной мощности излучения газовой смеси $O_2(a) - O_2(b) - O_2(X) - H_2O - CO_2$ в полосе димольного излучения (0, 0 - 0, 0) (*a*) и в полосе b-X(0-0) при $n_a \approx 10^{17}$ см⁻³, $n_b \approx 2.5 \times 10^{13}$ см⁻³, $n_{CO_2} = 3.8 \times 10^{16}$ см⁻³, полном давлении газа 15 Тор и температуре 320±5 К.

Рис.3. Зависимость отношения удельных мощностей димольного излучения и излучения в полосе b-X(0-0) от концентрации углекислого газа. Расстояние от точки подмешивания CO_2 до точки регистрации спектров равно 11 см.

кулах (O₂, H₂O, Cl₂). Было обнаружено, что как $I_{\rm D}$, так и I_b уменьшались с увеличением расстояния от точки подмешивания CO₂ в диапазоне 5-11 см, но при этом в случае фиксированного расхода СО2 отношение (4) с точностью ~6% оставалось неизменным. Варьирование концентрации СО₂ в потоке О₂(X)-О₂(а)-H₂O-CO₂ осуществлялось путем изменения его расхода или сечения расходного отверстия на выходе ОДС. Зависимость I_D/I_b от n_{CO_2} представлена на рис.3, где приведены результаты только тех экспериментов, в которых температура газа на расстоянии 11 см от места подмешивания СО2 находилась в пределах 320–340 К. Независимость отношения I_D/I_b от положения каретки и его линейная зависимость от n_{CO2} свидетельствуют о том, что в выбранных экспериментах происходило практически полное смешение потока CO₂ с потоком $O_2(X) - O_2(a) - H_2O$ на расстоянии 11 см от места подмешивания CO₂. При $n_{CO_2} = 0$ отношение $I_D/I_b \approx 0.05$. Линейная аппроксимация зависимости $I_D/I_b(n_{CO_2})$, представленной на рис.3, дает

$$\frac{k_{\rm D}k_{\rm CO_2}}{k_1A_{\rm b}} = (7.8 \pm 0.2) \times 10^{-18} \,\rm cm^3.$$

Учитывая погрешности определения температуры (±10К), давлений (1.5%) и отношения спектральных чувствительностей (4%), получаем

$$\frac{k_{\rm D}k_{\rm CO_2}}{k_1A_{\rm b}} = (7.8 \pm 0.8) \times 10^{-18} \,{\rm cm}^3.$$
⁽⁵⁾

Оценка величины k_1 зависит от выбора численных значений радиационных констант A_b , k_D и константы скорости k_{CO_2} тушения $O_2(b)$ молекулами CO_2 . Наиболее надежное значение k_D , равное $(6.1\pm0.3)\times10^{-23}$ см³·с⁻¹, выводится из величины интегрального димольного поглощения кислорода [16,17]. Самый большой разброс в литературных данных имеется по константе скорости k_{CO_2} : $(3\pm1)\times10^{-13}$ см³·c⁻¹ [18], $(3.48\pm0.47)\times10^{-13}$ см³·c⁻¹ [19], $(5\pm0.3)\times10^{-13}$ см³·c⁻¹ [20], $(4.6\pm0.5)\times10^{-13}$ см³·c⁻¹ [21], $(4.53\pm0.29)\times10^{-13}$ см³·c⁻¹ [22], $(6.1\pm0.5)\times10^{-13}$ см³·c⁻¹ [23]. По нашему мнению, наибольшего доверия заслуживают значения k_{CO_2} , полученные в [20–23], где константа скорости определялась путем прямого измерения вероятности гибели $O_2(b)$ в процессе

O₂(b) + CO₂ → O₂(X) + CO₂. По последним данным $A_b = (8.69\pm0.03)\times10^{-2} \text{ c}^{-1}$ [24], что мало отличается от значения $8.8\times10^{-2} \text{ c}^{-1}$, приведенного в базе данных HITRAN [15]. Таким образом, подставив в (5) $k_{\rm D} = (6.1\pm0.3)\times10^{-23} \text{ см}^3 \cdot \text{с}^{-1}$, $A_b = (8.69\pm0.03)\times10^{-2} \text{ c}^{-1}$ и $k_{\rm CO_2} = (5\pm0.5)\times10^{-13} \text{ см}^3 \cdot \text{с}^{-1}$, получим $k_1 = (4.5\pm1.1)\times10^{-17} \text{ см}^3 \cdot \text{c}^{-1}$ для температуры ~330 К. Используя температурную зависимость k_1 , приведенную в [8], имеем $k_1 = (4.0\pm1)\times10^{-17} \text{ см}^3 \cdot \text{с}^{-1}$ при температуре 300 К. Это примерно в два раза больше значения k_1 , полученного в работах [2,6]. В пределах погрешностей эта оценка k_1 близка к (2.7 ± 0.4)× $10^{-17} \text{ см}^3 \cdot \text{с}^{-1}$ из [7].

При получении числового значения соотношения (5) использовались только отношение относительных спектральных чувствительностей спектрометра и расчет концентрации CO₂ в потоке $O_2(X) - O_2(a) - H_2O - CO_2$. Мы не видим причин, по которым они были бы определены с систематической погрешностью ~100%, что могло бы объяснить расхождения с результатами [2, 6]. Нам представляется, что меньшие значения $k_1 \approx 2 \times 10^{-17}$ см³·с⁻¹, полученные в этих работах, объясняются систематическими погрешностями в определении абсолютных концентраций молекул $O_2(a), O_2(b)$ и недостаточно корректным учетом дезактивации $O_2(b)$ на стенке, на что указывалось в работе [25].

Реакция (1), за которой следует реакция $O_2(b) + M \rightarrow O_2(a)$ или $O_2(X) + M$, наряду с реакциями $O_2(a) + O_2(a) \rightarrow O_2(a) + O_2(X)$, $O_2(a) + O_2(a) \rightarrow O_2(X) + O_2(X)$ приводит к потерям молекул $O_2(a)$. Из анализа данных о содержании $O_2(a)$ на выходе ГСК в работе [25] получена суммарная эффективная константа скорости всех этих трех реакций, равная ~10⁻¹⁶ см³, что близко к значению 8.2×10^{-17} см³·с⁻¹, полученному в работе [26]. Следовательно, в соответствии с этими данными канал (1) дает примерно половину вклада в полные потери синглетного кислорода в реакции $O_2(a) + O_2(a) \rightarrow$ продукты.

Таким образом, нами получена зависимость отношения удельных мощностей димольного излучения и излучения в полосе b-X синглетного кислорода в газовом потоке $O_2(X)-O_2(^1\Delta)-O_2(^1\Sigma)-H_2O-CO_2$ от концентрации CO_2 . Это позволило определить константу скорости реакции $O_2(a) + O_2(a) \rightarrow O_2(b) + O_2(X)$ в диапазоне температур 320–340 K, составившую (4.5±1.1)×10⁻¹⁷ см³·с⁻¹. Полученная константа скорости примерно в два раза превышает известные литературные данные [2, 6].

- 1. Slanger T.M., Copeland R.A. Chem. Rev., 103, 4731 (2003).
- 2. Derwent R.G., Thrush B.A. Trans. Far. Soc., 67, 2036 (1971).
- 3. Perram G.P. Int. J. Chem. Kin., 27, 817 (1995).
- Heidner R.F., Gardner C.E., Segal G.I., El-Sayed T.M. J. Phys. Chem., 87, 2348 (1983).
- 5. Arnold S.J., Finlayson N., Ogryzlo E.A. J. Chem. Phys., 44, 2529 (1966).
- 6. Fisk G.A., Hays G.N. J. Chem. Phys., 77, 4965 (1982).
- Lilenfeld H.V., Carr P.A.G., Hovis F.E. J. Chem. Phys., 81, 5730 (1984).
- Heidner R.F., Gardner C.E., El-Sayed T.M., Segal G.I., Kasper J.V.V. J. Chem. Phys., 74, 5618 (1981).
- Borrell P.M., Borrell P., Grant K.R., Pedley M.D. J. Phys. Chem., 86, 700 (1982).
- 10. Liu J., Morokuma K. J. Chem. Phys., 123, 204319 (2005).
- 11. Lu R., Zhang P., Chu T., Xie T., Han. K. J. Chem. Phys., 126, 124304 (2007).
- Азязов В.Н., Загидуллин М.В., Николаев В.Д., Свистун М.И., Хватов Н.А. Квантовая электроника, 22, 443 (1995).
- 13. Загидуллин М.В. Оптика и спектроскопия, 109, 387 (2010).
- 14. Falick A.M., Mahan B.H. J. Chem. Phys., 47, 4778 (1967).

- 15. Rothman L.S., Jacquemart D., Barbe A., et al. J. Quant. Spec. Rad. Trans., 96, 139 (2005).
- 16. Naus H., Ubachs W. Appl. Opt., 38, 3423 (1999).
- 17. Tiedje H.F., DeMille S., MacArtur L, Brooks R.L. *Can. J. Phys.*, **79**, 773 (2001).
- 18. Singh J.P., Setser D.W. J. Phys. Chem., 89, 5353 (1985).
- Boodaghians R.B., Borrell P.M., Borrell P. Chem. Phys. Lett., 97, 193 (1983).
- 20. Muller D.F., Houston P.L. J. Phys. Chem., 85, 3563 (1981).
- 21. Choo K.Y., Leu M. Int. J. Chem. Kinetics, 17, 1155 (1985).
- Aviles R.G., Muller D.F., Houston P.L. Appl. Phys. Lett., 37, 358 (1980).
- 23. Azyazov V.N., Mikheev P., Postell D., Heaven M.C. Chem. Phys. Lett., 482, 56 (2009).
- 24. Long D.A., Havey D.K., Okumura M., Miller C.E., Hodges J.T. *J. Quant. Spec. Rad. Trans.*, **111**, 2021 (2010).
- McDermott W.E., Hobbs K., Henshaw T. Proc. SPIE Int. Soc. Opt. Eng., 7131, 713112L-1 (2007).
- Загидуллин М.В., Хватов Н.А. Квантовая электроника, 40, 800 (2010).