
Abstract. It was shown previously that in taking into account
only dipole transitions, the crossing of quasi-energy levels is
possible in the system if any of the transitions forms a closed
loop [1]. It followed herefrom that for the analysis of the
crossing conditions, it is necessary to consider a system which
has at least four levels. In this paper we show that we can
uniquely specify which quasi-energy levels cross at the given
values of the parameters of the atomic system and radiation
éeld, without solving an algebraic quartic equation. It was
found that the most suitable system for the implementation of
the crossing is the group of energy levels 5S1=2,

5P1=2,
5P3=2

and 5D3=2 of a rubidium atom. The performed calculations of
the laser éeld intensity and frequency values at which crossing
takes place in this system show that they are easily
attainable. It turned out that in this system there occur
crossing of quasi-energy levels corresponding to the excited
atomic levels.
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1. Introduction

It is known that the characteristics of transitions between
states of a quantum system depend on the radiation
parameters: pulse duration, carrier frequency detuning from
the transition frequency, the width of the emission
spectrum, etc. Interaction of laser radiation with a two-
level system has been studied most thoroughly. If the
radiation frequency is close to the frequencies of transitions
between several levels, the two-level approximation is
generally invalid. When the radiation parameters or
parameters of a quantum system change adiabatically, in
some cases we can restrict ourselves to énding the quasi-
energy states of the system. However, if the adiabaticity
condition is not fulélled throughout this interaction
process, it is also necessary to take into account non-
adiabatic transitions [2, 3], which at the same time can be

used for the selective population of levels, or population
transfer between levels (see, for example, [4]).

Melikyan and Saakyan [1] determined the schemes of
those transitions in a quantum system that permit the
crossing of quasi-energy levels under the inêuence of the
external éeld. The aim of this work is to énd the algorithm
for identiécation of crossing of quasi-energy levels in a four-
level system with dipole transitions under the action of the
laser éeld.

2. Determining the parameters at which crossing
of the levels occurs

The concept of quasi-energy states of a quantum system in
an external periodic éeld was érst introduced in [5, 6].
These states appear under the condition that the spectral
width of radiation (as well as the width of atomic energy
levels) is much smaller than the resonance detuning. The
amplitude of the wave éeld strength at the same time is
considered an adiabatic function of time; therefore, atomic
states without the éeld transform smoothly in quasi-energy
states.

According to the Neumann ë Wigner theorem [7, 8], the
coincidence of the eigenvalues of a symmetric matrix can be
achieved by changing, in general, at least two parameters.
We choose the frequency and amplitude of the wave éeld
strength as these parameters.

Following paper [4], we will show that the level crossing
is possible in the case when the transitions form a closed
loop under the inêuence of the external perturbations. The
simplest system with the dipole transitions satisfying this
condition is a four-level system (see Fig. 1).

Following Born and Fock [9] and assuming that the
solutions of the stationary Schr�odinger equation
H(s)Cn(s) � �ho(s) �Cn(s) (here s � t=T; T is the character-
istic time for changes in the Hamiltonian ) are known at
every instant of time, which is regarded as a parameter,
while the solution of the nonstationary Schr�odinger equa-
tion with the adiabatic Hamiltonian H(t) is sought as a
superposition of `instant' eigenfunctions.

Therefore, we consider the N-level system in the éeld of a
resonant linearly polarised wave with an adiabatically
changing amplitude. The éeld will be described by the
classical electric-éeld vector

E�r; t� � E�s� exp�ikrÿ ot�� c. c. (1)

The wave function of the system is found from the
Schr�odinger equation
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i�h
qF
qt
� �H0 �Hint�F; (2)

where H0 is a Hamiltonian of an unperturbed system, and
the interaction Hint in the dipole approximation has the
from:

Hint � ÿ
1

2
Ex;y�s��ex;y d̂� exp�ÿiot�� c. c. (3)

Taking as a reference point the energy of the lowest
levels, the resonance condition is formulated as follows: for
each mth level there is an integer km, such that the condition
em � om ÿ kmo5o, where em is the detuning of the mth
level, and om is the frequency of the corresponding
transitions. The wave function

F �
X
m

cm�t�jm exp�ÿikmot�; (4)

where m are the eigenfunctions of the Hamiltonian H0.
Substituting (4) in Schr�odinger equation (2) and taking

into account the orthonormal function jm for the coefé-
cients cm(t); we obtain a system of differential equations:

i�h
qcm
qt
� �hemcm �

X
n

cnfVmn exp�io�km ÿ kn ÿ 1�t�

�V �mn exp�io�km ÿ kn � 1�t�g: (5)

Using the resonance approximation (rapidly oscillating
terms are neglected) with the linear polarisation of the wave
éeld (Vmn can be considered real), for the amplitudes cm we
énally obtain the system of equations:

i�h
qcm
qt
�
X
n

cn�Vmn � �hemdmn�: (6)

Here dmn is the Kronecker symbol.
Introducing the one-column matrix ĉ with elements

c1; c2; :::; cN, and the matrix Ŵ with elements Wmn �
Vmn(s)� emdmn, equation (6) can be written in the matrix
form:

i�h
qĉ
qt
� Ŵ�s�ĉ: (7)

One can see that equation (7) formally coincides with the
Schr�odinger equation with an adiabatically changing Hamil-
tonian. As we have already mentioned, in solving the
Schr�odinger equation with this Hamiltonian, the value of
s is considered as a parameter, and `instant' eigenfunctions
and eigenvalues are found.

This approximation is also called adiabatic-following
approximation. By substituting ĉ(t) � b̂(t) � exp (ÿilt), we
will write (7) in the stationary form:X

n

��h�lÿ em�dmn ÿ Vmn� bn � 0: (8)

Here l is the quasi-energy [5, 6], and its value is determined
from the nontriviality condition of the solutions of matrix
equation (8) for bn. The nontriviality condition means that
the determinant D � k�h(lÿ em)dmn ÿ Vmnk must be zero.
This equation of degree N in l has, generally speaking, N
different real roots. The crossing of two quasi-levels means
that the multiplicity of one of the roots of equation

D(l) � 0 is equal to two. If there is a double root of the
equation D(l) � 0, the matrix rank is reduced to two at
l � lcross. In other words, if l � lcross, all the érst minors of
the determinant D(l) vanish.

Using the method, based on the analysis of the rank of
the determinant D(l), we will show by the example of a
four-level atom how to énd the conditions for crossing the
quasi-levels, as well as will try to answer the question which
levels cross. To this end, we consider a four-level system,
shown below in Fig. 1.

The determinant of the system has the form

D�l� �
l ÿV12 0 ÿV14

ÿV21 lÿ e2 ÿV23 0
0 ÿV32 lÿ e3 ÿV34

ÿV41 0 ÿV43 lÿ e4

��������
��������: (9)

Here we consider the matrix elements to be real quantities,
referring to the linear polarisation of the external radiation
éeld.

First, we determine the minimum number of minors
whose equality to zero means that all other minors vanish.
Due to the symmetry of the matrix, only 10 of the 16 minors
should be considered. We will consider the minors of the
diagonal elements and the elements that are above the
diagonal. We will take, for example, the minors of the
elements of the last column. Using the property of deter-
minants, which consists in the fact that

P
n anjAni � 0 at

i 6� j (Ani are the cofactors of the elements ani), we énd that
three minors in last column are linearly independent, i.e., for
example, it follows from the condition M44 �M34 �
M24 � 0 that M14 � 0. Continuing this argument, we see
that two minors from the third column and one minor from
the second column are linearly independent, while the
minors from the érst column are automatically set to
zero. Thus, we conclude that for all the principal minors
of a symmetric matrix to be equal to zero, it is sufécient to
equate six out of 16 minors to zero.

The matrix under study, apart from symmetry, has one
more property, because of which the number of linearly
independent minors decreases, namely: each column and
each row has an element equal to zero. Continuing the
argument, we conclude that it is sufécient to equate to zero
two minors from the last column, one minor from the third
column and then all the other minors will be also equal to
zero.

Let us equate to zero the minors M13 �M23 �M24.
Then, for unknown quantities of the intensity, quasi-energy
and frequency of crossing we obtain:

E 2
cross �

l�lÿ e4�d32�h2
d41�d12d34 ÿ d32d41�

; (10)

lcross �
d12d41

d12d41 � d23d34
�o3 ÿ 2ocross�; (11)

ocross �
d12d41o3

d12d41 ÿ d32d34

ÿ�d12d41 � d32d43��d12d32o4 � d14d34o2�
�d12d41 ÿ d32d34��d12d32 � d14d34�

: (12)

Note that expressions (10), (11), (12) depend on the signs
of dij. If the system is such that the calculations by formulas
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(10) ë (12) yield E 2
cross > 0 and ocross > 0 then the crossing of

quasi-energies for such a system is possible. In addition, to
have the initial resonance approximation unviolated, there
should be fulélled the conditions of smallness compared
with the atomic éelds, as well as smallness of detunings
compared to ocross.

From the condition of equality of the minors
M13;M23;M24 to zero follows the equality of all other
minors of matrix (9) to zero. Converse is also true: if we
equate to zero the other three minors, the minors
M13;M23;M24 will also be zero; hence, conditions
(10) ë (12) are the only conditions under which the crossing
of the quasi-levels is possible. In other words, only one
crossing of quasi-levels can occur in the four-level system.

3. Identiécation of crossing levels

In the case of the adiabatic switching of the external éeld,
each atomic level undergoes a transition to the quasi-energy
level; therefore, we can say that there is a unique mutual
correspondence between the atomic and quasi-energy levels.
From the viewpoint of nonlinear spectroscopy it is desirable
to know in advance exactly to what atomic levels there
correspond the crossing quasi-energy levels. To answer this
question, we consider the equation D(l) � 0. The depen-
dence of the quasi-energy branches on the éeld strength is
given by a formula for the roots of the quartic equation.
However, as seen from the equation itself, the inverse
dependence, i.e., the dependence of the intensity on the
quasi-energy is obtained by solving a biquadratic equation
that is much more convenient and does not impose any
restrictions on the consideration. The biquadratic equation
has the form

aE 4 � bE 2 � c � 0; (13)

where the coefécients a, b, c are the functions of l and of
the parameter of the problem

a � �d41d21 ÿ d23d43�2, (14)

b � l�lÿ e2�d 2
43 ÿ l�lÿ e4�d 2

23

��lÿ e4��lÿ e3�d 2
12 ÿ �lÿ e2��lÿ e3�d 2

41, (15)

c � l�lÿ e2��lÿ e3��lÿ e4�. (16)

Equation (13) has, with respect to E 2 � I, two solutions:

I1;2 �
ÿb�

������������������
b2 ÿ 4ac
p

2a
, (17)

i.e., there are two branches of the intensity dependence of l.
For each value of the intensity, there are four quasi-energy
values, the quasi-energies coinciding with detunings ei at
I � 0, and with increasing intensity they move along the
branches I(l). To elucidate the trajectories of the levels we
can consider the asymptote I at l!1:

lim
l!1

I1;2 �
l2�d 2

12 � d 2
14 � d 2

23 � d 2
43 �

����
G
p �

2a
: (18)

Here

G � lim
l!1

b2 ÿ 4ac

l2
;

where it is necessary to fuléll the condition d 2
12 � d 2

14

� d 2
14 � d 2

23 � d 2
43 >

����
G
p

. However, given the large number
of parameters, it is more convenient to directly construct
plots for two branches (17) at o � ocross, from which we
will get the answer which of the levels cross.

4. Speciéc example ë rubidium atom

Now we will use the obtained results to study the rubidium
atom Rb 85

37 . We will take the system of levels that satisées
the condition of cyclicity, namely, the levels whose scheme
is shown in Fig. 1. Here all the states are degenerate, the
ground state with a zero orbital angular momentum being
doubly degenerate. We believe that the external radiation
éeld is linearly polarised. Then, according to the selection
rules in the dipole approximation, the éeld relates sublevels
corresponding to the zero projection of the orbital angular
momentum and the same spin projection. As a result, from
the entire system of four degenerate levels we can single out
two independent subsystems of interacting sublevels ë four
sublevels in each subsystem, as the ground state is doubly
degenerate. One can see from Fig. 1 that the energies of the
levels are as follows (the energy of the 5s level is taken as a
reference point): 5p1=2 ë o2 � 12578 cmÿ1, 5p3=2 ë
o4 � 12816 cmÿ1 and 5d3=2 ë o3 � 25700 cmÿ1.

The oscillator strengths of transitions, deéned as
fij � 2moijjdijj2=�he2 (the values are taken from [10]) are
as follows:

f12 � 0:32; f13 � 0:67; f24 � 0:0425; f34 � 0:0043;

they are used to énd the matrix elements.
Substituting these data into (12), we obtain

ocros � 2:32226 �1015 sÿ1. This value is then substituted
into (11), whence we énd lcross � ÿ2:66885� 1013 sÿ1.
Finally, substituting ocros and lcross into (10), we obtain
Ecross � 2:39� 105 V cmÿ1 .

As seen from Fig. 2, the equation D(l) � 0 has four
roots for all E, except E � Ecross. At this value of the
intensity, two of the four roots merge, so that at point lcross
the dependence D(l) is tangent to the straight line D(l) � 0.

Substituting ocross into the formulas for calculating the
detunings before switching on the éeld, we get
e2 � ÿ6:22595� 1013 sÿ1, e3 � ÿ2:68871� 1013 sÿ1, e4 �
ÿ1:95455� 1013 sÿ1, i.e., e2 < e3 < e4 < 0. The correspond-
ing dependences for o � ocross, o < ocross and o > ocross

5d3=2

13122 cmÿ1 12884 cmÿ1

12816 cmÿ1
12578 cmÿ1

5p1=2

5s1=2

5p3=2

Figure 1. Scheme of transitions in a rubidium atom.
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are shown in Figs 3 ë 5. Comparing the positions of the
quasi-energies at a zero intensity, i.e. the resonance detun-
ings, and their positions when the éeld is switched on, we
énd that in this system there occurs crossing of the levels
corresponding to the detunings e3 and e4. In this case, these
levels correspond to excited atomic states, which hinders
observation of nonadiabatic transitions between them.

5. Conclusions

In this paper we have found the conditions under which the
crossing of quasi-energy levels of a four-level atom is
possible, and have given a method for identifying the
crossing levels. As a concrete example, we consider a
rubidium atom for which we have found the appropriate
wave frequencies and intensities; it is shown that crossing of
only those quasi-energy levels is possible, which are formed
from the atomic levels of the érst excited states. In the case
of a greater number of levels, the formulas become
cumbersome, and the corresponding equations should be
solved numerically. The results obtained can be used to
carry out experiments on population transfer between the
excited levels.
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Figure 2. Dependence of D on l (see the text).
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Figure 3. Dependence of I on l at o � ocross:
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Figure 4. Dependence of I on l at o < ocross:
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Figure 5. Dependence of I on l at o > ocross:
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