Визуализация структурных неоднородностей в сильнорассеивающих средах методом пространственноразрешенной рефлектометрии: Монте-Карло моделирование

А.В.Быков, А.В.Приезжев, Р.Мюллюля

Методом Монте-Карло-моделирования получены двумерные пространственные распределения интенсивности диффузного отражения лазерного излучения ближнего ИК диапазона от сильнорассеивающей среды, оптические свойства которой близки к оптическим свойствам кожи. Среда содержит цилиндрическую неоднородность с оптическими свойствами, близкими к свойствам крови. Показано, что более сильное поглощение и рассеяние света кровью по сравнению с окружающей ее средой приводит к тому, что интенсивность излучения, диффузно отраженного от поверхности исследуемой среды и регистрируемого на ее поверхности, принимает локальный минимум непосредственно над цилиндрической неоднородностью. Эта особенность делает метод пространственно-разрешенной рефлектометрии потенциально пригодным для визуализации и определения размеров кровеносных сосудов. Показано также, что размытие изображения сосуда происходит практически по линейному закону с увеличением глубины его залегания. Данная закономерность может быть использована для определения этой глубины при известных оптических свойствах рассеивающих сред. Определено оптимальное положение источников и детекторов излучения, обеспечивающее наилучшее изображение исследуемого сосуда.

Ключевые слова: оптические методы визуализации, пространственно-разрешенная рефлектометрия, рассеяние, Монте-Карло-моделирование.

1. Введение

Различные варианты методов спектроскопии и визуализации, основанные на детектировании диффузно отраженного от биологических тканей излучения, в настоящее время являются предметом пристального изучения [1], цель которого - получение пространственных распределений оптических параметров исследуемых сред. Точное определение и мониторинг изменения этих распределений может дать физиологически важную информацию, например о наличии гематомы или о расположении кровеносного сосуда. В зависимости от типа зондирующего излучения и от режима детектирования рассеянного излучения в эксперименте и моделировании используются непрерывные, времяразрешенные и частотные (модуляционные) методики измерений [2]. В настоящей работе исследуются возможности метода пространственно-разрешенной рефлектометрии (ПРР), в котором для визуализации, определения характерных размеров и глубины залегания одной или нескольких моделирующих кровеносные сосуды статических цилиндрических неоднородностей, заглубленных в моделирующую кожу рассеиваю-

Поступила в редакцию 18 апреля 2011 г.

щую среду, используется непрерывное лазерное излучение ближнего ИК диапазона.

Суть метода ПРР заключается в измерении зависимости интенсивности излучения, рассеянного средой в заднее полупространство, от расстояния r между источником и детектором. Такую зависимость будем называть сигналом ПРР. В данном методе монохроматическое излучение по оптоволокну определенного диаметра направляется на исследуемую среду. Рассеянное назад излучение обычно измеряют с помощью линейки детекторов, установленных на той же поверхности среды, что и источник, вдоль некоторой линии, или путем пошагового перемещения одного детектора вдоль этой линии. Как правило, в современных установках используются волоконно-оптические детекторы, так что измерительная головка, непосредственно прилегающая к исследуемому объекту, представляет собой набор оптических волокон с выбранными диаметром и числовой апертурой. В тех случаях, когда необходимо получить двумерный сигнал ПРР с большой площади образца, для измерения используются ССД-матрицы [3]. Для создания портативных сенсоров можно также использовать ИК светодиоды, которые заметно дешевле лазеров, расположив их на одной подложке с детекторами излучения. Общая схема такого устройства изображена на рис.1.

Анализ процесса распространения излучения в рассеивающих средах на основе диффузионной теории показал, что в данном случае наиболее вероятные траектории пришедших на детектор фотонов лежат в пределах области, по форме похожей на банан [4, 5]. Кривая, описывающая область наиболее вероятных траекторий, имеет экстремум на расстоянии r/2 от источника. Максимальная глубина z_{max} в случае слабого поглощения определяется по формуле $z_{max} = \sqrt{2}r/4$ [5]. Этот параметр можно использовать для оценки максимальной глубины проникнове-

А.В.Быков. Московский государственный университет им. М.В.Ломоносова, физический факультет, Россия, 119992 Москва, Воробьевы горы; адрес в настоящее время: University of Oulu, Optoelectronics and Measurement Techniques Laboratory, P.O. Box 4500, 90014 University of Oulu, Oulu, Finland; e-mail: bykov@ee.ouly.fi

А.В.Приезжев. Московский государственный университет им. М.В.Ломоносова, физический факультет, Россия, 119992 Москва, Воробьевы горы; e-mail: avp2@mail.ru

R.Myllylä. University of Oulu, Optoelectronics and Measurement Techniques Laboratory, P.O. Box 4500, 90014 University of Oulu, Oulu, Finland; e-mail: risto.myllyla@ee.oulu.fi

Матрица фотодетекторов и источников излучения

Рис.1. Общая схема устройства визуализации структурных неоднородностей в рассеивающей среде методом ПРР.

ния излучения в рассеивающую среду при использовании метода ПРР.

Метод ПРР позволяет определять не только оптические параметры среды, усредненные по всему образцу, но и оптические свойства каждого слоя многослойной среды [6]. Данный метод безусловно предпочтителен для неинвазивной диагностики, поскольку излучатель и приемник находятся по одну сторону от исследуемой среды. Аналитическое описание сигнала ПРР возможно для простых частных случаев или с использованием приближений [7]. Существует также аналитическое решение в диффузионном приближении для двухслойной среды [8], но оно достаточно громоздко. Как и во многих других задачах оптики тканей, одним из эффективных способов моделирования сигнала ПРР оказывается использование метода Монте-Карло (МК) [9, 10]. Мы имеем значительный опыт применения этого метода для описания различных задач распространения лазерного излучения в сильнорассеивающих средах и моделирования сигналов различных оптических устройств [11-13].

Метод ПРР может также использоваться для визуализации структурных неоднородностей исследуемой среды. Так, например, в работе [14] для визуализации кровеносных сосудов предплечья была изготовлена измерительная головка в виде оптоволоконного источника и детектора, находящихся на определенном фиксированном расстоянии друг от друга, с помощью которой сканировалась поверхность предплечья. Кодируя распределения измеренной мощности цветом, авторы получали изображение сосудистой структуры исследуемого участка. Экспериментальные исследования показали потенциальную возможность применения такого метода для мониторинга состояния биотканей и кровообращения, а также содержания кислорода в крови.

В работе [15] представлен другой вариант измерительной головки, состоящей из нескольких пар источник–детектор, расположенных под углом друг к другу в форме звезды. Как было показано этими же авторами ранее [16], при использовании специального алгоритма обработки измеряемого сигнала такой подход позволяет увеличить пространственное разрешение диффузионного метода. В [15] показано, что применение такой сканирующей системы позволяет, кроме того, различать сосуды по глубинам их залегания.

Методика ПРР может быть также использована для мониторинга активности коры головного мозга [17, 18] и для выявления гематом [19,20]. Проведенные исследования показали, что активность мозга приводит к изменению оптических свойств его тканей [18] и проявляется в изменении объема, степени оксигенации крови и соотношения окси- и дезоксигемоглобина, что и вызывает изменения коэффициентов поглощения и рассеяния, фиксируемые методом ПРР. В неврологии оптические методы применяются пока мало, поскольку они уступают в разрешении и глубине зондирования другим методам построения функциональных изображений мозга, таким как ядерная магнитно-резонансная томография и позитрон-эмиссионная томография. Однако оптические методы имеют и ряд достоинств, например компактность (это позволяет проводить измерения даже на идущем человеке) и чувствительность к биохимическим процессам (это дает возможность определять концентрации таких веществ, как окси- и дезоксигемоглобин). Немаловажным практическим аспектом является потенциально более низкая стоимость приборов, работающих на основе метода ПРР.

В настоящей работе проведено численное исследование потенциальных возможностей метода ПРР в плане создания простого и надежного устройства для неинвазивной диагностики крупномасштабных неоднородностей биоткани, таких как кровеносные сосуды, а также для определения их формы, размеров и положения.

2. Моделируемый эксперимент

Рассмотрим случай, когда неоднородность (кровеносный сосуд цилиндрической формы) находится в рассеивающей среде на определенной глубине параллельно ее поверхности. В качестве источника излучения выберем непрерывный лазер ближнего ИК диапазона ($\lambda = 820$ нм). Схема моделируемого эксперимента представлена на рис.2. Жирной стрелкой показан зондирующий пучок, входящий в среду в направлении оси Z в точке (0,0,0) под прямым углом к ее поверхности ХҮ. Поперечные размеры пучка считаем для простоты пренебрежимо малыми, хотя это и не является принципиальным. Центр сосуда находится непосредственно под точкой входа пучка в среду. Глубина залегания кровеносного сосуда z_{cyl} варьировалась от 1 до 5 мм, радиус сосуда R был выбран равным 0.5 мм. Окружающая сосуд среда имеет форму прямоугольника с размерами x = y = 50 мм, z = 20 мм.

Моделирование процесса распространения лазерного излучения осуществлялось МК-методом [9]. Для этого алгоритм моделирования процесса распространения ла-

Рис.2. Схема среды, используемой в МК-моделировании: цилиндрическая неоднородность радиусом R, имитирующая кровеносный сосуд, погружена в 2%-ный слой интралипида на глубину z_{cvl} .

Табл.1. Оптические параметры исследуемых сред.

Среда	λ (нм)	$\mu_{\mathrm{s}}(\mathrm{mm}^{-1})$	μ_{a} (MM ⁻¹)	g	п	<i>l</i> [*] (мм)	<i>l</i> (мм)	$\mu_{s}^{\prime}(\mathrm{mm}^{-1})$
Кровь (35%)	820	57.3	0.82	0.977	1.4	0.47	0.02	1.32
Интралипид (2%)	820	5.4	0.002	0.7	1.36	0.62	0.19	1.62

зерного излучения в слоистых средах, реализованный нами ранее на компьютере с параллельной архитектурой [11], был модифицирован с учетом цилиндрического включения.

Кровь в сосуде рассматривалась как суспензия неагрегирующих эритроцитов с концентрацией гематокрита 35%. Данная концентрация близка к физиологической концентрации красных кровяных телец в крови человека в малых сосудах. В качестве окружающей среды рассматривался 2%-ный раствор интралипида, имеющий при данной концентрации рассеивающие свойства, близкие к свойствам кожи, и часто используемый в экспериментах для ее имитации [21]. Интралипид представляет собой полидисперсную суспензию липидных частиц (капли соевого масла, покрытые липидной мембраной толщиной 2.5–5 нм) практически сферической формы со средним радиусом ~0.3 мкм, взвешенных в глицерине или водном растворе [22–24].

Оптические параметры крови и интралипида (коэффициент рассеяния μ_s , коэффициент поглощения μ_a , фактор анизотропии g, показатель преломления n) на длине волны 820 нм приведены в табл.1. Данные для крови взяты из работы [25], для интралипида – рассчитаны из известных данных для его 10%-ной концентрации на основе работ [22–24] в предположении, что коэффициент рассеяния линейно зависит от концентрации, а фазовая функция и фактор анизотропии остаются постоянными. Такое предположение справедливо, поскольку рассматриваются сравнительно низкие концентрации интралипида. В табл.1 приведены также значения транспортной длины $l^* = (\mu'_s + \mu_a)^{-1}$, средней длины свободного пробега $l = \mu_s^{-1}$ и редуцированного коэффициента рассеяния $\mu'_s = \mu_s(1 - g)$ для выбранных сред.

Длина волны зондирующего излучения $\lambda = 820$ нм находится в пределах так называемого диагностического окна прозрачности биотканей (600–1300 нм) и часто используется при их неинвазивной диагностике.

Детекторы диффузно отраженного излучения расположены в ячейках двумерной сетки, находящейся на поверхности *ху* исследуемой среды. Размеры ячеек $\Delta x = \Delta y = 200$ мкм. Числовая апертура каждого детектора равна 0.33. Каждое распределение интенсивности диффузно рассеянного излучения (2D ПРР-сигнал) на поверхности среды было получено на основании расчета траекторий 10⁹ фотонов, запущенных в среду. Время вычислений составляло ~200 мин на 100 процессорах для среды размером $50 \times 50 \times 20$ мм. Такое значительное время решения прямой задачи определяется большим (6.25×10^4) числом детекторов малого размера, что необходимо для обеспечения высокого пространственного разрешения на этапе исследования основных закономерностей этого метода визуализации.

3. Результаты и их обсуждение

3.1. Визуализация цилиндрического кровеносного капилляра в сильнорассеивающей среде методом ПРР

Результаты расчета интенсивности диффузно отраженного излучения с разрешением по пространству от сильнорассеивающей среды, имитирующей кожу с кровенос-

Рис.3. Поверхностное распределение интенсивности *I* излучения, диффузно отраженного от сильнорассеивающей среды с кровеносным цилиндрическим сосудом радиусом R = 0.5 мм, находящимся на глубине $z_{cvl} = 1$ мм (*a*), и без сосуда (*б*).

ным сосудом, находящимся на глубине 1 мм, и без сосуда представлены на рис.3. Видно, что с увеличением расстояния от источника (точки x = y = 0) интенсивность диффузно отраженного излучения быстро спадает. В области, находящейся непосредственно над сосудом, из-за высоких коэффициентов рассеяния и поглощения заполняющей сосуд среды интенсивность спадает наиболее существенно, что позволяет визуализировать сосуд и наблюдать его форму.

Аналогичные расчеты проведены и для бо́льших глубин залегания сосуда (z_{cyl} = 1-5 мм). Для анализа влияния, оказываемого сосудом на сигнал в этих случаях, рассчитывалась разность сигналов ПРР: I(x, y) – от среды с сосудом, находящимся на варьируемой глубине, и $I_0(x, y)$ – от однородной среды, не содержащей кровеносного сосуда (рис.4). Наличие темного пятна в центре картины объясняется тем фактом, что кровеносный сосуд, находящийся на определенной глубине, начиная с 1 мм и глубже при расчете сигнала ПРР на небольших расстояниях от источника не оказывает существенного влияния на отраженное излучение. Величины I₀ и I оказываются близкими, а следовательно, разность $I - I_0$ становится минимальной, о чем свидетельствует темное пятно. Этим же объясняется и увеличение размера пятна с ростом глубины залегания сосуда. При увеличении глубины залегания зона вблизи источника, в пределах которой среду можно считать однородной, а разность $I - I_0$ близка к нулю, увеличивается.

Далее было проведено усреднение по оси Y (вдоль сосуда) разности $I - I_0$ (рис.5,*a*). Видно, что из-за много-

Рис.4. Контурные изображения двумерного ПРР-сигнала I(x, y) при наличии в среде цилиндрического кровеносного сосуда радиусом R = 0.5 мм, заглубленного на варьируемую глубину z_{cyl} (вверху), и карты разности сигнала ПРР I(x, y) и сигнала $I_0(x, y)$, регистрируемого от однородной среды, не содержащей сосуд; $z_{cyl} = 1$ (*a*), 2 (*b*), 3 (*b*), 4 (*z*) и 5 мм (*d*) (внизу).

кратного рассеяния изображение сосуда расплывается с увеличением глубины его залегания. Для характеризации этого расплывания была взята полуширина по уровню полувысоты $\Delta_{0.5}$ величины $\langle I - I_0 \rangle$ (рис.5, δ). Видно, что с увеличением глубины залегания сосуда $\Delta_{0.5}$ растет по закону, близкому к линейному. Этот факт позволяет однозначно определять глубину залегания кровеносного сосуда известного диаметра в среде с известными оптическими свойствами.

Для определения оптимальной точки ввода излучения изучалось также влияние положения источника относительно сосуда на интенсивность диффузно отраженного средой сигнала. Для одной из глубин (*z*_{cvl} = 1.5 мм) были рассчитаны 2D ПРР-сигналы при различных положениях источника на оси X: x = 0, 0.5, 1.5, 5 и 10 мм при y = 0. Результаты расчетов показаны на рис.6. Видно, что при смещении положения источника вдоль оси Х темное пятно уменьшается и исчезает. Однако, как известно, с увеличением расстояния между источником и детектором отношение сигнал/шум уменьшается, поэтому при удаления источника происходит зашумление изображения сосуда, т.к. оно формируется сигналами ПРР, содержащими все возрастающий шумовой компонент. Эти два конкурирующих эффекта (появление пятна и зашумление изображения) и определяют оптимальное положение источника. Таким образом, оптимальным положением можно считать случай, изображенный на рис.6,г.

Аналогично предыдущему, была также рассчитана величина $\langle I - I_0 \rangle$ для различных положений источника на оси X (рис.7). Четко видно, что одновременно со смещением источника происходит определенное уширение левой половины кривой. Следовательно, для корректного определения значения $\Delta_{0.5}$, необходимого для определения глубины залегания сосуда, нужно использовать правую часть кривой или вводить поправочные множители для левой. Также следует отметить, что удаление источника от исследуемого сосуда приводит к увеличению ошибки определения $\Delta_{0.5}$, что, в свою очередь, может отразить-

Рис.5. Значения $\langle I - I_0 \rangle$ для различных глубин залегания кровеносного сосуда $z_{cyl}(a)$ и зависимость полуширины на уровне полувысоты $\Delta_{0.5}$ величины $\langle I - I_0 \rangle$ от $z_{cyl}(\delta)$.

Рис.6. Контурные изображения двумерного ПРР-сигнала I(x, y), рассчитанного при наличии в среде кровеносного сосуда (R = 0.5 мм, $z_{cyl} = 1.5$ мм) для различных расстояний x между точкой входа фотонов и центром сосуда (вверху), и карты разности сигналов ПРР $I(x, y) - I_0(x, y)$ при x = 0 (a), 0.5 (b), 1.5 (b), 5 (c) и 10 мм (d) (внизу).

Рис.7. Значения $\langle I - I_0 \rangle$ для кровеносного сосуда радиусом R = 0.5 мм, находящегося на глубине $z_{cyl} = 1.5$ мм, в зависимости от расстояния x между точкой входа фотонов и центром сосуда.

ся на увеличении ошибки определения глубины залегания этого сосуда.

Логическим развитием предложенной методики визуализации сосуда с целью улучшения его изображения является использование нескольких источников, расположенных симметрично относительно исследуемого объекта. Так, на рис.8, а представлено поверхностное распределение интенсивности излучения, диффузно отраженного от рассеивающей среды с кровеносным цилиндрическим сосудом, находящимся на глубине $z_{cyl} = 1.5$ мм, при зондировании двумя источниками, находящимися в точках $x = \pm 5$, y = 0. Суммарное число запущенных фотонов остается прежним, т.е. мощность каждого источника излучения равна половине мощности источника, используемого ранее. Изображение сосуда, построенное путем нахождения разности между сигналами ПРР от среды с сосудом и без него, для этого случая представлено на рис.8, б. Из сравнения рис.8, б и в видно, что использование двух источников позволяет улучшить качество изображения сосуда и сделать его более четким по сравнению со случаем одного источника с мощностью, равной сумме мощностей двух источников. Это становится еще более очевидным при сравнении усредненных вдоль оси Y значений разности $I - I_0$ для случаев зондирования среды одним и двумя источниками. Кривая $\langle I - I_0 \rangle = f(x)$ вновь становится симметричной, а ее левая часть – менее зашумленной.

Рис.8. Поверхностное распределение интенсивности излучения, диффузно отраженного от рассеивающей среды с цилиндрическим сосудом радиусом R = 0.5 мм, находящимся на глубине $z_{cyl} = 1.5$ мм, при зондировании среды двумя источниками (*a*), а также изображения того же сосуда при зондировании двумя источниками, находящимися в точках $x = \pm 5$ мм, y = 0 (*б*) и одним источником, расположенным в точке x = 5 мм, y = 0 (*в*).

Рис.9. Нормированные значения $\langle I - I_0 \rangle$ для кровеносного сосуда радиусом R = 0.5 мм, находящегося на глубине $z_{cyl} = 1.5$ мм, при двух режимах зондирования исследуемой среды.

3.2. Максимальная глубина визуализации

Рассматриваемая методика позволяет решить вопрос о максимальной глубине залегания сосуда z_{cyl}^{max} , при которой возможна его визуализация. Очевидно, что эта глубина должна зависеть от радиуса сосуда. Поэтому расчеты были проведены для радиусов 0.25, 0.5, 0.75 и 1 мм (рис.10). Максимальной глубиной z_{cyl}^{max} считалась та глубина залегания сосуда, при которой уровень зашумленности кривой $\langle I - I_0 \rangle = f(x)$ сравнивался с ее максимальным значением. Из рис.10 следует, что сосуд радиусом 0.25 мм можно наблюдать до глубины его залегания 2 мм, а сосуд радиусом 1 мм – до глубины 8 мм. Следует также обратить внимание на то, что в реальной биоткани максимальная глубина визуализации может быть меньше рассчитанной из-за большего поглощения излучения окружающей сосуд среды и наличия капиллярных сплетений, что неизбежно приведет к уменьшению контраста изображения. Компенсировать этот недостаток или даже увеличить максимальную глубину визуализации может использование специальных красителей, добавляемых в кровь [26], в совокупности с методикой просветления биоткани [27].

Рис.10. Зависимость максимальной глубины залегания сосуда z_{cyl}^{max} , на которой он еще доступен для визуализации методом ПРР, от радиуса сосуда.

Рис.11. Распределение $\langle I - I_0 \rangle$ при различных глубинах залегания цилиндрического кровеносного сосуда с R = 0.5 и 0.75 мм (*a*), нормированные значения $\langle I - I_0 \rangle$ для тех же случаев (*б*) и зависимости пикового значения $\langle I - I_0 \rangle$ от глубины залегания сосуда при R = 0.5 и 0.75 мм (*b*).

3.3. Определения радиуса сосуда и глубины его залегания

С целью исследования возможности использования метода ПРР для определения радиуса и глубины залегания сосуда мы провели расчеты сигналов для нескольких значений R и z_{cyl} . Распределения $\langle I - I_0 \rangle$ для R = 0.5 и 0.75 мм при глубине залегания 1 и 5 мм представлены на рис.11,*а*. С увеличением радиуса сосуда пиковое значение $\langle I - I_0 \rangle$ растет при неизменной глубине залегания, что приводит к увеличению контраста изображения сосуда. Однако увеличение R не вызывает существенных изменений $\Delta_{0.5}$ для разности $\langle I - I_0 \rangle$ на любой из рассмотренных глубин (рис.11, δ). Зависимость пикового значения $\langle I - I_0 \rangle$ от глубины залегания сосуда показана на рис.11,*в*. Видно, что этот параметр чувствителен к изменению радиуса сосуда, и наибольшая чувствительность проявляется на малых глубинах, а затем она монотонно спадает с увеличение z_{cyl} .

Таким образом, при известных оптических свойствах самого цилиндрического сосуда и окружающей его среды мы имеем два параметра, получаемых из эксперимента, для определения радиуса цилиндра и глубины его залегания. Это пиковое значение $\langle I - I_0 \rangle$ и полуширина $\Delta_{0.5}$. Численный расчет показал, что $\Delta_{0.5}$ практически не зависит от радиуса цилиндра в рассматриваемом диапазоне его значений. Следовательно, по этой величине можно однозначно определить глубину залегания сосуда, используя кривую на рис.5, δ . Второй параметр (пиковое значение $\langle I - I_0 \rangle$) оказывается зависимым от обоих искомых параметров, однако один из них (z_{cyl}) уже известен. Определение радиуса сосуда при известном z_{cyl} возможно на основе расчетных кривых рис.11, δ .

4. Выводы

В настоящей работе методом Монте-Карло получены реализации модельного сигнала пространственно разрешенной рефлектометрии от цилиндрического сосуда, который был заполнен веществом с оптическими параметрами, характерными для суспензии неагрегирующих эритроцитов, и помещен в рассеивающую среду, моделирующую кожу. Показано, что из-за высокого коэффициента рассеяния и поглощения крови интенсивность отраженного излучения уменьшается непосредственно над кровеносным сосудом, что и делает этот метод пригодным для визуализации. Исследован вопрос об оптимальном положении источника излучения с целью получения оптимального изображения сосуда. Показано, что наименее зашумленное и наиболее качественное изображение получается в случае зондирования среды двумя источниками, расположенными симметрично относительно исследуемого сосуда. Также показано, что при увеличении глубины залегания кровеносного сосуда «размытие» его изображения растет почти по линейному закону и практически не зависит от радиуса сосуда в рассматриваемом диапазоне, что позволяет однозначно определить глубину залегания сосуда. Радиус сосуда можно определить по пиковому значению кривой, получаемой в результате усреднения изображения сосуда.

Работа поддержана грантом РФФИ № 10-02-01416.

- Gibson A.P., Hebden J.C., Arridge S.R. Phys. Med. Biol., 50, R1 (2005).
- 2. Tuchin V.V. Handbook of Optical Biomedical Diagnostics (Bellingham: SPIE Press, 2002).
- 3. Hielscher A.H., Mourant J.R., Bigio I.J. Appl. Opt., 36, 125 (1997).
- 4. Тучин В.В. Лазеры и волоконная оптика в биомедицинских иссле-
- *дованиях* (М: Физматлит, 2010). 5. Feng S., Zeng F., Chance B. *Appl. Opt.*, **34** (19), 3826 (1995).
- Fawzi Y.S., Youssef Abo-Bakr M., El-Batanony M.H., Kadah Y.M. Appl. Opt., 42 (31), 6398 (2003).
- 7. Kienle A., Patterson M.S. J. Opt. Soc. Am. A, 14 (1), 246 (1997).
- Kienle A., Patterson M.S., Dognitz N., et al. *Appl. Opt.*, **37** (4), 779 (1998).
- Prahl S.A., Keijzer M., Jacques S.L., Welch A.J. SPIE Institute Series, IS5, 102 (1989).
- Boas D.A., Culver J.P., Stott J.J., Dunn A.K. Opt. Express, 10 (3), 159 (2002).
- 11. Bykov A.V., Priezzhev A.V., Bass L.P., et al. *Proc. SPIE Int. Soc. Opt. Eng.*, **6047**, 604719 (2006).
- Bykov A.V., Kirillin M.Yu., Priezzhev A.V., in *Handbook of Optical* Sensing of Glucose in Biological Fluids and Tissues (Boca Raton– London–New York: CRC Press, Taylor & Francis Group, 2008, pp.65–95).
- Быков А.В., Кириллин М.Ю., Приезжев А.В. Квантовая электроника, 35 (2), 135 (2005).
- 14. Fridolin I., Lindberg L-G. Phys. Med. Biol., 45, 3765 (2000).
- 15. Liu N., Sassaroli A., Fantini S. J. Biomed. Opt., 10 (5), 051801 (2005).
- Liu N., Sassaroli A., Zucker M.A., Fantini S. Opt. Lett., 30, 281 (2005).
- Gratton G., Corballis P.M., Cho E., Fabiani M., Hood D.C. Psychophysiology, 32, 505 (1995).
- 18. Villringer A., Chance B. Trends Neurosci., 20, 435 (1997).
- Robertson C.S., Gopinath S.P., Chance B. J. Neurotrauma, 12, 591 (1995).
- Kessel B., Jeroukhimov I., Ashkenazi I., et al. *Injury*, 38 (9), 1065 (2007).
- 21. Troy T.L., Thennadil S.N. J. Biomed. Opt., 6 (2), 167 (2001).
- Driver I., Feather J.W., King P.R., Dawson J.B. *Phys. Med. Biol.*, 34 (12), 1927 (1989).
- Flock S.T., Jacques S.L., Wilson B.C., et al. Lasers in Surgery and Medicine, 12, 510 (1992).
- van Staveren H.G., Moes C.J.M., van Marle J., et al. *Appl.Opt.*, 30, 4507 (1991).
- 25. Roggan A., Friebel M., Dorschel K., et al. J. Biomed. Opt., 4, 36 (1999).
- Gostout C.J., Jacques S.L. Gastrointestinal Endoscopy, 41 (3), 218 (1995).
- Tuchin V.V. Optical Clearing of Tissue and Blood (Bellingham: SPIE Press, 2006).