
Abstract. Stability conditions for a ring resonator with an
odd number of mirrors and a nonplanar axial contour are
studied analytically. New explicit expressions are derived to
describe the transverse éeld distribution of the Gaussian mode
with general astigmatism produced in this resonator. Field
characteristics for a resonator with the speciéed parameters
are calculated.

Keywords: ring cavity, nonplanar contour, Gaussian beam, general
astigmatism.

1. Ring resonators with a nonplanar axial contour (see, for
example, [1 ë 14]) produce the fundamental mode in the
form of a Gaussian beam with general-type astigmatism. In
this case, the expression for the function, which describes
(in the scalar interpretation, without allowance for polar-
isation) the transverse éeld distribution of the fundamental
mode in some resonator cross section in the zero
approximation with respect to wavenumber k, has the form

u�r� � c exp

�
ik

r tHr

2

�
,

where

r � x
y

� �
, r t � � x y �,

the elements of the quadratic matrix

H � 1=qx 1=qxy

1=qxy 1=qy

 !

and the numerical factor c depend on the longitudinal
coordinate z. The matrix H is symmetric and has the

positive deénite imaginary part for a beam concentrated in
the vicinity of the resonator axis. In the case of an axially
symmetric beam, the matrix H is proportional to a unit
matrix (qx � qy � q, 1=qxy � 0). Otherwise, the beam is said
to have astigmatism. Astigmatism is called simple if in some
coordinate system, the matrix H has a diagonal shape: in
this case, the directions of the eigenvectors of matrices ReH
and ImH coincide, i.e., the major axes of the phase and
intensity ellipses coincide and can be chosen as the
coordinate axes. When such a beam propagates along
the optical axis, the matrix H remains diagonal for all
values of the longitudinal coordinate z. In the case of
general astigmatism, the major axes of the intensity and
phase ellipses are directed at some angle to each other, and
ReH and ImH matrices cannot simultaneously have a
diagonal form no matter what coordinate axes are chosen.
Besides, these axes have different directions for different
values of z (see, for example, [11 ë 16]), which gave a reason
to call such a beam rotating.

Let w1;2 be the semiaxes of the intensity ellipse at the
boundary of which the éeld amplitude decreases by e times
compared to its value on the axis [7]. Then, the eigenvalues
of the ImH matrix are equal to 2=(kw 2

1;2). {Note that if the
intensity ellipse boundary is considered as in [11] to be the
curve at the boundary of which the beam energy density
rather than the amplitude decrease by e times (the beam
energy density being proportional to the square of the
amplitude), the semiaxes of such an ellipse turn

���
2
p

times
smaller, and the eigenvalues of the ImH matrix are equal to
1=(kw 2

1;2).} The eigenvalues of ReH are the major curvatures
of the beam wavefront and equal to rÿ11;2 , where r1;2 are the
major radii of curvature taking a sign `plus' for a divergent
beam or a sign `minus' for a convergent beam; if the
wavefront is hyperbolic, these radii have different signs.
In what follows, when the directions of the eigenvectors of
the matrices with the coordinate axes coincide, we will use
both numerical and alphabetical notation x, y.

The quadratic matrix H satisées the equation

HBH�HA � DH� C, (1)

where A, B, C, and D are the real 2� 2 matrices (for a
passive resonator without losses). These matrices form the
4� 4 ray matrix T of the round trip in the resonator
(monodromy matrix [3])

T � A B
C D

� �
.
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Equation (1) follows from the relationship [9]

Hout � �C�DHin��A� BHin�ÿ1 ,

which describes the transformation of a Gaussian beam
when it travels across the system characterised by the
matrix T, and from the condition for the beam recovery
after the resonator round trip: Hout � Hin � H. The matrix
T is symplectic [3, 9], which implies fulélment of the
condition

T ÿ1 � Dt ÿBt

ÿCt At

� �
. (2)

A resonator is stable with respect to the érst approx-
imation if all the eigenvalues of the matrix T are modulo
unity and the associated vectors are absent [1]. In this case,
equation (1) has a symmetric solution with a positive
imaginary part. This solution can be expressed by the
components of the monodromy matrix eigenvectors
[17, 1, 3 ë 5, 9, 18 ë 20]. Another approach is based on the
analysis of the evolution of the Gaussian beam with general
astigmatism and on the fact that such a beam is a mode of a
linear resonator whose mirrors coincide with the beam
fronts. Finally, the matrix equation (1) (or the resultant
system of algebraic equations for the elements of the matrix
H [6]) can be solved numerically, with subsequent selection
of the solution that provides the concentration of the éeld
near the optical axis. In the case of a resonator with a
Gaussian aperture (Gaussian mirror), the solution can be
found by simple iteration [12].

In this paper, for the problem of a resonator with an odd
number of mirrors, one of which is nonplanar (e.g.,
spherical), we propose an alternative solution in which
the éeld is described analytically, using explicit formulas;
it is not required to search for the eigenvectors of the matrix
T. It seems to us that such a description makes it possible to
clearly trace the dependence of the characteristics of the
light éeld on the resonator parameters. A similar problem
for a resonator with an even number of mirrors was solved
in paper [14], and a brief preliminary analysis of the
differences between cases involving the even and odd
numbers of mirrors was given in [13].

2. Consider a multimirror ring resonator with an odd
number of mirrors and a nonplanar (in general) axial
contour, whose length is denoted by L. The resonator
contains a focusing element, which is, for example, a
lens or one of the mirrors (spherical or elliptical); the
remaining mirrors are considered êat.

Propagation of the éeld along the resonator is described
by the matrix

TL � E LE
O E

� �
,

where O and E are the zero and unit 2� 2 matrices. With
an appropriate choice of the coordinate systems, the matrix
describing the reêection from a êat mirror represents a unit
matrix; with each reêection, the orientation of the
coordinate system changes and so does the direction of
the angle readout (clockwise or counter-clockwise).

Passing through the focusing element (quadratic phase
corrector [11]) is described by the matrix

TC � E O
ÿC E

� �
,

where C is a symmetric 2� 2 matrix which is considered,
without loss of generality, a diagonal matrix: C �
diag�cx,cy�; otherwise, it can be reduced to a diagonal
shape by turning the coordinate axes. For a focusing lens,
cx;y � 1=fx;y, where fx;y are the focal lengths; for an
astigmatism-free lens, fx � fy � f. For an elliptical mirror
one axis of which lies in the plane of incidence (the xz
plane) and the other is orthogonal to it (directed along the y
axis), cx � 2(Rx cos a

0)ÿ1, cy � 2Rÿ1y cos a 0, where a 0 �
a=2 is the angle of incidence; a is the angle between the
incident and reêected axial rays; Rx;y are the radii of
curvature. For a spherical mirror, Rx � Ry � R; we will pay
a special attention to this case below.

Since the total number of mirrors in this problem is odd,
the round trip in the resonator results in a change in the
orientation of the coordinate system, so that the corre-
sponding transformation is described by the ray matrix

TV �
Vf O

O Vf

� �
,

commuting with TL, where

Vf � ÿ cosf ÿ sinf
ÿ sinf cosf

� �
� ÿ�cosf�Iÿ �sinf�s (3)

is the matrix of the operator of reêection from some
straight line lying in the plane xy; f is the doubled angle
between the ordinate axis and this straight line (Fig. 1);

I � diag�1;ÿ1�; s � 0 1
1 0

� �
.

(Note that the values of f in this paper and in [13] differ in
sign.) In particular, when the contour is êat, this straight
line is orthogonal to the plane of the contour, and if its
direction coincides with the y axis, then f � 0, and
transform (3) is reduced to a change in direction of the
x axis. However, the y axis may have a different direction
(recall that we tied the coordinate axes up with the
directions of the eigenvectors of the C matrix), then
f 6� 0, and the problem in mathematical terms is no

y

x

x 0

y 0

f

Figure 1. Transformation of the coordinate system during the round trip
of light in the resonator.
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different from the problem for the case of nonplanar
contour. Similarly, in the general case, the angle f is also
determined not only by the geometrical characteristics of
the contour, but also ë through the direction of the
coordinate axes ë by the focusing properties of the element.
This is an important qualitative difference of the problem
under study from that considered in [14] for a resonator
with an even number of mirrors.

Monodromy matrices Tÿ and T� in the beam cross
sections, located immediately in front of and behind the
focusing element, are calculated by the formulas

Tÿ � TVTLTC �
Vf�Eÿ LC� LVf

ÿVfC Vf

� �
,

T� � TCTVTL �
Vf LVf

ÿCVf �Eÿ LC�Vf

� �
(in both cases, use is made of the initial coordinate system).
Of specially convenient form is the symmetrised matrix

T0 � TC=2TVTLTC=2 �
VfG LVf

�ÿVf � GVfG�=L GVf

� �
, (4)

where

G � Eÿ LC=2 � diag�g� d; gÿ d � � gE� dI

is the dimensionless symmetric diagonal matrix; g � 1ÿ
(cx � cy)L=4; d � (cy ÿ cx)L=4. The matrix C expressed
by g and d has the form C � 2Lÿ1�(1ÿ g)Eÿ dI �.

The characteristic equations for l ë eigenvalues of the
monodromy matrices ë are reduced to the form

v 2 � �2d cosf�vÿ ÿg 2 ÿ d 2
� � 0,

where v � (l� lÿ1)=2 are the eigenvalues of the matrices of
type (T� T ÿ1)=2 as well as of the matrix VfG [the latter
circumstance follows from expressions (2), (4)].

Sufécient stability conditions for the matrices T� [the
values of l lie on the unit circumference and different values
of v lie in the interval �ÿ1,1) and also differ] have the form

ÿ1� 2jaj < d 2 ÿ g 2 < a 2 < 1, (5)

where

a � d cosf.

The necessary conditions (jlj � 1) are obtained by sub-
stituting the strict inequality by the conditional inequality
in (5).

In the space of three variables (f, g, d), region (5) is
symmetrical with respect to the planes f � np=2 (n is the
integer), g � 0, d � 0, and with respect to the points
(np=2, 0, 0) as well as periodic in f with a period p. The
general form of region (5) for f 2 (ÿ p=2, p=2) is shown in
Fig. 2 (branches tending to inénity are cut off). Region (5) is
divided into subregions (connectivity components) ë two
components (for positive and negative values of g) in each
period f 2 (np, (n� 1)p). The cases of multiple l values
corresponding to points on the boundary surfaces

jgj � jd sinfj, (6)

g 2 � d 2 ÿ 2jd cosfj � 1 (7)

require separate consideration because the associated
vectors are possible to appear. The analysis shows that
of all the boundary points the stability conditions are
satiséed only at points on the straight line g � d � 0 and on
the straight sections f � np, g � 0, d 2 (ÿ 1, 1) connecting
the subregions of set (5). Thus, taking into account these
points, the set of parameter values for which the resonator
is stable is connected.

Figure 3 presents the sections of region (5) in the
coordinates g, d for different values of f. In the case of
f � np, this area is a square jgj � jdj < 1, or 0 < c1;2L < 4;
the vertical (g � 0) diagonal of this square lies on the
boundary of a three-dimensional region (5). For 0 <
j cosfj < 1, as shown above, the stability region splits
into two subregions, bounded by segments of straight lines
jgj � jd sinfj and arcs of hyperbolas g 2 � (jdj ÿ j cosfj)2�
sin 2 f, that are tangents to the straight lines in their extreme
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Figure 2. Stability region in the space of parameters g, d, f at
f 2 �ÿp=2; p=2�. The égure is reproduced periodically long the f axis.
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Figure 3. Stability regions in the gd plane for different f.
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points with coordinates d � � cosÿ1 f, g � � tanf. If
f 2 p=2� np, these subregions are unbounded: the straight
lines g � �d are not the tangents but the asymptotes of the
hyperbolas g 2 ÿ d 2 � 1.

Figure 4 shows the projection of the égure from Fig. 2
on the plane gd ë a two-dimensional region bounded by
hyperbolas g 2 ÿ d 2 � �1 and representing a union of the
stability regions for all values of f. Let us formulate the
conditions for stability with respect to j cosfj for various
subsets of this region. For points on the segments g � 0,
0 < jdj < 1, the resonator is stable only at f � np
(j cosfj � 1). In the triangles jgj < jdj < 1ÿ jgj, 0 < jgj <
1/2, the stability condition has the form j sinfj < jg=dj (i.e.,
j cosfj > �1ÿ (g=d)2�1=2). In the regions 1=2� jjdj ÿ 1=2j <
jgj < (1� d 2)1=2, the resonator is stable if j cosfj <
(1� d 2 ÿ g 2)=(2jdj). In regions 1=2� jjgj ÿ 1=2j< jdj <
(1� g 2)1=2, two last conditions should be met:
�1ÿ (g=d)2�1=2 < j cosfj< (1� d 2 ÿ g 2)(2jdj)ÿ1. Finally, for
points inside the squares of jdj < 1=2� jjgj ÿ 1=2j, the
resonator is stable for all values of f. We also present
the stability conditions on the dividing lines and at the
points of intersection: f 6� (n� 1=2)p for 0 < jdj �
jgj < 1=2; f 6� np (j cosfj 6� 1) for 0 < jdj � 1ÿ jgj < 1=2;
0 < j cosfj < 1=(2jdj) for jdj � jgj > 1=2; (2jdj ÿ 1)1=2=jdj <
j cosfj < 1 for 1=2 < jdj � 1ÿ jgj < 1; f 6� np=2 (j cosfj 6�
0, 1) for jdj � jgj � 1=2; at jdj � jgj � 0 the resonator is
stable for any f.

It is easy to verify that, except for sections f � np=2,
when j cosfj becomes zero or unity, the geometry of the
stability region is markedly different from that in the case of
a resonator with an even number of mirrors [13, 14].

3. Quite often, a spherical mirror is used as a focusing
element. In this case, g � 1(cos a 0� cosÿ1 a 0)L=(2R), d�
(cos a 0ÿ cosÿ1a 0)L=(2R)). One can see that the sector
g < 1, gÿ 1 < d < 0 on the plane gd corresponds to the
case under consideration; all other points in the stability
region require the use of another mirror (or a lens).

The curves uniting all the points with the same R for all
possible angles of incidence are the arcs of hyperbolas
d � ÿ�(1ÿ g)2 ÿ (L=R)2�1=2, while the lines corresponding
to a éxed angle of incidence at various R are the rays

d � �gÿ 1� sin 2 a 0

1� cos 2 a 0
(8)

(for g < 1). Such rays for any a and f intersect the right
stability subregion; to this there correspond the values

L

R
<

2

�cos a 0 � cosÿ1 a 0� ÿ j sinfj�cos a 0 ÿ cosÿ1 a 0� .

In addition, if

cos a 0 ÿ cosÿ1 a 0

cos a 0 � cosÿ1 a 0
<

1

j cosfj � j sinfj , (9)

the ray also intersect the left subregion at

2

�cos a 0 � cosÿ1 a 0� � j sinfj�cos a 0 ÿ cosÿ1 a 0� <
L

R

< �cos a 0 � cosÿ1 a 0� � j cosfj�cos a 0 ÿ cosÿ1 a 0�.
Thus, for a resonator with an odd number of mirrors,

depending on a and f, there is one or two intervals of R
values, in which the resonator is stable. The latter case is
shown in Fig. 5; in Fig. 6 it corresponds to such a and f for
which the perpendicular recovered from a point on the
abscissa (not shown in Fig. 6) intersects both stability
subregions. In most cases, it holds true: the smallest value
of the right-hand side of (9) is equal to 1=

���
2
p

, while the left-
hand side of this inequality [the slope ratio for ray (8)] is
smaller than 1=

���
2
p

, if j cos a 0j > ���
2
p ÿ 1, then the inequality

holds for all f. Beam (8) in this case lies above the
hyperbola d � (1� g 2)1=2 (the lower limit of the égure in
Fig. 4), on which there lie the angular points of the stability
regions for all possible f, and for an arbitrary f it intersects
the left subregion of this region. The opposite situation ë the
only interval of R values, in which the ray intersects the
hyperbola and for some f is entirely below the speciéed
subregion ë occurs only in the case of suféciently large
(above 13183 037 00) values of a.

ÿ2:0 ÿ1:5 ÿ1:0 ÿ0:5 0 0.5 1.0 1.5 g

ÿ1:5

ÿ1:0

ÿ0:5

0

0.5

1.0

1.5

d

Figure 4. Projection of the stability region on the gd plane. Thin lines are
the boundaries of stability regions for different f spaced by 58.

0

III
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I

1

ÿ1

ÿ1= cosf

ÿ1 0 gÿ tanf

d

Figure 5. Stability region in the gd plane for a resonator with a spherical
mirror. The straight line a � const (thin solid line) intersects both
subregions, hyperbolae R � const (dashed curves) go through the inter-
sections of this straight line with the boundaries of the stability region
L=R � 2=��cos a 0 � cosÿ1 a 0� ÿ j sinfj�cos a 0ÿ cosÿ1 a 0�� ( I ), L=R �
2=��cos a 0 � cosÿ1 a 0� � j sinfj�cos a 0 ÿ cosÿ1 a 0�� ( II ), and L=R �
2=��cos a 0 � cosÿ1 a 0� � j cosfj�cos a 0 ÿ cosÿ1 a 0�� ( III ). The point of
the line break I corresponds to a � p (tangential incidence of the beam
on the mirror).
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4. Let us consider now the general case and write the
expressions for the matrices H�, corresponding the cross
sections located directly in front of and behind the focusing
element, in the form

H� � H0 �
C
2
, (10)

where H0 is a purely imaginary [for internal points of
region (5)] symmetric matrix of the form

H0 �
i�2aG� �1ÿ g 2 � d 2 ÿ d �Vf�

Lt
sign�ga�. (11)

Here, the quantities d and t coinciding in modulus with the
determinant and the trace of the matrix LVfImH0, are
deéned by the equalities

d �
�������������������������������������������ÿ
1ÿ g 2 � d2

�2 ÿ 4a 2

q
, (12)

t �
�����������������������������������������������������
2
ÿ
1ÿ g 2 � d2 ÿ 2a 2 ÿ d

�q
. (13)

The value of d vanishes on the surface (7), and the value of
t ë on the surface (6), on the plane d � 0, as well as at
cosf � 0 [f � (n� 1=2)p]. On the surface (7), t(d � 0) �
2�jaj(1ÿ jaj)�1=2, while on the surface (6), d(t � 0) �
1ÿ jaj2. The highest value of d in the closed region (5)
equals unity and is achieved when jgj � jdj and a � 0, i.e.,
at cosf � 0 on the straight lines jgj � jdj or at the origin of
the coordinates of the plane gd. The highest value of t is
also equal to unity and is achieved on the surface (7) when
jaj � 1=2.

The function d can be represented as a product

d � u�uÿ ,

where

u� �
�����������������������������������
1ÿ g 2 � d 2 � 2a

q
. (14)

The function t is also expressed through u�:

t � ju� ÿ uÿj
�������������������������������
1ÿ �u� � uÿ�2

4

s
.

At each segment of the boundary (7), the cofactor vanishes

u< � minfu�; uÿg �
�������������������������������������
1ÿ g 2 � d 2 ÿ 2jaj

q
,

while the other cofactor

u> � maxfu�; uÿg �
�������������������������������������
1ÿ g 2 � d 2 � 2jaj

q
takes the value 2

�����jajp
.

The matrices H� and Hÿ satisfy (1), where A, B, C, D
are the blocks of the matrices T� and Tÿ, respectively.
Matrix (11) describes the transverse éeld distribution in the
equivalent resonator [7], whose curved mirror is replaced by
a êat mirror with an astigmatic lens adjacent to it in the
section corresponding to the êat mirror. It also meets (1);
the corresponding monodromy matrix has the form (4).
Here we do not present the derivation of (11) ë (13): the way
to explicitly get the solution of equations (1) is described in
detail in [21] (see also [22, 23]). It is simpler to consider the
equation with respect to H0; the fact that the block B of the
matrix T0 is symmetric and the block D � A t appreciably
facilitates the solution of equation (1) that breaks down in
this case into the system of matrix equations

H0LVfH0 � �ÿVf � GVfG�=L, (15)

H0VfG � GVfH0, (16)

which makes it possible to use a simpliéed technique [24].
The matrix ImH0 is positive and its eigenvalues are

positive in the region (5) because its trace

tr ImH0 �
4jgaj
Lt

(17)

and the determinant

det ImH0 �
d

L 2
(18)

are positive (from whence it follows, taking into account
the condition d4 1, the restriction on the area of the ellipse
intensity: pw1w2 5 2pL=k). The angles between the eigen-
vectors of this matrix, which determine the direction of the
axes of the ellipse intensity, and the coordinate axes are

y0 �
1

2
arctan

�
1ÿ g 2 � d 2 ÿ d

1ÿ g 2 ÿ d 2 ÿ d
tanf

�
(19)

(with an accuracy to the term multiple of p=2).

a � p=6 a � p=3 a � p=2 a � 2p=3 a � 3p=4
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Figure 6. Regions of stability [below curve ( I ) and between curves ( II ) and ( III )] and instability [between curves (I ) and ( II ) and above curve ( III )]
for a resonator with a spherical mirror at different angles a. The equations for boundaries I, II, III are same as in Fig. 5.
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On the boundary (7), where d � 0, the area of this
ellipse, according to (18), becomes inénite, and the reso-
nator becomes unstable. On the boundary (6), where t � 0,
the quantity in (17) tends to inénity (with a nonzero
numerator) and the value of (18) is limited, which means
that one of the eigenvalues of ImH0 is inénite, and the other
vanishes, and the resonator also becomes unstable. Below,
we will speciécally consider the behaviour of the matrix H0

in the vicinity of the boundary of the stability region, as well
as some special values of the parameters [in particular, those
for which t vanishes (13)].

As for the matrices H�, their imaginary parts coinciding
with ImH0, are positive deéned, and the real parts, equal to
�C=2, are diagonal, in contrast to the resonator with an
even number of mirrors in which the imaginary parts of the
required matrices are diagonal.

5. Expressions (11), (17) are not deéned for the param-
eters, at which the denominator vanishes. To describe the
behaviour of the matrix H0 for the values of d and cosf
close to zero, we transform these equations, by multiplying
their numerators and denominators by the conjugate
expressions. Then, we arrive at the equalities

H0 �
it 0sign g
2L

���
Z
p �G� xVf�, (20)

tr ImH0 �
jgjt 0
L
���
Z
p , (21)

where

x � 2a

1ÿ g 2 � d 2 � d

does not exceed unity in modulus, the value of

Z � g 2 ÿ �d sin y�2 (22)

lies in the interval between zero and (1ÿ jaj)2, and

t 0 �
�����������������������������������������������������
2
ÿ
1ÿ g 2 � d 2 ÿ 2a 2 � d

�q
. (23)

It follows from the equality g 2 ÿ d 2 � Zÿ a 2 that

d �
�����������������������������������������
�1� a 2 ÿ Z�2 ÿ 4a 2

q
,

t 0 �
�������������������������������������
2�1ÿ a 2 ÿ Z� d �

q
.

The quantity t 0 vanishes, where the equalities t � d � 0 are
met simultaneously. This occurs at points d � 0, jgj � 1 of
the plane gd (for arbitrary f), as well as on the curves
g 2 � d 2 � 1 in sections f � (n� 1=2)p (cosf � 0). In this
case, H0 becomes a zero matrix, and the intensity ellipse
extends indeénitely in all directions. All these points lie on
the boundary (7) of the stability region (5). In addition,
t 0 � 0 on the space curves

d 2 � g 2 � 1 � cosÿ2 f (24)

[the `cusps' of the boundary of the stability region, common
for expressions (6) and (7)], on which, however, the
quantity Z (22) ë the radical expression in the denominator

of (20), (21) ë also vanishes. Therefore, as seen from (11),
(17), the matrix H0 on these curves does not vanish, and,
moreover, its elements and trace grow without bound. On
the surface (6), t 0(t � 0) � �2(1ÿ a 2)�1=2, while on the
surface (7), t 0(d � 0) � t 0(t � 0) � 2�jaj(1ÿ jaj)�1=2. The
highest value of t 0 in the closed region (5) is equal to
two, and reached at the same values of parameters for
which d � 1.

Let us present formulas relating the quantities used in
(20) with the functions u� (14):

x � u� ÿ uÿ
u� � uÿ

,

Z �
�
1ÿ �u� ÿ uÿ�2

4

��
1ÿ �u� � uÿ�2

4

�
,

t 0 � �u� � uÿ�
�������������������������������
1ÿ �u� ÿ uÿ�2

4

s
,

and then

H0 � i sign g 2L

�������������������������������
1ÿ �u� ÿ uÿ�2

4

s24 35ÿ1

���u� � uÿ�G� �u� ÿ uÿ�Vf�,

tr ImH0 � jgj�u� � uÿ� L

�������������������������������
1ÿ �u� � uÿ�2

4

s24 35ÿ1.
We will transform expression (11) for the angle y0 so that

to eliminate the uncertainty at d � 0 and cosf � 0:

y0 � ÿ
1

2
arctan

2 sinf cosf

1ÿ g 2 � d 2 ÿ 2 cos 2 f� d
. (25)

At a � 0, when d � 1ÿ Z and t 0 � 2
�����������
1ÿ Z

p
, matrix (20)

transforms into the matrix

H0�a � 0� � i sign g
L

�����������
1ÿ Z
Z

s
G.

In particular, if cosf � 0, we have Z � g 2 ÿ d 2,

H0�a � 0� � i

L

������������������������
1ÿ g 2 � d 2

g 2 ÿ d 2

s
G sign g,

the matrices H0 and H� are diagonal, y0( cosf � 0) � 0,
and the resonator produces a beam with simple astigmatism
(at d 6� 0).

In the case d � 0, when Z � g 2, at an arbitrary f we
obtain

H0�d � 0� � iLÿ1
�������������
1ÿ g 2

q
E (26)

[taking into account that d(d � 0) � 1ÿ g 2, t 0(d � 0) �
2(1ÿ g2)1=2]; in this case, C � 2Lÿ1(1ÿ g)E, the astigma-
tism is absent, and the beam is axially symmetric.

However, there is a special case g � d � 0, when the
solution iLÿ1E following from (26) is not unique: in this
case, the desired solution is any matrix of the form

H0�dÿ g � 0� � i

L

ÿ
1� z 2

�
E� 2zVf�p=2
1ÿ z 2

, (27)
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where z is a complex parameter (jzj < 1). This is due to the
fact that the points of the straight line g � d � 0 lie on the
boundary of region (5), and the matrix T0 at these points
has multiple eigenvalues. Beams, described by matrix (27),
with z 6� 0 have simple astigmatism; in this case, y0 � f=2�
p=4.

The matrices of family (27) are closely related to the
asymptotic behaviour of the solution H0 (20) in the vicinity
of this straight line: if g and d are both close to zero, then
(20) in the érst approximation coincides with that matrix of
family (27), for which

z � ÿgÿ ���
Z
p

sign g
��d sinf�ÿ1. (28)

Varying the values of g and d, lying in the stability region,
we, however, do not obtain the whole family (27), but only
a subfamily of the real z.

6. Now let f � np, then
���
Z
p � jgj,

d�sinf � 0� � d0 �
����������������������������������������������������������
1ÿ �g� d�2��1ÿ �gÿ d�2�q

,

t 0�sinf � 0� � t 00 �
�����������������������������������������
2
ÿ
1ÿ g 2 ÿ d 2 � d0

�q
�

�������������������������
1ÿ �g� d�2

q
�

�������������������������
1ÿ �gÿ d�2

q
, (29)

H0�sinf � 0� � i

L
diag

� �������������������������
1ÿ �g� d�2

q
;

�������������������������
1ÿ �gÿ d�2

q �
,

tr ImH0�sinf � 0� � t 00
L
.

This is a case of separating variables; the fundamental
mode is the product of solutions of two two-dimensional
problems.

When g � 0, we are again confronted with an ambiguity:
the solution is not only the matrix iE(1ÿ d 2)1=2=L, which
gives formula (29), but also any matrix of the family

H0�g � sinf � 0� � i
��������������
1ÿ d 2
p

L

ÿ
1� z 2

�
Eÿ 2�ÿ1�nzs
1ÿ z 2

. (30)

In particular, this ambiguity takes place in a three-mirror
resonator, considered in [25]. As before, this is due to the
fact that the considered points with coordinates g � 0,
jdj < 1, f � np lie on the boundary (5), and the matrix T0

at these points has multiple eigenvalues. If d 6� 0, then the
beams described by solutions of (30), have simple (at z � 0)
or general (at z 6� 0) astigmatism, and in the latter case,
y0 � p=4. Family (30) is associated with the asymptotic
behaviour of the matrix H0 in the vicinity of straight lines
g � 0, f � np: at near-zero values of g and sinf, matrix
(20) in the érst approximation coincides with matrix (30),
where z is again determined by formula (28). As before, we
obtain in this way subfamily (30), corresponding to real
values of z.

If g � d � sinf � 0, the family of the solutions is
described by the expression

H0�g � d � sinf � 0� � i

L

ÿ
1� z 2

�
Eÿ 2�ÿ1�nzs
1ÿ z 2

, (31)

jzj < 1 ,

following from (27) or (30). The beams corresponding to
these solutions at z 6� 0 have simple astigmatism; in this
case, y0 � p=4. The matrices of family (31) for real z (28)
describe in the érst approximation the behaviour of the
solutions (20) at the values of g, d, and sinf that are
simultaneously close to zero.

All the considered cases of ambiguous solutions (27),
(30), (31) are of a common origin: the ambiguity arises if
G � dVf, and equation (16) holds identically. In this case,
an arbitrary symmetric matrix

H0�G � dVf� �
i
��������������
1ÿ d 2

p
L

ÿ
1� z 2

�
E� 2zVf�p=2
1ÿ z 2

; (32)

meets equation (15); the imaginary part of (32) is positive at
jzj < 1. It is easy to see that (27), (30), and (31) are
particular cases of expression (32).

Note that if we extend analytically our solution to the
case of nonreal g and d (which corresponds to a resonator
with imperfect mirrors, whose reêection coefécient depends
on transverse coordinates) and turn the imaginary parts to
zero, the matrices of family (32) with nonreal z can be
obtained as a result of this transformation under speciéc
relationship between the parameters of the resonator.

7. We will formulate without proof some results of the
analysis of the behaviour of the matrix H0 � i ImH0 and its
eigenvalues in the vicinity of other boundary points of the
stability region (5). [This analysis is based mainly on the
relations (17), (18), (21) and (23).]

On the surface (7), the quantity d (12) is zero, one of the
eigenvalues ImH0 also vanishes, and the other takes the
value

2jgj
L

��������������
jaj

1ÿ jaj

s
. (33)

In this case

y0�d � 0� � 1

2
arctan

�
sinf

j cosfj ÿ jdj
�
sign cosf.

In the vicinity (7), the value of d is small when jaj is not
close to zero,

d � 23=2
������������������������
jgdDg cosfj

p
, (34)

where Dg is the distance to the boundary of the variable g.
The presence of square-root singularity leads to the fact
that the d, y0, and eigenvalues ImH0 dramatically change in
the small neighbourhood of the boundary. In this case,
unlike the resonator with an even number of mirrors, both
eigenvalues decrease. Accordingly, there is a quick turn of
the intensity ellipse accompanied by an unlimited increase
in the length of one of its semiaxes and a less pronounced
increase in the length of the other. The values of jaj
decrease with decreasing simultaneously the limiting value
(33) of the second eigenvalue on the boundary and the size
of the near-boundary region. The width of this region,
where relation (34) is still fulélled, is determined by the
inequality Dg5 2ja=gj. When the opposite inequality
14Dg4 2ja=gj is fulélled (in particular, at cosf � 0),
the dependence of d on Dg is close to linear:

d � 2jgDgj.
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If the value of d is close to zero, and that of g ë to unity,
the eigenvalues of the matrix ImH0 are small and coincide
with values of u�=L in the érst approximation. The value of
y0 is close in this case to f=2, if j cosfj is not small. If
1ÿ jgj, d, and cosf are close to zero simultaneously, the
dependence of the ratio of these parameters may exhibit
different asymptotic behaviours of the angle

y0 � ÿ
1

2
arctan

2 sinf cosf

d�
�����������������������������������������
d 2 � 4a 2 ÿ 2 cos 2 f

p .

Consider now the vicinity of the surface (6) on which

Z � 2jgj�jgj ÿ jdj sinfj�

vanishes; in this case, y0(Z � 0) � f=2ÿ p=4 and

H0�Z! 0� � i sign g
L

��������������
1ÿ a 2

Z

s
�G� aVf�.

When approaching the surface (6) one of the eigenvalues of
the matrix ImH0 tends to zero, while the other ë to inénity:

2

kw 2
1

�
��������������������ÿ
1ÿ a 2

�
Z

2Ljgj

s
,

2

kw 2
2

� 2jgj
L

��������������
1ÿ a 2

Z

s
,

the intensity ellipse in one direction extends indeénitely,
and in the other narrows into a line, while its area remains
limited and tends to 2pL=�k(1ÿ a 2)1=2�. Therein lies a
qualitative difference between this case and the above-
discussed case of the vicinity of the surface (7), where the
intensity ellipse turned not into a straight line but into a
strip. Common in these situations is the presence of square-
root singularity (this time in the denominator), because of
which a drastic change occurs in the shape of the beam in a
narrow boundary layer and outside it the beam parameters
vary fairly smoothly. In this case, when approaching the
stability boundary a quick change in the direction of ellipse
semiaxes does not occur, in contrast to the above case of
the vicinity of the surface (7). Note that this analysis
requires reénement in the region of small jgj, where the
behaviour of the eigenvalues is determined by the ratio���
Z
p

=jgj; this case was considered above.
Another special case is the vicinity of the `cusps' of the

stability region, lying on space curves (24). On these curves,
jaj � 1, so in their vicinity the difference 1ÿ jaj is small as
well as the value of Z, which does not exceed (1ÿ jaj)2.
Then, putting

p � Z

�1ÿ jaj�2

[the value of p lies in the interval (0, 1)], we obtain

H0 �
i sign g

L
��������������������
p�1ÿ jaj�p ������������������������

1�
�����������
1ÿ p

pq
�G� Vf�,

y0�jaj � 1� � f
2
ÿ p

4
,

2

kw 2
1

� �1ÿ jaj�
3=2

Ljgj

������������������������
p�1ÿ p�

1�
�����������
1ÿ p

ps
,

2

kw 2
2

� 2jgj
L

������������������������
1�

�����������
1ÿ p

p
p�1ÿ jaj�

s
.

Under the assumption that the value of jgj is bounded away
from zero, the second eigenvalue for a! 1 tends to inénity,
and the érst ë to zero (note that it contains an additional
factor �p(1ÿ p)�1=2, vanishing at the boundaries). In the
case of small values of j sinfj, the factor jgj is also small,
and therefore the uncertainty arises in the expressions for
the eigenvalues, so that at certain ratios of parameters it
might be that the érst eigenvalue is large, and the second is
small, or that they are small simultaneously. In any case,
however, their product for a! 1 tends to zero, and the
area of the intensity ellipse ë to inénity.

Finally, the last case ë the large absolute values of g, d,
belonging to the stability region, when the value of cosf is
close to zero, and lying (see Fig. 4) in small neighbourhoods
of the bisectors of the coordinate angles, as well as of
hyperbolae g 2 ÿ d 2 � �1 for which the bisector are asymp-
totes. Of course, these points are close also to the stability
boundaries (6) and (7) lying between these hyperbolae.
Between the boundaries the value of Z rapidly changes
from zero to (1ÿ jaj)2, and with the matrix itself H0 quickly
changes. The eigenvalue

2

kw 2
1

� d
���
Z
p

Ljgjt 0

in the region under study is small and vanishes on both
boundaries, and the eigenvalue

2

kw 2
2

� jgjt
0

L
���
Z
p

changes from the value (33) on the surface (7) to inénity on
the surface (6). Although expression (33) contains a large
cofactor jgj, the value of this expression in the case under
study is not obligatory large (in particular, at cosf � 0 it
vanishes). Nevertheless, in any case in the considered region
the eccentricity of the intensity ellipse is always large, the
angle y0 is close to zero, and the matrix ImH0 is close to
diagonal (more precisely, one of the diagonal elements is
much larger than other elements of this matrix).

8. Let us square the monodromy matrix T0 (4):

T 2
0 � 2G 0Gÿ E 2LG 0

2�GG 0Gÿ G=L 2GG 0 ÿ E

� �
, (35)

where G 0 � VfGVf.
It is easy to verify that matrix (35) coincides with the

monodromy matrix of a linear resonator (of the length L)
bounded by two identical elliptical mirrors, whose principal
directions of curvature have the angle f with respect to each
other, and the values of the principal curvatures coincide
with the eigenvalues of the matrix C=2 [26, 27]. This means
that the Gaussian beam traversing a linear resonator is
converted in the same way as during two round trips in the
ring resonator, so that any solution for the ring resonator
simultaneously describes the éeld in the corresponding
linear resonator. The converse is true if all the eigenvalues
of matrix (4) are different from �i: in this case, all the
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eigenvectors of matrix (35), through which the solutions of
equation (1) can be expressed are also eigenvectors of matrix
(4), because the corresponding eigenvalues of matrices (4)
and (35) have the same multiplicity. If the eigenvalues of
matrix (4) (simple or double) are equal to �i, matrix (35) has
the eigenspace with the dimension 2 or 4, respectively,
corresponding to the eigenvalue ÿ1, then equation (1)
for matrix (35) has solutions that do not satisfy a similar
equation for matrix (4). These solutions describe the beams,
which are reproduced not after a single but after a double
trip in the considered ring resonator, and then the mode is a
superposition of two Gaussian beams that switch back and
forth between each other while traversing the resonator.

9. Consider the case when the reêecting mirror is
spherical. Figure 7 shows the dependence of L=R on the
eigenvalues of the dimensionless matrix LImH0 and the
angles of inclination y1;2 to the coordinate axis x of the
corresponding eigenvectors (axes of the intensity ellipse) at
constant f and a for the above case, when the straight line
a � const in Fig. 5 intersects both stability subregions.
Figure 7 illustrates the above-noted qualitative differences
between the resonators with an even and odd number of
mirrors: in the latter case, the number of stability subregions
does not exceed two (not three); at the boundaries of the
subregions when one of the eigenvalues vanishes, the other
tends to inénity (for an even number of mirrors, it increases
sharply, but remains énite); and énally, with the highest
value of L=R only one eigenvalue vanishes (with an even
number of mirrors ë both).

Figure 8 shows the dependences of similar character-
istics of the dimensional matrix ImH0 on j cosfj for a
resonator with an odd number of mirrors, the parameters of
which coincide with those of the four-mirror resonator
considered in [9, 14]. As seen from Fig. 6, such a resonator
is stable for all values of f, which, in the case of an even
number of mirrors, is impossible for any values of the
parameters.

10. Consider now the evolution of the matrix H when the
beam propagates along the resonator contour. The analysis
will be based on expression [28]

H�z��
H� � �zdetH��E

1� ztrH� � z 2 detH�
, (36)

where the matrix H� � H (0) is found from (10),

trH� �
1

L

�
2�gÿ 1� � ijgjt 0���

Z
p

�
,

detH� �
�1ÿ g�2 ÿ d 2 ÿ d

L 2

�
1� it 0

2
���
Z
p
�
,

in this case the matrices H(L) and Hÿ are related by a
similarity relation

Hÿ � VfH�L�Vf.

The beam has a symmetry centre at point z � L=2,
x � y � 0; in this case,

H�L=2� � 1

L��1� g�2 ÿ d 2 ÿ d �

�
�
4dVf�p=2 sinf�

it 0�1� g 2 ÿ d 2 ÿ d����
Z
p �E� xVf�

�
,

trH�L=2� � ijtrH�L=2�j � 2it 0�1� g 2 ÿ d 2 ÿ d�
L
���
Z
p ��1� g�2 ÿ d 2 ÿ d

�, (37)
detH�L=2� � ÿ 4�gd� d 2 sin 2 f�

L 2
�
g
��1� g�2 ÿ d 2

�ÿ d 2 sin 2 f
	 .

It follows from (37) that for z � L=2 the major semiaxes
of the intensity ellipse are directed at angles (f� np)=2 to
the x axis, and the directions of principal curvatures of the
wavefront coincide with the bisectors of the angles between
these axes and form angles f=2� (2n� 1)p=4 with the x
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Figure 7. Dependences of eigenvalues of the dimensionless matrix
LImH0 (a) and angles of incidence of the corresponding eigenvectors to
the x axis (b) on L=R (a � p=3, f � p=3). Roman numerals indicate the
values of L=R corresponding to the formulas presented in the caption to
Fig. 5.
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Figure 8. Dependences of eigenvalues of the matrix ImH0 (a) and angles
of incidence of the corresponding eigenvectors to the x axis (b) on j cosfj
at R � 50 mm, L � 12:22 mm, a � p=3 (g � 0:7531, d � ÿ0:0353, f �
p=3). For tanf < 0, the values of the angles differ in sign from those
presented in this égure.
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axis. The wavefront in this section has the shape of a saddle,
the principal radii of curvature of which are equal modulo
L�(1� g)2 ÿ d 2 ÿ d �=(4d sinf).

The formula similar to (36), allows one to express H(z)
through the matrix H(L=2), its trace, and determinant.
Multiplying and dividing (36) by the expression that is
complex conjugate with the denominator, we can distinguish
the real and imaginary parts of the matrix H(z). We do not
present these formulas because of their awkwardness; we
will write only the expressions for the angles of incidence of
the intensity and phase ellipses, yIm and yRe, to the x axis
[i.e., the eigenvectors of the matrices ImH(z) and ReH(z)]:

where k � z=L [the formulas are given for the internal
points of region (5) when all the expressions entering into it
are deéned].

Angles (38) and (39) are determined up to a term np=2
(semiaxes of the ellipses are orthogonal) and are measured
from the initial direction of the x axis or the direction in
which it goes after one or more reêections from êat mirrors;
the direction is determined by the orientation of the
coordinate system, i.e., by the number of reêections.
Transition to other coordinate systems leads to the addition
of a constant term and (with changing the orientation) to a
change in the sign in expressions (38), (39).

It is easy to see that the angle yRe(0) is multiple of p=2:
the directions of the principal curvatures of the wave front
coincide with the coordinate axes. In particular, when
ÿp < f < 0 or 0 < f < p, the mentioned angle is equal
to np=2 or (n� 1�p=2, respectively. In this case, the values of
yRe(k � 1) are equal to f� (n� 1)p=2 and f� np=2, and
yRe(1=2)�f=2�(n� 1)p=4 (at any f). It is somewhat more
difécult to verify that yIm(0) for some n coincides with y0
(19), (25); for this, in particular, it is sufécient that
tan�2yIm(0)� � tan (2y0). In the middle of the contour,
yIm(1=2) � (f� np)=2. Figure 9 shows the dependences of

yIm and yRe on k for a resonator with the selected
parameters.

Figure 10 shows the k dependence of the eigenvalues
2=(kw 2

1;2) of the matrix ImH (w1;2 are the semiaxes of the
intensity ellipse) and the eigenvalues rÿ11;2 of the matrix ReH
(r1;2 are the principal radii of the wavefront curvature) for
the speciéed resonator. In the middle of the contour, the
eigenvalues of the matrix ImH take maximum values and
the values of w1;2 are, therefore, minimal. The eigenvalues of
ReH at this point coincide in moulus and differ in sign, and
the wavefront has the shape of a saddle. At points located
symmetrically with respect to the middle of the contour, one

of the eigenvalues vanishes and the shape of the wavefront is
cylindrical. Note that the form of these curves is very close
to the same curves for a resonator with an even number of
mirrors [14]. We do not present explicit analytical expres-
sions for the eigenvalues and for the matrices ImH, ReH
themselves because of their awkwardness.

11. Here are a few words about the possible general-
isations of the results.

(i) In this study we dealt only with formulas for the
fundamental mode. To construct the formulas for the higher
modes, it is necessary to write the creation operators,
analogous to quantum mechanical ones, which requires
the eigenvectors of the monodromy matrix to be determined
[1, 3, 20]. It turns out [29] that the expressions for these
vectors in the problem under study can be found in explicit
form, with substantial assistance from the found matrix H0:
in fact, here use is made of the inverted traditional method
in which this matrix is expressed through the components of
these vectors. Note that the deénition of the eigenvectors of

yIm �
1

2

�
fÿ arctan

�2kÿ 1���1� g�ÿ1ÿ g 2 � d 2 � d
�ÿ 2d 2 cos 2 f

�
tanf

g
��1� g�2 ÿ d 2 ÿ �2kÿ 1�2d�ÿ 2�1ÿ 2k�1ÿ k��d 2 sin 2 f

� np
�
, (38)

yRe �
1

2

�
fÿ arccot

�2kÿ 1��g��1� g�2 ÿ d 2 ÿ d
�ÿ 2d 2 sin 2 f

�
cotf

g
��1� g�2 ÿ d 2 ÿ �2kÿ 1�2d�ÿ 2�1ÿ 2k�1ÿ k��d 2 sin 2 f

� np
�
, (39)
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Figure 9. Dependences of the angles of incidence of the semiaxes of the
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the monodromy matrix for the case of an even number of
mirrors is a signiécantly more complex problem.

(ii) We still have focused our attention on describing the
shape of the transverse distribution and have not considered
the natural frequencies (more precisely, the eigenvalues of
the wavenumber k), since this issue was studied in [1, 3].
Nevertheless, the technique used allows us to somewhat
modify the corresponding formulas.

(iii) In this paper, we have restricted our consideration to
the principal term of asymptotic expansion of the éeld in the
resonator. Of interest here can be the issues related to the
accuracy of the derived expressions, the limits of their
applicability, the introduction of correction terms or even
a complete asymptotic series ë more speciécally, related to
possible simpliécations (with regard to the speciéc character
of the problem) of the procedure of its construction
described in [1, 3].

(iv) Our results can be generalised to the case of complex
g and d, when the reêection coefécient of the astigmatic
mirror depends on the transverse coordinates according to
the Gaussian law. In need of modiécation are the formulas
containing moduli and signs of the quantities, which are
now complex. In this case, it is necessary to reconsider the
issues related to the choice of the signs in radicals, which
provides a property of having a éxed sign in the matrix
ImH, issues related to the possibility and uniqueness of this
choice (i.e., stability of the resonator with a complex
monodromy matrix [18, 19]), the issues about the losses
of the fundamental and higher modes in such resonators, the
éeld nonreciprocity, etc. A special analysis is required when
the real parts of g and d lie outside region (5), as well as near
its boundaries (6), (7). Some technical diféculties can also
arise in the case of the Gaussian mirror, described by a
symmetric complex matrix C of general form, which is not
diagonalized by rotation axes, so that the matrix G will not
be diagonal.

(v) The analysis shows that the mathematical structure
of the problem does not change if an axially symmetric lens
is mounted in the middle of the resonator contour. In this
case, the monodromy matrix will continue to be of form (4),
but with a somewhat different matrix G and a certain
effective value L, different from the length of the resonator
contour. Note that if the transmittance of the lens is
assumed dependent on the radius according to the Gaussian
law, or if the lens is replaced by a Gaussian aperture, not
only g, d but also L turn to be the complex values.

(vi) The following natural generalisation is the problem,
in which the speciéed lens is astigmatic. In the particular
case when the matrix describing the lens commutes with the
matrix Vf, this problem is very close to that considered in
[26, 27] (the problem of a two-mirror resonator with differ-
ent directions of principal curvatures) and is not too
superior to the latter in terms of complexity.

(vii) We have considered the problem in a scalar
formulation; however, no diféculties arise during its refor-
mulation for Maxwell's equations. In the main
approximation the resulting electromagnetic wave is trans-
verse and a plane-polarised (unlike the case of an even
number of mirrors, where the polarisation is circular [10]),
since the polarisation vector should obviously be an
eigenvector of the matrix Vf. Each of these two vectors
generates its own series of natural frequencies of the
resonator.

12. Let us sum up the main results of this study.
In the present work, we studied the ring resonators with

a nonplanar axial contour and an odd number of mirrors,
one of which is nonplanar. In such resonators, as a result of
the round trip of light in the resonator contour the
orientation of the coordinate system changes, i.e., this
system is reêected with respect to some direction, not
related, in general, with the principal directions of the
curvature of nonplanar mirror. The resultant fundamental
mode in this case has the form of a Gaussian beam with
astigmatism, of general type. We investigated in detail the
geometry of the stability region of the resonator in the space
of dimensionless parameters that determine the resonator
properties. We presented the explicit expressions for the
quadratic matrix describing the transverse éeld distribution
of the fundamental mode for all admissible parameters. We
analysed in detail the behaviour of the matrix and the
character of the éeld in the vicinity of the boundaries of the
stability region and speciéc values of the parameters. We
studied the singular points and surfaces in the stability
region for which the quadratic matrix is not uniquely
determined, as well as the behaviour of the matrix in the
vicinity of these points and surfaces. We investigated the
dependence of the transverse éeld distribution on the
longitudinal coordinate and presented explicit expressions
for the angles of incidence of the semiaxes of the intensity
and phase ellipse as a function of this coordinate.

Results are speciéed for the case when the nonplanar
mirror is spherical. For such resonators, we investigated the
dependences of the beam characteristics on the radius of
curvature, angle of incidence, and direction with respect to
which reêection of the coordinate system takes place during
the trip of light in the resonator.

The results obtained showed sharp qualitative differ-
ences between the resonators with an odd and even number
of mirrors (the latter case was investigated earlier [14]).
These differences relate to both forms of the stability region
(in particular, the number of subregions into which this area
splits does not coincide) and the transverse éeld distribution.
In particular, the semiaxes of the intensity ellipse and phase
ellipse are directed along the principal directions of the
curvature of nonplanar mirrors in the resonator with an
even number of mirrors and with an odd number of mirrors,
respectively. Common is only that in both cases the
fundamental mode is a Gaussian beam with general
astigmatism, symmetrical with respect to the middle of
the contour.

As an example, we used a resonator whose parameters
coincide with those of the resonator with an even number of
mirrors (considered in [9, 14]). In this case, we found an
unexpected similarity, which is not only qualitative but also
quantitative, in the shape of beams formed in the resonators
with an odd and even number of mirrors.
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