PACS 42.50.-p; 42.60.Mi; 42.65.Sf

Особенности пичковой многомодовой генерации сверхизлучающего лазера с распределенной обратной связью

Е.Р.Кочаровская, Н.С.Гинзбург, А.С.Сергеев

На основе одномерных полуклассических уравнений Максвелла – Блоха с учетом когерентной динамики поляризации исследованы пичковые режимы генерации сверхизлучающего лазера с распределенной обратной связью при неоднородном уширении спектральной линии активного вещества. С помощью анализа динамических спектров инверсии активной среды и генерируемого излучения выявлена взаимосвязь отдельных пичков излучения и их модуляции с определенными участками спектральной линии активной среды и биениями мод. Показано, что уширение и смещение спектра генерации по отношению к исходным электромагнитным модам брэгговского резонатора сопровождается характерным для сверхизлучательных режимов сильным спектральным градиентом инверсии.

Ключевые слова: сверхизлучение, распределенная обратная связь, пичковая многомодовая генерация.

1. Введение

Качественный анализ динамики лазеров класса D [1] с достаточно большими пространственной и спектральной плотностями активных центров показал, что при постоянной накачке в широкой области параметров генерируемое излучение представляет собой квазипериодическую последовательность цугов предельно коротких и мощных импульсов [2-5]. Поскольку эти импульсы аналогичны одиночным импульсам коллективного спонтанного излучения Дике (см. [6-11] и приведенную там библиографию), их можно назвать сверхизлучательными. Следует отметить, что сверхизлучательная генерация в лазерах класса D отличается от обычной (т. е. описываемой в рамках балансных уравнений) генерации в лазерах класса В наличием когерентной динамики не только поля и инверсии, но и поляризации. Вместе с тем высокая плотность активных центров неизбежно приводит к неоднородному уширению спектральной линии, что препятствует самофазировке диполей в процессе формирования импульса коллективного спонтанного излучения. В соответствии с результатами теории модового сверхизлучения [8] использование низкодобротных резонаторов снижает требования к скоростям релаксации поляризации и инверсии населенностей уровней. В работах [4,5] было показано, что резонансная периодическая брэгговская структура [11-13] позволяет проредить спектр неустойчивых «горячих» мод благодаря наличию запрещенной зоны и неравномерной зависимости инкрементов мод от волнового числа. Таким образом, использование селективных резонаторов должно позволить реализовать сверхизлучательные режимы гене-

^{*}Доложена на конференции «Оптика лазеров», Санкт-Петербург, Россия, 2010.

Поступила в редакцию 25 февраля 2011 г , после доработки – 23 мая 2011 г.

рации в активных средах с неоднородным уширением, включая полупроводниковые гетероструктуры с ансамблями квантовых точек [14], а также оптические кристаллы, сильно легированные редкоземельными элементами [15].

Настоящая работа посвящена детальному анализу спектральной и временной динамики сверхизлучательной генерации в лазерах класса D с распределенной обратной связью и неоднородным уширением активной среды в рамках одномерной пространственно-временной модели.

2. Двухуровневая модель сверхизлучающего лазера с распределенной обратной связью

Рассмотрим одномерную модель лазера с распределенной обратной связью, возникающей за счет брэгговских отражений на периодической модуляции действительной части диэлектрической проницаемости матрицы активного вещества:

$$\varepsilon = \bar{\varepsilon} \operatorname{Re}[1 + 4\bar{\beta} \exp(2ik_0 z)]. \tag{1}$$

Здесь $k_0 c / \sqrt{\overline{\epsilon}} = \omega_0$ – частота волн в центре брэгговского резонанса, которая для простоты предполагается совпадающей с центром неоднородно уширенной линии активной среды. Поле излучения представляем в виде суммы двух встречных линейно поляризованных волн

$$E = \operatorname{Re}[[A_{+}(z, t) \exp(\mathrm{i}k_{0}z) + A_{-}(z, t) \exp(-\mathrm{i}k_{0}z)]$$
$$\times \exp(-\mathrm{i}\omega_{0}t)], \qquad (2)$$

согласованных с поляризацией среды

$$P = \operatorname{Re}[[P_{+}(z, t, \Delta) \exp(\mathrm{i}k_{0}z) + P_{-}(z, t, \Delta) \exp(-\mathrm{i}k_{0}z)] \times \exp(-\mathrm{i}\omega_{0}t)], \qquad (3)$$

и спектрально-зависимой инверсией населенностей активных центров

$$N(z, t, \Delta) / [N_0 f(\Delta)] = n(\Delta) + \operatorname{Im}[n_z(\Delta) \exp(2ik_0 z)].$$
(4)

E.P.Кочаровская, H.C.Гинзбург, A.C.Сергеев. Институт прикладной физики РАН, Россия, 603950 Н. Новгород, ул. Ульянова, 46; e-mail: katya@appl.sci-nnov.ru, ginzburg@appl.sci-nnov.ru, sergeev@appl.sci-nnov.ru

В инверсии выделяются плавно-неоднородная часть n и компонента n_z , промодулированная с полуволновым периодом $\lambda/2$, близким к периоду модуляции диэлектрической проницаемости, и учитывающая биения двух встречных волн.

Динамика сверхизлучающего лазера может быть описана стандартными полуклассическими уравнениями Максвелла – Блоха [4, 5, 16] для безразмерных амплитуд встречных волн $a_{\pm} = A_{\pm}\bar{\epsilon}/(2\pi dN_0)$, для спектральной плотности поляризации среды $p_{\pm} = P_{\pm}/[dN_0 f(\Delta)]$ (дипольного момента единицы ее объема), а также для указанных выше двух компонент инверсии:

$$\left(\frac{\partial}{\partial\tau} \pm \frac{\partial}{\partial\zeta}\right) a_{\pm} = \mathbf{i}\beta a_{\mp} + \mathbf{i} \int_{-2\Delta_0}^{2\Delta_0} p_{\pm}(\Delta) f(\Delta) \,\mathrm{d}\Delta,$$

$$\left(\frac{\partial}{\partial\tau} + \Gamma_2 + \mathbf{i}\Delta\right) p_{+}(\Delta) = -\sqrt{I} \left(\mathbf{i}n(\Delta)a_{+} + \frac{n_z(\Delta)}{2}a_{-}\right),$$

$$\left(\frac{\partial}{\partial\tau} + \Gamma_2 + \mathbf{i}\Delta\right) p_{-}(\Delta) = -\sqrt{I} \left(\mathbf{i}n(\Delta)a_{-} - \frac{n_z^*(\Delta)}{2}a_{+}\right),$$

$$\left(\frac{\partial}{\partial\tau} + \Gamma_1\right) [n(\Delta) - n_p] = -\sqrt{I} \operatorname{Im}[a_{+}p_{+}^*(\Delta) + a_{-}p_{-}^*(\Delta)],$$

$$\left(\frac{\partial}{\partial\tau} + \Gamma_1\right) n_z(\Delta) = -\mathbf{i}\sqrt{I} \left[a_{-}^*p_{+}(\Delta) - a_{+}p_{-}^*(\Delta)\right].$$

$$\left(\frac{\partial}{\partial\tau} + \Gamma_1\right) n_z(\Delta) = -\mathbf{i}\sqrt{I} \left[a_{-}^*p_{+}(\Delta) - a_{+}p_{-}^*(\Delta)\right].$$

Здесь $f(\Delta) = \Delta_0 / \pi (\Delta^2 + \Delta_0^2)$ – неоднородное уширение спектральной линии, для определенности заданное функцией Лоренца; $\Delta = (\omega - \omega_0)/\omega_c$ – нормированная отстройка частоты ω перехода активного центра от центральной частоты линии; $\Delta_0 = 1/(T_2^*\omega_c)$ – характерная ширина; $\omega_c =$ $\sqrt{2\pi d^2 N_0 \omega_0}/\hbar \bar{\epsilon}$ – кооперативная частота среды с концентрацией активных центров N₀; d – дипольный момент рабочего двухуровневого перехода; $I = \omega_c^2 / \omega_0^2$; $L_c = c / \omega_c \sqrt{\overline{\epsilon}}$ – кооперативная длина; c – скорость света в вакууме; $\beta = \beta / \sqrt{I}$ – безразмерная амплитуда брэгговской модуляции диэлектрической проницаемости (отношение полуширины запрещенной зоны к кооперативной частоте); $\tau = t\omega_c$ и $\zeta =$ $z\omega_{\rm c}\sqrt{\overline{\varepsilon}}/c$ – безразмерные время и продольная координата; Г_{1,2} – безразмерные скорости релаксации инверсии и поляризации одного активного центра; n_p – инверсия, создаваемая накачкой.

В исследуемом классе лазеров ширина полосы неоднородного уширения превышает не только скорости релаксации инверсии и поляризации отдельных активных центров, но и их кооперативную частоту (см. ниже), а также скорость затухания поля в «холодном» (при нулевой инверсии) резонаторе. Таким образом, исследуемая далее эффективная сверхизлучательная генерация при доминирующем неоднородном уширении активной среды происходит в условиях [5, 16]

$$\Gamma_2 \ll \frac{1}{2\Delta_0} \sim \beta \sim \frac{1}{L} \ll 1,\tag{6}$$

когда параметр $b = \beta L$, характеризующий интегральный коэффициент брэгтовских отражений встречных волн, порядка единицы. В проведенном ниже численном моделировании мы полагали, что $I = 2.3 \times 10^{-6}$, $\Delta_0 = 4$, $\Gamma_2 = 2\Gamma_1 = 0.01$. Эти значения качественно соответствуют реальным параметрам гетероструктур на квантовых точках [14], подходящим для реализации сверхизлучения.

В предположении, что в исходном состоянии среда инвертирована, а процесс генерации стартует с малых начальных шумов поляризации, начальные условия к уравнениям (5) будут таковы: n = 1, $n_z = 0$, $p_{\pm} = 10^{-4}$, $a_{\pm} = 0$. Граничные условия на краях образца с безразмерной длиной $L = B\omega_c \sqrt{\overline{\epsilon}}/c$ соответствуют свободному (без отражений на краях) выходу излучения:

$$a_{+}(\zeta = -L/2) = 0, \quad a_{-}(\zeta = L/2) = 0.$$
 (7)

Граничные условия (7) могут быть приближенно использованы и для малых эффективных отражений на торцах образца ($R \ll \beta L/(2\pi)$). Предполагаем, что интегральный коэффициент брэгговского отражения $b = \beta L \leq 1^*$.

3. Особенности спектров сверхизлучательной генерации

Как показано в [6,8], в случае однородного уширения спектральной линии активной среды поляритонные моды, представляющие собой симметричную суперпозицию встречных волн электромагнитного поля (a_- и a_+) и поляризации активной среды (p_- и p_+), определяют динамику сверхизлучения. В рассматриваемом случае сильного неоднородного уширения линии сверхизлучательная генерация происходит на электромагнитных модах, т.е. на модифицированных инвертированной активной средой модах «холодного» брэгговского резонатора [5,16]. Типичные спектры мод, полученные с помощью дисперсионного и характеристического уравнений [5] для безразмерных отстроек частоты $\Omega = (\omega - \omega_0)/\omega_c$, представлены на рис.1–3, штриховыми линиями со звездочками указаны инкременты.

В простейшем случае вблизи порога в спектре генерации присутствуют только моды около краев запрещенной зоны брэгговского резонатора, имеющие максимальные инкременты (рис.1, δ). Их биения определяют пичковую структуру поля излучения на рис.1,*a*, поскольку длительность каждого из пичков и период их следования задаются межмодовым интервалом (рис.1, δ). На пороге генерации (рис.1, при $n_p \sim 0.5$ на рис.4) энергия в отдельных пичках минимальна, а их длительность $\Delta \tau \sim L$ максималь-

Рис.1. Пичковая осциллограмма интенсивности излучения $I|a|^2(a)$ и спектр поля $|S_a(\Delta)|$ на правом торце лазера с параметрами $\Delta_0 = 4$, $\beta = 0.1, b = 1, \Gamma_1 = 0.01, \Gamma_2 = 0.02, n_p = 1$ и L = 7 (штриховой линией со звездочками (правая ось ординат) показаны инкременты (декременты) Im[Ω] «горячих» мод на линейной стадии генерации (δ).

^{*}При $b \gg 1$ в «холодном» брэгговском резонаторе вблизи запрещенной зоны моды становятся высокодобротными, их квазистационарная генерация исключает сверхизлучательный режим.

на (рис.1,*a*). Период следования цугов в этом случае в большей степени определяется инкрементом мод (следовательно, коэффициентом связи волн β), чем обратной скоростью накачки $1/\Gamma_1$.

Для режимов со значительным превышением над порогом (рис.2, б и 3, б) количество генерируемых спектральных составляющих увеличивается, а ширины спектров отдельных «горячих» мод и их инкременты существенно возрастают по сравнению с предсказаниями линейной теории. В этих режимах в условиях сильного неоднородного уширения одновременно развиваются несколько мод брэгговского резонатора с наибольшими инкрементами (две, четыре и шесть мод на рис. 1–3 соответственно). Как следует из рис.3, построенного для оптимальных по средней энергии импульсов значений параметров активной среды и брэгговского резонатора при максимальной постоянной накачке $n_{\rm p} = 1$, излучение различных спектральных составляющих, как правило, когерентно (о чем свидетельствуют ярко выраженные биения формируемых ими импульсов), хотя и не абсолютно (заметна небольшая асимметрия спектра и не строгая периодичность цугов импульсов).

Рис.2. Пичковая осциллограмма интенсивности излучения $I|a|^2(a)$ и спектр поля $|S_a(\Delta)|$ на правом торце лазера с теми же параметрами, что и на рис.1, но с длиной L = 10 и $n_p = 0.8$ (б).

Рис.3. Пичковая осциллограмма интенсивности излучения $I|a|^2(a)$ и спектр поля $|S_a(\Delta)|$ на правом торце лазера с теми же параметрами, что и на рис.2, и максимальным уровнем накачки $n_p = 1$ (δ).

Рис.4. Зависимости средней длительности $\Delta \tau$, частоты Раби $\Omega_{\rm R}$ и энергии ε в сверхизлучательном пичке, а также расстояния между цугами импульсов *D* от $n_{\rm p}$ для тех же параметров, что и на рис.2.

С увеличением параметров n_p (и L или β) (рис.2, 3 и зависимость на рис.4) генерация переходит в оптимальный режим с максимальной энергией в отдельных пичках, определяемой условием совпадения по порядку величины частоты Раби с так называемой действующей кооперативной частотой ~1/ Δ_0 . Она вычисляется по количеству активных центров из спектральной области, участвующей в сверхизлучении, и имеет тот же смысл, что и кооперативная частота в теории сверхизлучения для активной среды с однородным уширением, т.е. задает инкременты неустойчивых волн и минимальную длительность пичков сверхизлучения. Период следования цугов в оптимальном случае определяется характерным временем накачки 1/ Γ_1 .

Представленные на рис.4 зависимости от n_p основных характеристик отдельных сверхизлучательных импульсов (пичков) – средней длительности $\Delta \tau$, частоты Раби $\Omega_{\rm R} = \sqrt{I} |a|$ и энергии ε , а также периода следования цугов таких импульсов D – показывают, что около порога генерации длительность пичков и период следования цугов максимальны, а амплитуда и энергия импульса минимальны. Согласно [4, 5, 16] и проведенным в ходе данной работы расчетам, сверхизлучательная генерация возникает при превышении следующих пороговых значений: для параметра $b = \beta L \sim 1/3$, для длины резонатора $L \sim \Delta_0$, для уровня накачки $n_{\rm p} \sim 0.5$. Далее с увеличением уровня накачки, длины резонатора L или коэффициента связи волн β энергия в импульсе возрастает, а временные характеристики $\Delta \tau$ и D уменьшаются. Максимальные значения длины резонатора и коэффициента связи, при которых справедливы эти зависимости, определяются условием (6), а число сверхизлучающих мод в существенной мере зависит от b, а также от параметров накачки.

На рис.5 более полно показаны спектральные масштабы задачи (для удобства сравнения все спектры поля нормированы на максимальное значение). Запрещенная зона шириной 2β обозначена закрашенным прямоугольником, на ее краях генерируются две симметричные моды брэгговского резонатора с максимальными инкрементами, которые снимают инверсию активной среды в эффективном сверхизлучательном режиме, доводя ее значение до отрицательного. Соседние моды с меньшим инкрементом имеют ширину спектра порядка действующей кооперативной частоты, на порядок большей однородного уширения линии Γ_2 (6), а следовательно, снимают инверсию по-прежнему в режиме сверхизлучения. Штрих-пунктирной линией на рис.5 показан спектр $|S_i(\Delta)|$, вычисленный по интенсивности поля. Узость этого спектра также говорит о когерентности соседних спектральных компонент [17], его широкий пьедестал обусловлен короткими импульсами биений сверхизлучающих мод.

Рис.5. Типичные спектры (т.е. зависимости от расстройки частоты Δ в момент времени $\tau = 950$) инверсии *n* (сплошная кривая), комплексной амплитуды поля $|S_a|$ (штриховая кривая) и модуля амплитуды поля $|S_i|$ (штрих-пунктир) на краю образца. Запрещенная зона частот брэговского резонатора показана закрашенным прямоугольником. Параметры лазера: $\Delta_0 = 4$, L = 10, $\beta = 2/30$, b = 2/3, $\Gamma_1 = 0.01$, $\Gamma_2 = 0.02$, $n_p = 1$.

Уширение спектра «горячих» электромагнитных мод линейной теории связано с рождением сателлитов, сдвинутых по спектру на частоту Раби $\Omega_{\rm R} = \sqrt{I |a|}$, определяемую пиковым значением предыдущего сверхизлучательного импульса [2, 5, 16]. Такой процесс возможен, если эта частота по порядку величины совпадает с действующей кооперативной частотой $\sim 1/\Delta_0$. Как видно из динамического спектра для комплексной амплитуды поля $|S_a(\Delta)|$ (рис.6,*a*) и инверсии $n(\Delta)$ (рис.6,*б*), таких сателлитов может быть несколько; их количество, с одной стороны, ограничено наличием запрещенной зоны, а с другой - затуханиями в активной среде. Благодаря импульсному «выжиганию» провалов инверсии населенностей под действием генерируемых мод и связанных с ними волн непрерывного спектра создается спектральный градиент инверсии (рис.5, сплошная линия), эффективно увеличивающий инкременты на нелинейной стадии генерации и позволяющий развиваться более слабым (соседним) модам, которые являлись бы затухающими согласно декременту, вычисленному в рамках линейной теории (см. рис. $1, \delta - 3, \delta$).

Динамические спектры поля и инверсии показывают, что образование отдельных пичков в процессе сверхизлучательной генерации совпадает по времени с образованием узких спектральных провалов инверсии (ср. рис.5, сплошная и штриховая линии, и рис.6,а и б). После высвечивания цуга импульсов наступает пауза длительностью порядка времени накачки ($\sim 1/\Gamma_1$), во время которой восполняется снятая инверсия (светлая область на рис.6, δ). Когда инверсия достигает уровня $n \sim 1$, снова начинается генерация цуга сверхизлучающих импульсов. Начальные условия для каждого из пичков задаются фазовыми и амплитудными соотношениями поля и поляризации среды, оставшимися от предыдущей генерации, поэтому они могут сильно меняться от импульса к импульсу, так что строгой периодичности следования пичков в цуге и в их последовательности не наблюдается.

4. Заключение

Таким образом, проведенный анализ показывает, что введение распределенной обратной связи на основе периодических брэгговских структур позволяет реализовать в лазерах класса D с неоднородно уширенной спектральной линией активной среды генерацию в виде последовательности предельно коротких и мощных импульсов сверхизлучения. Важно подчеркнуть, что для ряда активных сред (например, полупроводниковые гетероструктуры с квантовыми ямами [10] и ансамблями квантовых то-

Рис.6. Осциллограмма модуля амплитуды поля |a(t)| (в единицах частоты Раби $\Omega_{\rm R} = \sqrt{I} |a|$) на фоне динамического спектра той же амплитуды поля $|S_{\rm a}(\Delta)|$ (тонированная шкала) (*a*) и аналогичный динамический спектр инверсии населенностей *n* на правом торце образца (*б*) для лазера с теми же параметрами, что и на рис.5.

чек [14], оптические сильно легированные редкоземельными элементами кристаллы [15]) относительно недавно достигнуты параметры, необходимые для реализации режимов сверхизлучения. Для таких сред в работе найдены оптимальные параметры резонатора, активной среды и накачки, обеспечивающие генерацию импульсов сверхизлучения с максимальной мощностью в отдельном пичке. В частности установлено, что при значительном превышении порога происходит существенное уширение спектра генерации «горячей» моды и излучение лазера формируется следующими друг за другом импульсами этой моды, сдвинутыми по частоте на величину порядка частоты Раби.

Настоящая работа выполнена при поддержке РФФИ (грант № 10-02-01395) и Программы фундаментальных исследований Президиума РАН № 21 (проект 1.7.9).

- 1. Ханин Я.И. Основы динамики лазеров (М.: Физматлит, 1999).
- Belyanin A.A., Kocharovsky V.V., Kocharovsky VI.V. Quantum Semiclass. Opt., 9, 1 (1997).
- Belyanin A.A., Kocharovsky V.V., Kocharovsky VI.V., Pestov D.S. Laser Phys., 13, 161 (2003).
- Ginzburg N.S., Kocharovskaya E.R., Sergeev A.S., Telnykh A.A. Proc. SPIE Int. Soc. Opt. Eng., 7138, 71381C (2008).
- Гинзбург Н.С., Кочаровская Е.Р., Сергеев. А.С. Изв. РАН. Сер. физич., 74 (7), 946 (2010).
- Железняков В.В., Кочаровский В.В., Кочаровский Вл.В. УФН, 159 (2), 193 (1989).
- Golubyatnikova E.R., Kocharovsky V.V., Kocharovsky Vl.V. Laser Phys., 5, 801 (1995).
- Golubyatnikova E.R., Kocharovsky V.V., Kocharovsky VI.V. Int. J. Comp. Math. Applications, 34, 773 (1997).
- 9. Benedict M.G., Ermolaev A.M., Malyshev V.A., et al. *Superradiance* (Bristol, Philadelphia: Inst. Phys. Publ., 1996).
- Ammerlahn D., Kuhl J., Grote B., Koch S.W., Khitrova G., Gibbs H. *Phys. Rev. B.*, **62**, 7350 (2000).
- 11. Ghafouri-Shiraz H. Distributed Feedback Laser Diodes and Optical Tunable Filters (Chichester: Wiley, 2003).
- 12. Kashyap R. Fiber Bragg Grating (Acad. Press, 1999).
- Ярив А. Введение в оптическую электронику (М.: Высшая школа, 1983).
- Krestikov I.L., Ledentsov N.N., Hofmann A., Bimberg D. *Phys. Stat. Sol. (a)*, **183**, 207 (2001).
- 15. Kalachev A.A., Samartsev V.V. Laser Phys., 12, 1114 (2002).
- Кочаровский Вл.В., Гарасев М.А., Калинин П.А., Кочаровская Е.Р. В сб. Матер. II Симп. по когерентному оптическому излучению полупроводниковых материалов и структур (М.: ФИАН, 2010, с. 68).
- Скалли М.О., Зубайри М.С. Квантовая оптика (М.: Физматлит, 2003).