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Abstract.  Based on the analysis of a well-known system of equa-
tions describing the dynamics of a two-isotope laser gyro with an 
equal-Q resonator under conditions of its fine-tuning to the centre 
of the emission line and balanced currents in the discharge arms, we 
have derived the formulas for calculating the parameters of the syn-
chronisation zone for the frequencies of counterpropagating elec-
tromagnetic waves generated in the device. The formulas make it 
possible to calculate the coordinates on the axis of the angular 
velocity of the left and right boundaries of the synchronisation zone, 
the coordinate of its centre and half-width. It follows from the anal-
ysis that, in the general case of the asymmetric linear coupling 
between the counterpropagating waves via backscattering, absorp-
tion, and transmission of radiation from the mirrors of the gyro, the 
left and right boundaries of the synchronisation zone are located at 
different distances with respect to the origin of coordinates, so that 
the centre of the region is displaced along the axis of the angular 
velocity. The analysis of the formulas also implies that the shift of 
the centre of the synchronisation zone and its half-width decrease 
with increasing medium gain. 

Keywords: laser gyroscope, ring gas laser, frequency locking of 
counterpropagating waves. 

1. Introduction 

1.1. Basic relations 

Among main types of laser gyros widely used in practice, we 
can single out the device based on a ring gas He – Ne laser (the 
ratio of the isotope concentrations, 20Ne : 22Ne = 1 : 1) with a 
flat N-mirror (N = 3, 4) resonator ensuring generation of lin-
early polarised radiation in the sagittal plane. The laser, usu-
ally operating at 0.6328 mm, is pumped by a dc parallel dis-
charge obtained by a common cathode and two anodes [1 – 3]. 

According to relations (5.55) – (5.57) from [3] and to 
expressions (6.45) – (6.47) from [4], when the currents are bal-
anced in the discharge arms, the resonator is fine tuned to the 
centre of the emission line and the losses are identical, the sys-
tem of equations describing the dynamics of the dimension-
less intensities Ij ( j = 1, 2) and the phase difference y of coun-
terpropagating waves of such a laser gyro can be written as 
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In deriving these equations it was taken into account that the 
wave with j = 1 propagates in the direction of the laser gyro 
rotation. In system (1) a, b, q are the Lamb coefficients that 
characterise the properties of the active medium; M = (1 +
Ka)Mg is the scale factor of the laser gyro, primarily deter-
mined by the geometrical component Mg = 8pS/(lL) and also 
taking into account the properties of the medium through a 
small parameter Ka (L is the perimeter of the axial contour; S 
is the covered area); W is the angular velocity of the device 
rotation in the inertial space; rj and ej are the moduli and 
arguments of complex integral coefficients rj exp{iej} of the 
linear coupling of counterpropagating waves, characterising 
their interaction through backscattering, absorption and 
transmission of radiation on the mirrors. (The relations for 
calculating the parameters a, b, q of system (1) can be found, 
for example, in [5], the parameter Ka – in [6]. An empirical 
formula for calculating Ka is derived in [3]. In addition, a set 
of expressions to estimate the parameters a, b, q, Ka, rj, ej is 
given in [7].) 

Before analysing the problem, we introduce into consider-
ation the quantities rp and rm, which are convenient combina-
tions of the parameters   rj,  ej of the linear coupling of the 
counterpropagating waves:
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Let us also introduce the parameter am characterising the 
inverse relaxation time of the difference between the counter-
propagating wave intensities, whose value is calculated by the 
formulas 
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where ap is the inverse relaxation time of the sum of the coun-
terpropagating wave intensities; g is the unsaturated linear 
gain of the active medium; G is the resonator losses per trip; h 
is the parameter depending on the total pressure of the 
He – Ne mixture [8]. 
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1.2. Analysis of the problem 

It is known that one of the most significant factors affecting 
the laser gyro accuracy is the frequency locking of the coun-
terpropagating electromagnetic waves generated in its resona-
tor. Frequency locking manifests itself in the fact that the 
output characteristic of the device in the region of low values 
of the angular velocity has a band of insensitivity to the rota-
tion, which is called the synchronisation zone in the literature. 

The synchronisation zone of the counterpropagating 
waves of the laser gyro can be characterised by four parame-
ters, which are as follows: the coordinates W(–) and W(+) on the 
axis of the angular velocity W of its left and right boundaries, 
respectively; the coordinate W(0) of the region centre; and, 
finally, the half-width Ws. These quantities are related by [9] 

W(+) = W(0) + Ws ,    W(–) = W(0) – Ws.	 (4)

The system of equations (1) analysed in the approxima-
tion of weak coupling of counterpropagating waves (when the 
conditions rp /ap, rm /am  << 1 are fulfilled) implies (see, for 
example, [3, 9 – 16]) that the synchronisation zone of these 
waves is located symmetrically with respect to the coordinate 
origin, i.e., 

W(+) = Ws,    W(–) = -W s,    W(0) = 0,	 (5a)

its half-width, calculated with 
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being virtually independent on the active medium gain level 
(due to the smallness of the Ka parameter in the denominator 
of this formula, it is acceptable to set M .Mg). 

However, the experiments show that in a real laser gyro 
the left and right boundaries of the synchronisation zone are 
located at different distances from the coordinate origin [17], 
and when the active medium gain increases, the half-width of 
the region decreases (approximately according to the hyper-
bolic law), approaching asymptotically the established finite 
value [18 – 20]. 

These circumstances have not found a definitive explana-
tion in the literature. From papers [3, 9 – 16] we can single out 
four works [3, 11 – 13], in which, along with original formula 
(5b) used to calculate Ws, two additional formulas were pro-
posed to estimate this parameter. 

The first additional formula for calculating Ws, given in 
[11] (see equation (8) in [11]), has the form: 
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where B = –2amr1r2sin e12 /rm3  . Formula (6) implies that with 
increasing active medium gain g, the quantity Ws approaches 
asymptotically the established finite value  

2 | | / 2sinr r r Ms
asymp

m1 2 12
/1 2eW = ^ h.

Formula (6) qualitatively explains the known experimen-
tal dependence Ws = Ws(g). However, this formula is not quite 
complete, because the asymmetry (r r1 2! ) of the linear cou-

pling between the counterpropagating waves was not taken 
into account while deriving it. In addition, and this is impor-
tant, formula (6) is not related with expression (5b). 

The second additional formula for calculating Ws, given in 
[3, 12, 13] {see expression (5.51) in [3], (6.17) in [12] and 
(7.3.16) in [13]}, has the form: 

M
r2

s
m

2

aW = .	 (7)

This formula was derived for the special case when the 
parameters of the linear coupling between the counterpropa-
gating waves in system (1) take the values r1 = r2 = r, e12 = p. 
Formula (7) also qualitatively explains, although somewhat 
differently, the known experimental dependence Ws = Ws(g). 
In particular, it follows from this formula that with increasing 
active medium gain g the parameter Ws asymptotically tends 
to zero. 

Thus, the laser gyro developers, who should estimate the 
expected value of Ws at the design phase of the gyro, face the 
problem of selecting one of the working computational mod-
els from above relations (5) – (7). 

This raises the question: is it possible to develop a more 
complete [more than (5)] mathematical model of the parame-
ters of the synchronisation zone of the counterpropagating 
waves of the laser gyro under study, which, on the one hand, 
could serve as a basis for interpreting known experimental 
data on a qualitative level and, on the other hand, would 
include (5) as a constituent part? 

The development of such a model is the subject of this 
article. 

2. Formulation of the problem and its solution 

Based on the analysis of the system of equations (1), it is 
required to obtain in the weak coupling approximation of 
counterpropagating waves such estimates for W(–), W(+), W(0) 
and Ws, which would allow one to model mathematically 
experimental dependences specified in [17 – 20]. These formu-
las should yield, as a special case, the relations of initial model 
(5). 

Consider the third equation of system (1). Using the iden-
tity transformations we can reduce it to the form 

sinM p py w y fW= + +o ^ h,	 (8)
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Differential relation (8) in the laser gyro theory is well 
known and called the phase equation. The parameter wp in it 
describes the half-width of the synchronisation zone of coun-
terpropagating waves of the laser gyro in circular frequencies, 
and the parameter fp is the phase angle. The problem is to 
calculate the quantity wp for the left [wp(–)] and right [wp(+)] 
boundaries of the synchronisation zone, and then using the 
formulas
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to find the coordinates W(–) and W(+) of these boundaries at 
the axis of the angular velocity W. It is important to emphasise 
that wp(–) and wp(+)  in (11) are positive, i.e., wp(–) > 0, wp(+) > 0. 

To solve the problem, we will use the method of successive 
approximations. In the zero approximation, we set I1 = I2 in 
expression (10). Then, equation (8) takes the form 

sinM p py w y jW= + +o ^ h,	 (12)

where 
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is the phase angle, which, unlike fp, is independent of the 
intensities I1, I2. 

In the regime of frequency locking between the counter-
propagating waves 

0, 0,I I 01 2 y= = =o o o ,	 (14)

0, 0, ,const const constI I 0 2> >1 2 d py= = = 6 @.	 (15)

For the left boundary of the synchronisation zone, when 
W =W(–), at W(–)< 0, using (12), (14) we have 

0 sinM ( ) ( ) ( )p pw y jW= + +- - -^ h,	 (16)

which, taking into account wp(–) > 0, yields 

1sin ( ) py j+ =-^ h .	 (17)

In this connection, the phase difference of the counterpropa-
gating waves of the laser gyro for the left boundary of the 
synchronisation zone has the form 

/2( ) ppy j= -- .	 (18)

Similarly, for the right boundary of the synchronisation 
zone, when W =W(+), at W(+) > 0 we have 

0 sinM ( ) ( ) ( )p pw y jW= + ++ + +^ h,	 (19)

which, taking into account wp(+) > 0, yields 

1sin ( ) py j+ =-+^ h .	 (20)

Thus, the phase difference of the counterpropagating waves 
of the laser gyro for the right boundary of the synchronisation 
zone has the form 

/2( ) ppy j=- -+ .	 (21)

Consider now the first two equations of system (1), which 
describe the dynamics of the intensities I1, I2. Taking into 
account (14), (15) and dividing these equations by I1,2, after 
renormalisation we obtain 
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(22)

Relations (22) represent a system of two nonlinear algebraic 
equations with respect to the unknown I1, I2 under the condi-
tion that y is given. 

In the zero approximation we set I1 = I2 in the right-hand 
sides of this system; as a result, the system transforms into a 
system of two linear equations 
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Here U = a/( b + q)) is the constant component of the counter-
propagating wave intensities, calculated at rj = 0. 

Now we have everything we need to find formulas to esti-
mate the coordinates of the left [W(–)], and right [W(+)] bound-
aries of the synchronisation zone of counterpropagating 
waves of the laser gyro on the axis of the angular velocity W. 
To do this, we should substitute expression (18) for y(–), and 
then expression (21) for y(+) into (24), (25). 

Let us estimate the parameter W(–). Taking into account 
(18), and the relations 

sin sin sinr r rp p 2 2 1 1j e e= - ,	
(26)

cos cos cosr r rp p 2 2 1 1j e e= + ,

we can show that 
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(27)

Then, after substituting (27) into (24), (25), we obtain 
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where 
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is a small dimensionless parameter depending on rj, ej and the 
parameter am. 

As a result, after substituting (28) into (9) and taking into 
account the first expression in (11), we derive 

.cosM r r r r
1
1

1
1

2( )

/
1

1
2

2
2

1 2 12

1 2

m
m

m
m

eW =-
-
+

+
+
-

+-
- c m 	 (30)

Let us estimate now the parameter W(+). Taking into 
account (21) and (26) we can show that 

/cos sinr r( ) p2 1 12y e e+ =+^ h ,

/cos sinr r( ) p1 2 12y e e- =-+^ h .	
(31)

After substituting these expressions into (24), (25), we 
obtain 
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As a result, taking into account (32), (9) and second 
expression in (11), we derive 
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Expressions (30) and (33) yield the desired solution of the 
problem with respect to the coordinates of the left [W(–)] and 
right [W(+)] boundaries of the synchronisation zone of the 
counterpropagating waves of the laser gyro on the axis of the 
angular velocity W. However, these expressions do not yield 
in an explicit form the dependence of W(–),  W(+) on the asym-
metry (r1 ¹ r2) of the linear coupling of the counterpropagat-
ing waves. Therefore, using identity transformations we will 
reduce the above relations to another, more informative form 
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which, using (4), yields 
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Under the condition of smallness of the difference r1 – r2 of 
the moduli of complex linear coupling coefficients of the 
counterpropagating waves (see, for example, [3]), expressions 
(34) can be approximately represented in the form more con-
venient for the analysis: 
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Relations (34), (35) [together with expressions (2), (3), 
(29)] are the result of the solution of a formulated problem 
and form the desired mathematical model of the parameters 
of the synchronisation zone of the counterpropagating waves 
of the laser gyro. The latter includes initial model (5) as a con-
stituent part. 

Analysis of expressions (34), (35) makes it possible to 
draw the conclusions. 

(i) In the general case of the asymmetric (r1 ¹ r2) linear 
coupling of the counterpropagating waves, the left and right 
boundaries of the synchronisation zone of the laser gyro are 
located at different distances from the coordinate origin: 
W(+)

 ¹  -W(–). As a result, the centre of the region is shifted 
along the axis of the angular velocity W by the finite quantity 
W(0) ¹ 0. 

(ii) With increasing active medium gain g, the shift W(0) of 
the centre of the synchronisation zone and its half-width Ws 
decrease, approaching asymptotically the established finite 
values
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3. On the validity of using equations (1) 		
to the problem solution 

It is known (see, for example, [3]) that the initial system of 
equations (1) describing the dynamics of the dimensionless 
intensities Ij (  j = 1, 2) and the phase difference y of counter-
propagating waves of the laser gyro under study is valid in the 
weak field approximation when the gain g of the active 
medium exceeds the resonator losses G by no more than 1.2 
times. At the same time, in the present paper we did not 
impose any restrictions on the value of the parameter g and, 
moreover, in deriving formulas (36) we used the limiting pro-
cess g ® ¥. In this regard, the reader may question the validity 
of the usage of system (1) to solve the above problem. 

The answer to this question may be as follows. Restriction 
on the use of system (1) is applied only to its first two energy 
equations 

2 cosI I I I r I I /
1 1 2 1 2 1 2

1 2
2a b q y e= - - - +o ^ ^ ^h h h,

2 cosI I I I r I I /
2 2 1 2 1 1 2

1 2
1a b q y e= - - - -o ^ ^ ^h h h	

(37)

and manifests itself in the fact that the formula U = a/( b + q)
for estimating the constant components of the intensities Ij of 
counterpropagating waves can be used only at small g. With a 
further increase in g, the methodical error of the formula 
increases dramatically. 

However, in solving the problem under study, energy 
equations (37) of system (1) play a purely supporting role: 
they are used to determine only small additions to U, caused 
by the linear coupling between the counterpropagating waves. 
In particular, for the left and right boundaries of the synchro-
nisation zone the intensities Ij take values that are close to U, 
namely: 

,I U I U1 1( ) ( )1 2m m= + = -- -^ ^h h ,

,I U I U1 1( ) ( )1 2m m= - = ++ +^ ^h h .

However, the main role in solving the problem is played 
by the phase equation of system (1) 

/ sinM r I I /
2 2 1

1 2
2y y eW= + +o ^ ^h h

	 / sinr I I /
1 1 2

1 2
1y e+ -^ ^h h,	 (38)

into which the counterpropagating wave intensities enter as 
ratios I1/I2 and I2/I1. It is obvious that by substituting the 
listed quantities I1(–), I2(–), I1(+), I2(+) into these ratios, the fac-
tor U that is common for them is reduced. Therefore, the 
quantity of the methodical error of estimation of the param-
eter U has no effect on the final result of the calculation. This 
suggests that the system of equations (1) can be used to solve 
the above problem at large values of the gain g as well. 
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4. Conclusions 

Based on the analysis of system (1) of dynamic equations for 
a laser gyro, we have derived formulas (34), (35) for calculat-
ing the parameters of the synchronisation zone for the fre-
quencies generated in the device of counterpropagating elec-
tromagnetic waves. The formulas make it possible to calcu-
late the coordinates on the axis of the angular velocity W of 
the left [W(–)] and right [W(+)] boundaries of the synchronisa-
tion zone, the coordinate W(0) of its centre and the half-width 
Ws. 

Expressions (34), (35) are valid under the condition of 
weak coupling of the counterpropagating waves, which sug-
gests that in the entire range of the discharge currents used in 
the laser gyro, the ratios rp /ap and rm/am remain much less 
than unity. In modern devices operating at sufficiently large 
excesses of the pump above the threshold [3], the above condi-
tion is usually satisfied. 

Expressions (34) (35) are the generalisation of the known 
[3, 9 – 16] model (5) of the parameters of the synchronisation 
zone of the counterpropagating wave of the laser gyro under 
study and allow one to mathematically model the experimen-
tal dependences given in [17 – 20]. The results of this model-
ling by the example of a square four-mirror resonator laser 
gyro will be presented in a separate publication. 
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