
Abstract. A method is proposed to reconstruct three-
dimensional images of a distant nonplanar rough object by
the speckle pattern of its êat image, which is calculated using
the temporal approach based on the time correlation function
of probe radiation with a coherence length smaller than the
size of the probed object. We analyse the inêuence of the
angular resolution of the optical system, forming an image of
the object, and additive noises on the reconstruction accuracy
of the object surface shape using the proposed method.

Keywords: optical coherence, three-dimensional objects of distant
rough objects, speckle pattern in optical images.

1. Introduction

The literature describes several methods for forming three-
dimensional images of distant rough nonplanar objects. The
methods are based on digital processing of the intensity
distribution in the êat images [1 ë 4]. They include, for
example, actively adopted methods of three-dimensional
imaging, implemented by processing the intensity distribu-
tions in two êat images (stereo pairs) of the object obtained
from two perspectives [2, 3]. The relevance of these methods
is associated with their use for solving a wide range of
problems, including the problems of determining the shape
of the distant objects in order to signiécantly increase the
probability of their recognition; of high-precision recon-
struction of the topography of the Earth's surface,
especially in mountainous terrains, by the results of its
aerial survey [2]; and of obtaining laser-induced three-
dimensional images of objects in transparent crystals [3].
However, the implementation of these methods is time-
consuming and, in the case of far distant objects, requires a
suféciently large separation of the optical axes of the
receiving optical systems generating these two images. In
particular, Troitsky [3] proposed a method for reconstruct-
ing the shape of the object surface, i.e., three-dimensional
imaging of the object by its two êat images generated when
the axes are arranged mutually perpendicular, which for far

distant objects makes the implementation of this method
virtually impossible.

In [4] we made an attempt to reconstruct a three-
dimensional image of a distant rough nonplanar object
by the contrast of the speckle pattern Ck � C(dk) of the
time-averaged intensity distribution I0(dk) in various (of the
same shape) sites of its êat image, obtained in a single
perspective, where dk is the radius vector of the centre of the
kth site. In this case, the shape of each site represents a
square with sides equal to the average size of a speckle dr �
ziw [5], where w � 0:61l0=dr is the Rayleigh angular
resolution [6] of the optical system that forms the image;
l0 � o0=c is the average wavelength of probe radiation; zi is
the distance from the receiving aperture of the optical
system forming the image to the image plane; dr is the
diameter of the receiving aperture.

Then, using a set of measured values Ck, the minimum
resolvable sites of the object surface are approximated by
parallelepipeds with the height of the kth parallelepiped
Lk � Lc=Ck, where Lc is the coherence length of probe
radiation. In this case, the base of the parallelepipeds is a
square with the side D � wrc, where rc is the distance
between the receiving aperture and the probed object.
However, we did not describe [4] the method allowing
for the three-dimensional image reconstruction of a distant
rough nonplanar object for the set of the Ck quantities by
the position of approximating parallelepipeds in space. In
this paper, we give a detailed description of this method,
taking into account the effect of both the angular resolution
w of the optical system that forms an image of a distant
nonplanar object, and the additive noises on the recon-
struction accuracy of the shape of the distant object surface.

2. Method for reconstructing three-dimensional
images of distant objects with a temporal
approach

Let us describe the proposed method (Fig. 1). The distant
rough object ( 1 ) under study is probed by a small source of
coherent radiation with a coherence length Lc that is
smaller than the size of the object. The optical system ( 3 )
forms a êat image of object ( 1 ) outlined by contour ( 4 ),
the image being projected on the matrix receiver ( 5 )
consisting of photodetectors whose receiving apertures have
the shape of a square with the sides equal to dr. The radius
vector of the centre of the receiving aperture of the kvth
photodetector dkv has components dx � kdr and dy � vdr. In
this case, the kvth photodetector registers the time-averaged
intensity distribution in the image of the object under study
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where I0(dkv, t) � jE0(dkv, t, qs)j2 is the instantaneous inten-
sity in this image; t0 and T is the initial time and time of its
registration;
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is the instantaneous éeld at the receiving aperture of the
kvth photodetector; r is the radius vector of a point on the
object surface; u(t) is the function of the probe radiation
modulation [4] with the time correlation function

Bu�t� �
1

T

� t0�T

t0

u�t�u ��1� t�dt;

k(r) is the distribution of the reêection coefécients over the
éeld on the surface of object ( 1 ); Es and qs are the éeld at
the aperture and the radius vector of the probe radiation
source; x(r) is the distribution of heights of the surface
roughnesses; h(r, dkv) is the pulse response of the optical
system, forming an image. The registered signals �I0(dkv)
arrive to block ( 6 ), which reconstructs the shape of the
object surface or, in other words, constructs a three-
dimensional image of the object. Without loss of generality,
we further assume that the optical axis of system ( 3 )
intersects the êat image of the probed object in the centre of
gravity (the point Oi in Fig. 1). The orientation of the
optical axis is deéned by the unit vector n directed along the
optical axis of system ( 3 ) toward the probed object.

The three-dimensional image of the object is recon-
structed using a step approximation of the object surface by

the system of parallelepipeds (Fig. 2). To do this, érst with
the temporal approach [4] based on the use of the function
Bu(t), we determined the contrast of the speckle pattern in a
êat image on the kvth site of the image that is projected onto
the receiving aperture of the kvth photodetector. In the
absence of noise the contrast is determined by the formula
[4]

Ckv �


�I 2
0 �dkv�

�
x


�I0�dkv�
�2
x

ÿ 1 � Lc

Lkv

, (2)

where Lkv � L(dkv) is the height of the parallelepiped
approximating the site of the investigated object surface,
that is optically conjugate with the kvth site of its image
with its centre at the point with the radius vector dkv;
angular brackets h. . .ix stand for averaging over different
realisations of the heights of the surface roughnesses x(r).
Equation (2) is valid when Lkv 5 10Lc [4]. Then, in the
plane XY, which is optically conjugate with the image plane
dxdy, we construct grid ( 2 ) of square cells with the side
D � mdr � wrc, where m � rc=zi is a scale factor. On this
grid a closed line ( 3 ) is drawn, which repeats on a scale m
the contour of the êat image of the object [contour ( 4 ) in
Fig. 1] and intersects the axes X and Y at points A0, B 0, C 0,
D 0, which correspond to the intersection points A, B, C, D
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Figure 1. General scheme of registration of the intensity distribution in
images of a distant nonplanar rough object and formation of its three-
dimensional image: ( 1 ) the object of study; ( 2 ) a source of coherent
radiation probing the object, ( 3 ) optical receiver producing a êat image
of the probed object; ( 4 ) contour of the êat image of the object; ( 5 )
photodetector array; ( 6 ) generator of a three-dimensional image of the
object; dash-and-dot line is the optical axis of receiving system ( 3 ); point
Oi is the centre of gravity of the object image; points A �, B �, C �, D � are
optically conjugate with the points A, B, C, D, located at the intersection
of contour ( 4 ) with the coordinate axes dx, dy.
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Figure 2. Scheme of reconstruction of arbitrary sites of the surface of the
probed distant object at the scale m � rc=zi in the coordinate system
XYZ, oriented so that the plane XY is located parallel to the aperture of
the photodetector array ( 5 ) in Fig. 1: ( 1 ) dashed grid reproducing at the
scale m the structure of the photodetector array ( 5 ) in Fig. 1; ( 2 )
coordinate grid on the plane XY; ( 3 ) closed line reproducing at the
scale m contour ( 4 ) in Fig. 1; ( 4 ) contour of the object (reconstructed at
the scale m) optically conjugate with the contour of its êat image ( 4 ) in
Fig. 1; Zm0 and Zmn� KG � are the heights of surface sites of the
reconstructed three-dimensional object image that are optically conju-
gate with sites of its image, projected on a photodetectors with the
numbers ÿm0 and ÿmÿ n; ZÿM0, ZM0, Z0N and Z0ÿN are the heights of
the surface sites of the reconstructed three-dimensional object image that
are optically conjugate with the sites of its êat image located near the
intersection of points A, B, C, D of contour ( 4 ) in Fig. 1 with the axes dx
and dy; dotted lines form the skeleton of the reconstructed surface of the
object.
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of the coordinate axes dx and dy with contour ( 4 ) in Fig. 1.
Then, on grid ( 2 ) for ÿmÿ nth cell the point G is éxed
with coordinates x � ÿmD, y � ÿnD, which corresponds to
the centre of the ÿmÿ nth section of the êat image, whose
radius vector has components dx � ÿmdr and dy � ÿndr.
After that, on the reconstructed surface we determined the
coordinates x0 � mD, y0 � nD and z0 � Zmn of the point
G� that is optically conjugate with the point G. Provided
Lmn 5 10Lc and taking into account relations (2), the height
of the mnth approximating parallelepiped KG� with the
lower square base, coinciding with the mnth cell of grid ( 2 )
(Fig. 2),

Zmn � Zm0 �
Xn
v�0

Lmv � Zm0 � Lc

Xn
v�0

1=Cmv, (3)

where

Zm0 �
Xm
k�0

Lk0 � Lc

Xn
k�0

1=Ck0 (4)

is the height of the m0th approximating parallelepiped with
upper square base whose point of intersection of the
diagonals has coordinates x0 � mD, y0 � 0 and z0 � Zm0.
The Zm0 is calculated using formula (4) by summing the
quantities Lk0 along the segment OF on the axis X. To
calculate Zmn in accordance with formula (3) we performed
additional summation of the quantities Lmv along the
segment FK, parallel to the axis Y. The points
A�, B�, C�, D� located on the contour of the image of
the object surface at heights ZÿM0, ZM0, Z0N, Z0ÿN,
respectively (Fig. 2), are optically conjugate with the points
A, B, C, D shown in Fig. 1. We will estimate these heights
below.

Specifying the object surface as a function of Z0(x, y), we
will show that with decreasing D the height of the mnth
approximating parallelepiped Zmn tends to the height of this
surface Z0(x0, y0). In fact, from relations (3) and (4) we
obtain

Zmn �
Xm
k�0

Lk0 �
Xn
v�0

Lmv, (5)

where, as seen from geometrical assumptions,

Lk0 � Zk0 ÿ Z�kÿ1�0 � Z 00x�x � kD; 0�D, (6)

Lmv � Zmv ÿ Zm�vÿ1� � Z 00y�x � mD; y � vD�D. (7)

We assume below that Z0(0, 0) � 0. Then, passing at D! 0
from summation in relation (5) to integration with account
for (6) and (7), we obtain

Zmn !
� x0

0

Z 00x�x; 0�dx�
� y0

0

Z 00y�x0; y�dy � Z0�x0; 0�

ÿZ0�0; 0� � Z0�x0; y0� ÿ Z0�x0; 0� � Z0�x0; y0�, (8)

which was to be proved.
Figure 3 shows a scheme illustrating the reconstruction

of the object surface under study by its approximation by
the system of parallelepipeds with square bases D� D in
those of its parts, which are optically conjugate with the sites
of the êat image of the object, located on the coordinate
axes dx and dy. Parallelepipeds ( 4, 5, 6, 7) with heights
ZÿM0, ZM0, Z0N, and Z0ÿN (Fig. 2) approximate the sites of

the reconstructed surface, are optically conjugate with sites
of êat image of the probed object centred at points A, B, C,
D, which are located under the numbers ÿM0, M0, 0N,
0ÿN at the intersection of the contour of image ( 2 ) with
the axes dx and dy. The heavy dashed line and the dotted line
in the image plane show the paths which are used in formula
(4) to sum the quantities Lk0 in order to determine the
heights ZÿM0 and ZM0 of the sites of the reconstructed
surface which are optically conjugate with ÿM0th andM0th
sites of the êat image centred at the points A and B, denoted
by the radius vectors d1 and d2. Figure 3 also shows the
radius vectors r1 and r2 of the points A� and B� on the
reconstructed surface of the object, which are optical
conjugate with points A and B. Similarly, we deéne the
heights Z0N and Z0ÿN.

3. Inêuence of the angular resolution
of the optical system that forms images
of a distant object on the reconstruction
accuracy of the shape of its surface

The presented method allows one to construct a three-
dimensional image of the object by approximating its
surface by the system of parallelepipeds with square bases
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Figure 3. Scheme of the surface reconstruction of the probed object by
its approximation by the system of parallelepipeds in those sites that are
optically conjugate with the sites of the object image, located on the
coordinate axes dx and dy: ( 1 ) aperture of the photodetector array; ( 2 )
contour of the êat image of the object; ( 3 ) optical system forming the
image of the object; ( 4 ë 7 ) parallelepipeds approximating the surface of
the reconstructed three-dimensional image of the object in those of its
sites, which are optically conjugate with the sites of the êat image of the
object, located at the intersection of contour ( 2 ) with the axess dx and
dy; ( 8 ) parallelepiped approximating the site of the object surface located
between the points with the coordinates x � x0 and x � x0 ÿ D; dashed
lines show the cross sections B�OA � and D�OC� of the reconstructed
surface by mutually perpendicular planes XZ and YZ; arrows indicate
the direction of the probe radiation with respect to the probed object.
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D� D and heights, determined by the contrast of the
speckle pattern in different parts of a êat image of the
object. But this approximation for large D � wrc, i.e., with
poor angular resolution w of the optical system ( 3 ) in
Figs 1 and 3, is quite rough; as a result, the reconstructed
shape of the object surface will have at different points
(x0, y0) different deviations from its original form
dZ0(x0, y0) � Z0(x0, y0)ÿ Zmn. Let us determine the recon-
struction accuracy of the shape of the object surface at the
point (x0, y0) as the relative error Z(x0,y0) � dZ0(x0,y0)�
Zÿ10 (x0,y0) of the estimate of the height Z0(x0, y0). Without
loss of generality, we estimate this error as a function of w
under the assumption that Z0(x, y) � (x 2 � y 2)=(2a), where
a is the radius of curvature of the surface, and that the
height Zm0 is determined in the cross section B �OA � of the
surface by the plane XZ (see Fig. 3) at the point with the
coordinates x � x0, y � 0. Given that this section is a
parabola Z0(x, 0) � x 2=(2a), and with allowance for (4) we
have

Zm0 �
Xm
k�0

Lk0 � Lc

Xm
k�0

1=Ck0 � D
Xm
k�0

Z 00x�kD; 0�

�
Xm
k�0

kD2=a � �D2=a�m�mÿ 1�. (9)

Taking into account the relations Z0(x, 0) � x 2=(2a),
D � wrc, x0 � mD, (8) and (9), we obtain Z(x0, 0) �
D=x0 � wrc=x0. As the angular resolution w decreases
down to a certain value of wm, the accuracy of determining
the shape of the surface increases. This is due to the fact that
Z is reduced to the minimum error Zm of determining the
height of the object surface at a point with the coordinates
x � x0 � mD, y � y0 � 0. In fact, it follows from (7) that the
last term in (9) has the form Lm0 � x0wrc=a. This term
deénes the height of parallelepiped ( 8 ) in Fig. 3, approx-
imating the site of the surface of the object, located between
the points with coordinates x � x0 ÿ D, y � 0, z �
Z0(x0 ÿ D, 0) and x � x0, y � 0, z � Z0(x0, 0). Note also
that the relation Lm0 � x0wrc=a takes place only when the
condition Lm0 5 10Lc is met [4]. This condition implies that
the angular resolution w should not be less than

wm � 10Lca=�rcx0� . (10)

Then, from the relation Z � wrc=x0 we obtain

Zm � 10Lca=x
2
0 . (11)

When approaching the object surface top, located at a
point with the coordinates x � x0 � 0, y � y0 � 0 (point O
in Figs 2 and 3), the quantity Zm increases beyond all
bounds. Therefore, it is expedient, for example, to select
(around this top) a small region of radius 0:1a and high
enough (Zm � 0:05) reconstruction accuracy of surface
shape at the boundary of this site. Then, taking (10) and
(11) into account, we get wm � 5� 10ÿ3a=rc. With this
angular resolution outside the selected site, i.e., at
x0 > 0:1a, we have Z(x0, 0) � wmrc=x0. As x0 increases, Z
decreases, reaching a minimum Zb � 5� 10ÿ3sx=lx on the
boundary of the site (radius rb � asx=lx) of the back-
scattering of the object [7], where lx and sx is the
correlation radius and root-mean-square deviation of the
heights of the roughnesses on the object surface. When the

roughnesses of the object surfaces are smooth (sx=lx � 0:2),
Zb � 10ÿ2, and when they are steep (sx=lx � 1),
Zb � 5� 10ÿ3.

Thus, we have shown that there exists a minimal angular
resolution wm, at which the most accurate approximation of
the object surface shape by the system of parallelepipeds is
achieved. However, at a suféciently high level of noises, even
at such an angular resolution, the surface shape is recon-
structed with visible distortions, the analysis of which will be
given in Section 4.

4. Inêuence of additive noises
on the reconstruction accuracy
of the surface shape

We will analyse the effect of the additive noise éeld on the
reconstruction accuracy of the surface of the object shape
by the contrast of the time-averaged intensity distribution
in its êat image. In the presence of noises, taking into
account relation (1), the kvth photodetector (see Figure 1)
detects the signal

�Is�dkv� �
1

T

� t0�T

t0

Is�dkv; t�dt,

where

Is�dkv; t� � Es�dkv; t; qs�j2;

Es�dkv; t; qs� � E0�dkv; t; qs� � En�dkv; t�;
En(dkv, t) is the additive noise éeld at the receiving aperture
of the photodetector. This éeld, as shown in [7], can be
interpreted as a éeld in the image of a background,
averagely êat, rough object mentally located near the
distant object under study. Then, the contrast of the speckle
pattern on the kvth site of the overall êat image of the
studied and background objects Cs kv � hh�Is(dkv)2ixiz=
hh�Is(dkv)ixi2z ÿ 1, where the brackets h. . .iz refer to the
operation of averaging over the distribution of heights z(r)
of surface roughnesses of background objects, performed
along with the operation of averaging over the distribution
x(r). Assuming that the éelds E0(dkv, t) and En(dkv, t) are
distributed by a Gaussian law and statistically independent,
we obtain for the contrast Cs kv the relationship:

Cs kv �
�

1

T 2

� t0�T

t0

� t0�T

t0

�jhE0�dkv; t1�E �0 �dkv; t2�ixj2�

� jhEn�dkv; t1�E �n �dkv; t2�izj2
�
dt1dt2

�
=F 2

kv, (12)

where

Fkv � h�I0�dkv�ix � h�In�dkv�iz;

�In�dkv� �
1

T

� t0�T

t0

jEn�dkv; t�j2dt

is the function, which can be interpreted as the time-
averaged intensity distribution in the image of the back-
ground object. As follows from [7], when the angular
resolution w of the optical system forming an image of the
object is suféciently high,
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h�I�dkv�ix �
�
k0�r�jh�r; dkv�j2dr � D2k0�r � ÿmdkv�, (13)

where

k0�r� � �lx=sx�2jk�r�j2 exp
�ÿ�qxlx=sx�2� (14)

is the intensity distribution of the reêection coefécient on
the surface of the object under study; qx � q?=qN; q? �
(4ÿ q 2

N)
1=2; qN � qN; q � 2r=r; N is the normal to the mean

surface of the object. For the time-averaged intensity
distribution �In in the image of the background object, we
have an analogous relationship:

h�In�dkv�iz �
�
kn�r�jh�r; dkv�j2dr

� D2�lz=sz�2kn�r � ÿmdkv�, (15)

where kn(r) is the intensity distribution of the reêection
coefécient on the surface of a background object; lz and sz
is the correlation radius and the root-mean-square devia-
tion of the heights z(r) of the roughnesses on this surface.

Consider now the érst term in curly brackets in (12),
which, as follows from [4], after integration over t1 and t2
can be represented as

1

T 2

� t0�T

t0

� t0�T

t0

jhE0�dkv; t1�E �0 �dkv; t2�ixj2dt1dt2

�
� �

k�r1�k�r2�jh�r1; dkv�h ��r2; dkv�j2F�r1; r2�dr1dr2, (16)

where F(r1; r2) � jBu�t=tc � (r1 ÿ r2)=Lc�j2. We further
assume that the condition Lc 5Lkv is fulélled. Taking
into account this condition, the function F(r1; r2) in
expression (16) will be narrower than other functions,
and after integration over r1, we obtain the relation:

1

T 2

� t0�T

t0

� t0�T

t0

jhE0�dkv; t1�E �0 �dkv; t2�ixj2dt1dt2

� �Lc=Lkv�dkv��D4k 2
0 �r � ÿmdkv�. (17)

Taking into account that the background image is êat on
average, we can show that the second term in the curly
brackets in (12) has the form

1

T 2

� t0�T

t0

� t0�T

t0

jhEn�dkv; t1�E �n �dkv; t2�izj2dt1dt2

� �lz=sz�4D2k 2
n �r � ÿmdkv�.

We assume below that sz=lz � 1, i.e., the roughnesses of the
background object surface have steep slopes. Then,

1

T 2

� t0�T

t0

� t0�T

t0

jhEn�dkv; t1�E �n �dkv; t2�izj2dt1dt2

� D2k 2
n �r � ÿmdkv�. (18)

Finally, taking into account relations (12), (16), (17), and
(18), we obtain

Cs kv �
�Lc=Lkv�r � ÿmdkv��k 2

0 �r � ÿmdkv� � k 2
n �r � ÿmdkv�

�k0�r � ÿmdkv� � kn�r � ÿmdkv��2
.

(19)

In the absence of noises, the height of the kvth
parallelepiped with a base in the form of a square with
the side D � mdr, approximating the minimum resolvable
kvth site of the object surface, is Lkv � Lc=Ckv. The
coordinates of the centre of the base in the coordinate
system XYZ (Fig. 2) are related with the components dxk
and dyv of the radius vector dkv by the expressions xk �
ÿmdxk, yv � ÿmdyv. In the presence of noises, the height of
the kvth approximating parallelepiped is found from the
relation Ls kv � Lc=Cs kv. Provided k 2

n=k
2
0 5Lc=Lkv, i.e., for

suféciently small noises, taking into account expressions
(13), (15) and (19) and under the assumption that noises are
constant at different points of the image, namely kn(r �
ÿmdkv) � kn(r � 0), we obtain the relationship:

Ls kv ÿ Lkv �
2Lkvkn�0; 0�
k0�xk; yv�

� 2Lkvh�In�dxk � 0; dyv � 0�ix
h�I0�xk � ÿmdxk; yv � ÿmdyv�ix

.

(20)

We will represent the object surface reconstructed in the
presence of noises as a function of Z(x, y) and éx in the XZ
plane a point with the coordinates x0 � mD, y0 � nD
(Fig. 2). In the presence of additive noises, the height
Z(x0, y0) of the surface at this point is calculated from a
formula, similar to (5), namely:

Zsmn �
Xm
k�0

Ls k0 �
Xn
v�0

Lsmv. (21)

Then, taking into account expressions (5) ë (8), (19), and
(21), from which it follows that

Zsmn ÿ Zmn � 2kn�0; 0�

�
�Xm

k�0
Lk0=k0�xk; 0� �

Xn
v�0

Lmv=k0�xm; yv�
�

(Zmn is the height of the mnth approximating parallelepiped
in the absence of noises), at D! 0 we have

Zsmn ÿ Zmn ! 2kn�0; 0�
�� x0

0

Z 00x�x; 0�
k0�x; 0�

dx�

�
� y0

0

Z 00y�x0; y�
k0�x0; y�

dy

�
� dZ�x0; y0�, (22)

where Z(x0, y0) � Z(x0, y0)ÿ Z0(x0, y0). Taking into
account (13) ë (15), (21), and (22), we obtain

dZ�x0; y0� � 2gn=s�sx=lx�2

�
�� x0

0

Z 00x�x; 0� exp�qx�x; 0�lx=sx�2dx

�
� y0

0

Z 00y�x0; y� exp�qx�x0; y�lx=sx�2dy
�
, (23)

where
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gn=s � kn�0; 0�=k0�0; 0�

� h�In�dxk � 0; dyv � 0�iz=h�I0�dxk � 0; dyv � 0�ix.

This means that the coefécient gn=s is equal to the ratio of
the average intensity h�In(dxk � 0, dyv � 0)iz in the near-axial
region in the image plane of the object under study in its
absence to the average intensity h�I0(dxk � 0, dyv � 0)ix in
the presence of the object and in the absence of noises. In
the special case where the intensity of shot noises in the
photodetector array ( 5 ) in Fig. 1 exceeds that of other
noise, the quantityh�In(dxk � 0, dyv � 0)iz can be interpreted
as their intensity. We will deéne the reconstruction accuracy
of the object surface shape at the point (x0, y0) in the
presence of noises as a relative error of Zn(x0, y0) �
dZ(x0, y0)=Z0(x0, y0) of the estimate of the height
Z(x0, y0). On the assumption that this surface is fairly
well approximated by a paraboloidal surface Z0(x, y) �
x 2=(2a)� y 2=(2b), where a and b is the radius of its
curvature, after integration over x and y in (23), we obtain

Zn�x0; y0� � gn=s�sx=lx�4
a�expXÿ 1� � b expX�expYÿ 1�

x 2
0 =�2a� � y 2

0 =�2b�
,

where X � �x0lx=(sxa)�2; Y � � y0lx=(sxb)�2.
In particular, for a surface approximated by a para-

boloid of revolution Z0(x, y) � (x 2 � y 2)=(2a), we have

Zn�x0; y0� � gn=s�sx=lx�4
a 2fexp�r0lx=�sxb��2 ÿ 1g

r 2
0

,

where r0 � (x 2
0 � y 2

0 )
1=2. At the boundary of the region (of

radius r0 � rb � asx=lx) of the backscattering of the object
under study Zn� Zn2� gn=s(sx=lx)

2(eÿ 1) � 2Zn1. Near the
top of this surface (x0 � y0 � 0), when the condition
r0 5rb is met, Zn � Zn1 � gn=s(sx=lx)

2. From these results
it is clear that the reconstruction accuracy of the object
surface shape increases with increasing r0, the coefécient
gn=s and the steepness sx=lx of the slopes of the roughnesses
of its surface, because in this case the angle of probe
radiation scattering by each site of the surface increases,
which leads to a decrease in the useful signal. In the case of
steep slopes of the object surface roughnesses when
sx=lx � 1, we have Zn1 � gn=s and Zn2 � 2gn=s. The relation
Zn2 � 2Zn1 means that when the r0 approaches the
boundary of the region (of radius rb � asx=lx) of the
object backscattering, the reconstruction accuracy of its
surface decreases by about two times compared with that
near the top surface of the nonplanar object under study.
As in the case of steep slopes of the roughnesses Zn2 � 2gn=s,
then for the reconstruction accuracy of the shape of the
object surface over the entire range of radii (from r0 to rb)
to be, for example, below éve percents, it is necessary that
gn=s 4 0:025.

5. Conclusions

Probing a distant nonplanar object by radiation with the
coherence length smaller than the size of the object, the
contrast speckle pattern of the êat image of the object can
help reconstruct the shape of its surface, i.e., to form its
three-dimensional image. In the absence of noises with
decreasing the angular resolution of the optical system that

forms the image of an object, the reconstruction accuracy
of the surface shape of the object increases to a certain
value wm, because the estimation error of this shape is
reduced to a minimum value Zm. However, at suféciently
high level of noises and at an angular resolution wm, the
surface shape is reconstructed inaccurately. In particular, in
the case of the additive noise, the reconstruction accuracy
of the shape of the surface of the distant object decreases
with increasing steepness sx=lx of the slopes of the
roughnesses of its surface. It decreases with increasing
the coefécient gn=s, which is equal to the ratio of the time-
averaged intensity detected at the near-axial site of the
image plane of the studied object in its absence to the time-
averaged intensity in the image of this object at the same
site in the absence of the additive noise. At the same time,
as the distance from the axial site of the êat image of the
object under study increases and its contour is approached,
the reconstruction accuracy of the shape of the object
surface by the contrast speckle pattern of this image
decreases by approximately two times.
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