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Abstract.  We study the nature of transition from stationary lasing 
to pulse-periodic oscillations when the phase of the delayed feed-
back and the diode laser pump current change. The appearance of 
oscillations can take place under the scenarios of soft or hard exci-
tation of oscillations. We propose a semi-analytical approach to 
identify the nature of the transition and to determine the dynamic 
characteristics and stability of the arising spike regime with a change 
in the external parameters. Direct integration of the Lang – Kobayashi 
equations showed an acceptable accuracy of this approach. 

Keywords: semiconductor laser, lasing dynamics, delayed feedback, 
bifurcation. 

1. Introduction 

Semiconductor lasers with delayed feedback produced by 
reflecting a part of radiation from the external mirror attract 
attention due to a variety of lasing regimes [1]. The abundance 
of dynamic regimes in such a laser is due to the interference of 
the field reflected from the semiconductor face, which serves 
as an internal mirror, with a retarding field returned by the 
external mirror. The field established in the laser, in general, 
depends on the given initial field distributions and the popu-
lation inversion in the time interval determined by the delay. 
Formally, this situation corresponds to the infinite-dimen-
sional phase space. Even in this case, there are some asymp-
totic solutions to which stable laser generation approaches at 
almost any initial distributions. Several of these solutions can 
serve as a basis for the analysis of different regimes. The resul-
tant complex dynamics is described by relatively simple equa-
tions [2] of the well-known Lang – Kobayashi (LK) model. 
Despite its apparent simplicity, the equations describe a num-
ber of phenomena occurring in the dynamics of diode lasers 
(DLs): a sequence of period-doubling bifurcations upon tran-
sition to chaos [3], as well as the effect of phase-locking of 
lasers through the exchange of radiation, including in the cha-
otic oscillation regime [4]. This effect, called the synchronisa-
tion of chaotic lasers, is used in the optical cryptography sys-
tems being developed [5]. The use of lasers with delayed feed-
back in cryptographic systems offers some advantages 
because the latter can generate hyperchaos, i.e., high-dimen-

sional chaos [6]. There are several theoretical works [7, 8], 
devoted to the numerical study of nonlinear dynamics of 
lasers with delayed feedback, which investigate both the well-
known phenomena (bistability) and unusual regimes, such as 
long-wavelength fluctuations. The latter are primarily associ-
ated with the development of instability at the moments when 
the radiation intensity is low. However, deep understanding 
of the processes causing the different dynamic regimes is still 
far away. The experiments illustrate the complex picture of 
dynamic regimes, but do not allow one to predict the behav-
iour of lasers with known parameters. 

Lasers with delayed feedback can operate in a steady-
state regime. The steady-state regime can be violated through 
bifurcation, accompanied by the appearance of oscillations. 
In the case of the classical Hopf bifurcation, there occurs soft 
excitation of harmonic oscillations whose amplitude increases 
away from the bifurcation point. In [9] we consider another 
type of bifurcation, when hard excitation of oscillations accom
panied by a transition to the spike regime is realised, and 
show that the description of the behaviour of the system near 
this boundary may be reduced to solving an algebraic cubic 
equation whose coefficients depend on the known physical 
parameters of the laser and feedback. With the parameters 
changed, the number of real roots of the found cubic equation 
can vary from three to one, which in terms of the catastrophe 
theory corresponds to a cusp catastrophe [10]. The Hopf 
bifurcation corresponds to the variant, when there are three 
roots. One of the roots determines the frequency of small 
oscillations of the system. In [9] we show that in the case of 
one root the transition is hard. This means that at the bifurca-
tion point on the phase plane there is an attracting limit cycle 
of finite radius. 

A key feature of the DLs, resulting in a variety of dynamics, 
is the delayed feedback. The most complete description of the 
theory of difference-differential equations is given in [11 – 14]. 

In this paper, we study the regimes of established genera-
tion within the framework of the LK equations. Analysis of 
steady-state and regular dynamic solutions is performed in 
the linear approximation for perturbations. For the estab-
lished oscillations, the perturbations are described by linear 
differential equations with periodic coefficients. Periodicity is 
a very strong property that is used in the Lyapunov theory of 
reducibility of the equations to simple ones. Therefore, the 
delayed feedback effect in the regime of established oscilla-
tions can be described in terms of an effective delayed feed-
back. Given the simplicity of arising oscillations, we derive a 
periodical solution near the bifurcation point from the steady-
state solution. From the linear problem we can get a system of 
two transcendental characteristic equations for the repetition 
rate of oscillations. From the condition of their compatibility 
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and the equation for the effective delayed feedback factor we 
can find the characteristics of the nonlinear solution. 

2. Basic equations of the model 

The LK equations describe the lasing dynamics in a diode laser 
with external delayed feedback (Fig. 1). Lang and Kobayashi 
[2] took into account the delayed feedback effect by introduc-
ing the effective reflection coefficient reff at the laser crystal 
face end. The field Er on this mirror (for a wave with a fre-
quency W ) is formed due to reflection of the wave E from the 
first boundary with an amplitude reflection coefficient r and 
(with some phase delay) from the second, external, boundary 

Er eiWt = reff EeiWt = [ r + (1 – r2)rme–iWtd ]EeiWt.

The amplitude reflection coefficient rm from the external 
mirror is assumed small. Then, the passive losses in the laser 
cavity of length L, taking into account the signal delay by 
time td, is given by 
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Losses on a mirror in the LK model (first term) determine 
the photon lifetime and are considered below as distributed 
losses. The second term gives the contribution of the external 
mirror with allowance for the time delay of the reflected sig-
nal. For a laser with a cavity of length L and the amplitude 
reflection coefficient r from the crystal face, the photon lifetime 
in the medium with the speed of light c and the group refrac-
tive index n is defined as tph–1 = (c/n)(L–1 ln r–1). Because the 
reflection from the external mirror is small and ln (1 + x) » x, 
we have Md = (c/2nL)(1 – r2)(rm /r). 

Let us position the origin of the coordinate system (z¢, t¢)  
on a highly reflecting mirror. Using the substitution z = z¢n/ctph, 
t = t¢/tph, we will pass to dimensionless coordinates. Then, the 
LK equations have the form (zL º nL/ctph = ln r–1): 
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The first of the equations describes the behaviour of the 
slowly varying field amplitude envelope E(t, z) in the form 
of  a travelling wave with a round-trip in the cavity L [this 
imposes periodic boundary conditions E(t, z + t2L) = E(t, z), 
t2L = 2nL/ctph is the a round-trip time of a laser beam in the 
cavity as a fraction of tph], the second equation describes the 
time dynamics of population inversion N, caused by the evo-
lution of the field intensity. Feedback in the equation is distrib-
uted; M is the dimensionless absolute value of the coupling 
constant module, which is determined by the amplitude coef-
ficient of reflection from the external mirror rm: M = (1 – r2)
(rm/r)/t2L; parameter k is the coupling constant phase, which 
determines the phase incursion at a carrier frequency of the 
field in the loop with delayed feedback.

In the second equation the field intensity I is the total inten-
sity of two counterpropagating waves, the two mirror points 
z and t2L – z coincide spatially (using the algebra modulo t2L). 

The field gain G in the linear approximation near the 
threshold is proportional to the population inversion N. The 
dimensionless quantity N is expressed through the carrier con-
centration Nc: N = 0.5gtph(Nc – Nth), where g is the differential 
material gain {g = (c/n) ¶G/¶Nc [mm3 ps–1]}. The threshold 
carrier density Nth = Ntr + (gtph)–1 is determined by radiation 
losses at the facets of the crystal and by distributed losses. The 
latter can be described using the concept of effective transpar-
ency density Ntr, which additionally includes passive losses 
in the volume. Next, we introduce P = 0.5gtph(  jts – Nth), the 
normalised pump intensity above the threshold, where ts is 
the lifetime of carriers in the absence of stimulated transi-
tions;  j  is the injection rate of carriers in a quantum well of 
thickness d. The dimensionless time is introduced through 
normalisation by the photon lifetime tph. In particular, the 
dimensionless time of the inversion relaxation is defined as 
T = ts/tph. A typical value is T » 1000. 

In DLs the gain G is large, as a rule, so that the amplitude 
reflection coefficient of the output mirror is typically less than 
unity (~0.5). In the numerical integration of equations (1), 
there arise difficulties associated with the need to account for 
the discontinuity in the field amplitude on the right-hand mir-
ror of the DL cavity. In view of the counterpropagating waves, 
the field intensity is I = I+ez + I–e–z, where the waves I± on the 
mirrors are transformed into each other with preserving the 
smoothness. The value of the field intensity discontinuity on 
the right-hand mirror is found (taking into account the small-
ness of the feedback) from the condition J(zL) = PzL, where 
J = I+ez – I–e–z. 

For long delay times td, compared to t2L the field distribu-
tion in the cavity changes in time as a whole, because the time 
of the field establishment is of the same order as the photon 
lifetime, and the oscillations of perturbations due to feedback 
have the scale associated with the delay time. Therefore, with 
an accuracy up to the shape of the field inside the cavity and 
the intensity normalisation, the dynamics of perturbations 
produced by the feedback can be studied by specifying the 
intensity with the help of a simple formula I(t, z) = |E(t, z)|2. 
This formula is convenient for analytical consideration, and 
comparison with the calculations of the full model show the 
coincidence of the dynamics with the behaviour of the solu-
tions obtained for a zero-dimensional LK model. Analysis 
provided in the Appendix gives the necessary conditions for 
the applicability of this model. Comparison of the frequencies 
of the increments of growth of perturbations without delayed 
feedback with the frequency w for the perturbation oscillations 
due to feedback provides an additional condition wT >> 1, 

1 r rm

tdL

Figure 1.  Diode laser with delayed feedback. The length of the laser 
cavity is L; the left mirror is highly reflecting; the right mirror has the 
reflection coefficient r; the external – rm. The signal delay time is td. 
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under which the dynamics of solutions of equations (2) with 
distributed losses is close to the dynamics of the zero-dimen-
sional model. Here, w is the dimensionless frequency norma-
lised to the inverse photon lifetime. 

The steady state (SS) is determined by the conditions [1]: 
¶E(t, z)/¶z = ib and ¶N/¶t = 0. Then, by substituting E = 
Es exp(ibz + y(t, z)), the first equation of system (1) in a moving 
coordinate system (t = t – z, z = z) is transformed to 

¶
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where a new phase of the feedback is c = btd – k. Let the sta-
tionary value N be equal to N0; then, it follows from the 
second equation of system (1) that P – N0 = (2N0 + 1)Es

2. The 
amplitude describing the slowly varying envelope of the wave 
field has the frequency detuning from the carrier frequency 
(it follows from the equality to zero of real components that 
N0 = –M sin c): 
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The equations for y and n = N – N0 (note that n << 1 
because M << 1) take the form 
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Note that the gain is concentrated inside the diode cavity, the 
cavity round-trip length is 2L ~ ctph and much smaller than 
the external cavity length ctd. Account for the circular bound-
ary conditions (in the laboratory coordinate system) for the 
field inside the crystal makes it possible to consider the solu-
tion to be periodic along the spatial coordinate z (with a 
period 2zL) and arbitrary changing with time. Formally, the 
solution is sought for on the surface of the cylinder. The 
sweep of this integration region is a band of width 2zL with an 
edge along the line t – z = const in the laboratory coordinate 
system. Therefore, in numerical calculations of the equations 
it is necessary to store the data acquired during an interval of 
the delay time td/tph in the computer memory. 

3. Perturbation analysis taking into account 
the delay 

The properties of nonlinear equations (2) can be studied 
by switching to the analysis of linear equations for the per
turbations. We deal here with the replacement y ® y + d y, 
n ® n + d n, when the initial exact solutions of the nonlinear 

system are varied to obtain a linear system of equations for 
small perturbations. As is known [15], in the absence of delayed 
feedback, equations (2) have a stable stationary solution y = 0. 
Initial perturbations decay with time. The shape of oscillations 
(in the case of a low decay rate) can be obtained analytically. 
Feedback changes the behaviour of the system and its phase 
portrait. In particular, there may emerge new dynamic solu-
tions, which under certain conditions become stable, and their 
orbits in phase space are attracting. Such transitions speak 
of restructuring of the entire solution of the system. Different 
types of solutions are separated by bifurcation points. 

Since the feedback leads to the restructuring of the solu-
tion even in the case of a small feedback factor, the account 
for its influence cannot be correct within the finite-order per-
turbation theory. To take into account the perturbations in 
all orders, use is made of Green’s function. Because we inves-
tigate the oscillations near the frequency of relaxation oscil
lations wr, which are much larger than the inverse times of 
inversion relaxation T –1, then under these assumptions the 
zero-dimensional model is valid (¶y/¶z ® ¶y/¶t): 
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The homogeneous part of this system of equations does 
not contain delayed feedback and, therefore, is simple enough. 
Its solution can be obtained in an explicit form, and the par-
ticular solution of (3) can be derived by the method of varia-
tion of constants. The complete solution of the system is an 
integral equation whose kernel (Green’s function) depends 
on  the trajectory y. The properties of the solutions depend 
strongly on the spectral properties of Green’s function [16]. 
It follows directly from (3) that the relaxation term leads to a 
temporal decay of the homogeneous solutions; therefore, only 
a partial solution of the inhomogeneous system determines 
the dynamics on large time intervals. The particular solution 
is an integral between two instants of time (the upper limit is 
the current time). The upper limit specifies the behaviour of 
the solution, while the bottom limit is the solution of the 
homogeneous system and disappears in the asymptotic limit. 

Since one of the equations is the complex, instead of two 
equations we obtain three real equations. For the real and 
imaginary parts d y we introduce the notations dx = d Re y, 
dy = d Im y, and for the inversion perturbations we keep the 
notation dn. In equation (3) the terms in the homogeneous 
part of the system determine the form of the matrix A; the 
matrix B takes into account only the contribution of delayed 
feedback: 
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where z = c + y – y(t – td). Then, the solution of the linearised 
system is written in the form of an integral equation, which is 
derived from the solution of the homogeneous system by using 
the method of variation of constants [17] (for the established 
periodic solutions the external integral is indefinite): 
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 is the chronological exponent [18]. In the case of 
the stationary solution*, both matrices 
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The behaviour on the periodic attractor is determined by 
the integration region near the upper limit, when t ® t. On 
the time interval where transient processes play the role, the 
oscillation frequency varies smoothly, starting from the fre-
quency of relaxation oscillations. In the asymptotic limit the 
phase trajectory goes to the periodic attractor. For the estab-
lished periodic oscillations, the Lyapunov theory for the 
reducibility (solvability) of equations are valid. The initial 
system of differential equations belongs to the class of equa-
tions with periodic coefficients. Any system with periodic 
coefficients is reducible (see Ref. [19]), i.e., it can be converted 
to a system of equations with constant coefficients using some 
(nonlinear) Lyapunov transformation. Derivation of the 
statement is based on the most common assumptions associ-
ated with the periodicity; the Lyapunov transformation itself 
is not defined. For the integral equation (4) with constant 
matrices A0 and B0, the Lyapunov transformation corre-
sponds to Green’s function exp [A0(t – t)]. Thus, the problem 
is solvable and reduced to algebraic.

Analytic properties of the operator kernel in an infinitely 
small vicinity of the point at the upper integration limit of (4) 
form the dynamic characteristics of the system oscillations 
directly on the periodic attractor. Before taking the limit t ® t, 
it is necessary to expand the solution vector in the eigenvectors 
A and integrate it with the corresponding eigenfunction:
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Of the three eigenvectors of the matrix A0, the two form a 
two dimensional complex subspace, the third – a one-dimen-
sional real subspace with a zero eigenvalue. The half-sum of 
the first two vectors, along with the third vector create a real 
two-dimensional subspace. The third row of these vectors is 
zero in the limit t ® t, which is a prerequisite, because the 

bottom row of the matrix B0 is zero. Thus, for exp [A0(t – t)] 
the eigenvectors and eigennumbers have the form: 
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(because wr >> 1/T, we assume 1/T ® 0). 
Of interest are the bifurcation points in which there appear 

oscillation perturbations not decaying in time. For oscillations 
at the frequency w, the general form of d y is proposed in [20]. 
Without loss of generality, the real part of the solution is sought 
for in the form dx = cos (wt). In this case, the general form 
of  the imaginary component has the form dy = a cos (wt) + 
b cos (wt + J ), where J  = – wtd/2. The solution splits on the 
plane into two vectors: one is a mode µ cos (wt), the other is 
a  phase-shifted mode, cos (wt + J ). For each of the modes 
we derive a separate equation. To solve these equations, we 
expand the first vector in the eigenvectors of the matrix A, 
transform the formulas of the product of trigonometric func-
tions, and after integration and substitution of the variable at 
the upper limit of the indefinite integral, we obtain
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Similarly from the equation for the second vector: 
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It follows from the first row of these conditions that tan c = 
a  +  2b cos (wtd/2) and w2 – wr2 = –2bwM sin (wtd/2) cos c. 
Analysis of the second row together with the first formula gives 
the expression for the coefficient b = [ –2/(w cos c)]M sin (wtd/2). 
Removing b from the second formula, we have the first char-
acteristic equation (obtained previously in [20]):

w2 – wr2 = 4M2 sin2(wtd/2).	 (8)

From the second row for the first harmonic we derive the 
second characteristic equation: 

2w2 sin c + 2Mw sin (wtd) = wr2 (sin c – R cos c).	 (9)

Thus, at the bifurcation point there appear some transcen-
dental conditions for the frequency of sought-for oscillations. 
The unknown parameter w is one; however, there are two 
conditions. Overdetermination of the number of equations 
is apparently due to the requirement of real frequencies. The 
mathematical reason for this peculiarity lies in the presence of 
the function Re y in the original system of LK equations (2). 
From general considerations we can assert that the joint solution 
of equations (8), (9) is not always possible. Note that the well-
known Hopf bifurcation is characterised by the compatibility 
of these two equations.

*  In the general case, the commutators that appear because of the chro
nological operator before the exponential, lead to corrections of higher 
order of smallness in (t – t), their contribution is not significant when 
t ® t.
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To find the position of bifurcation points, we will use (5) 
by specifying the perturbations in the form of exponentials: 
dx = exp(gt) and dy = a exp(gt). Then, it follows from (5) that 
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Thus, for the two unknowns g and a there are exactly two 
equations.

For a more correct description of the stability criterion 
associated with the position of the roots near the imaginary 
axis of the complex number g, we should take into account 
the processes of inversion relaxation in the active medium 
(1/T is nonzero). This leads to the fact that in the previous 
formula we deal with a formal replacement: 
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Excluding a, we obtain the equation to find the eigenvalue g 
(see [21]): 
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The roots of this transcendental equation determine the 
bifurcation points of the system, in this case, for stationary 
solutions of the system. If the roots with positive real part are 
absent, then the solution of the system is stable; otherwise, the 
solution is unstable. The points, when the right half-plane has 
the roots, correspond to bifurcation from the stable state to 
the regime with periodic pulsations. The presence of the roots 
in this part of the complex plane can be determined by the 
methods of complex analysis by setting into one-to-one cor-
respondence the roots of expression (10) to the poles on the 
complex plane for the logarithmic derivative f. The integral 
in a closed contour enclosing the right half-plane calculated 
with the residues theory gives the number of the zeros of 
equation (10) with Re g > 0 (see Fig. 2). 
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4. Lyapunov principle and single-frequency 
approximation 

It follows from the analysis based on the solutions for the 
steady states that the loss of stability leads to oscillations. 
However, the number of conditions per frequency of the lat-
ter is overdetermined [see Eqns (8), (9)]. This suggests that 
data on a nonlinear periodic solution can be derived by 
studying the linear problem (4). Moreover, we assume that 
the nonlinear periodic solution y(t, z) = x + iy can be repre-
sented in the first approximation as a harmonic with the fre-
quency w against the background of a constant term. The 
nonlinear solution in general is a spectrum of multiple fre-
quencies w, which makes, however, the analysis much more 
intricate. Even in the case of  a single frequency function 
y(t, z), in equation (4) there appear the harmonics of the fun-
damental frequency, because this function is contained in the 
equation in the exponential. Equation (4) was obtained from 
the linear system of equations (3) for small variations dy, dn 
relative to the initial nonlinear periodic solutions. This linear 
system contains periodic coefficients and, according to the 
Lyapunov principle, is reducible to a simpler system, namely, 
to a system with constant coefficients. Note that in equation 
(3) one of the key factors leading to the emergence of periodic 
coefficients is given by Me–i c exp[ y(t – td) – y]. According to 
the Lyapunov principle of reducibility, there is a couple of the 
effective feedback constants M1e–i c1, which provide mapping 
into a problem with constant coefficients. For the eigenvalues 
with a zero real part, the solution has a characteristic fre-
quency w with all other frequencies being multiple of it. 
Therefore, it seems natural in the first approximation to cal-
culate the effective feedback factors by performing averaging 
in time over the period of oscillations. In this approximation 
we will search for a single-frequency probe signal having a 
zero growth rate. Similarly, one can calculate the Lyapunov 
exponent by averaging the value of variations on a large time 
interval. 

Expansion of the exponential of the complex amplitude 
harmonic in the Fourier series is expressed through the gen-

3

2

1

0

–360 –300 –240 –180 –120 –60 c/deg

nrt

Figure 2.  Number of roots of equation (10) in the right half-plane, ob-
tained in calculating the loop integral (11), at the given values P = 0.8, 
M = 0.02, T = 1000, td = 40. The bifurcation nrt = 0 – 2 investigated below 
is located in this figure at c = –209°. 
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eralised Thompson (Kelvin) functions ber0, bei0, which are the 
analytic continuation of the classical Bessel functions: 

2p

2
exp sind e e i et z t I z J z1 i i i

0
0 0p = =

j j j^ ^ ^h h hy

	 , , .ber ibeiz z0 0j j= +^ ^h h

Further generalisation of the Thompson (Kelvin) func-
tions yields the functions that arise when the exponential 
functions for two phase-shifted sines are integrated over a 
period. Performing separately a series expansion for each sine 
and multiplying the two series, we obtain a new alternating 
series, where even indices correspond to the expansion of the 
real part of, and the odd indices – to the imaginary part. Using 
Graf’s addition theorem [22], the series reduces to I0: 

2p

2
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Therefore, the constants of feedback modulus and phase for 
oscillations of type x1 [sin t + ia sin t + ib sin (t + J)] are renor-
malised according to the rule 

exp expi iM M1 1c c- = -^ ^h h

	 ,sin cos sini i iI x2 10 1
2 2# J a b J b J+ + +^ ^` h h j 	 (12)

where J  = – wtd/2. 
For the time-dependent matrix A, the two-dimensional 

subspace of eigenvectors retains the form with changing the 
eigenvalues. These two eigenvectors have the form 

t
,cos expdR t x

1

0

0
1
0

r
t

w- lf c fp m py

(the third row is zero, where 1/T again tends to zero). 
In the first-order accuracy [x = x0 + x1 cos (wt)], we have 

t t
2exp cosd dt x x t I x I x t
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According to the second equation of system (2), the time 
average of the function exp x2^ h ® 1 for any stable steady-
state and periodic solutions. This eliminates the parameter 
exp (x0), and, consequently, the time dependence of the eigen-
vector 

t
exp expi dt xr

t
w lc my

	 exp exp sin sini it p trw t wt w= - -^ ^ ^h h h6 6@ @" ,

	 » .exp iJ p t nrn
n
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Here, p = 2[ wr I1(x1)/wI0(x1)]. Therefore, the first eigenvector 
contains some harmonics providing resonances at frequencies 
wr + wn: 

.cosR J p t n
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0
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2 t w w- - +f ^ ^ ^p h h h6 @/

Taking into account these corrections, original formula 
(6), (7) are transformed. The changes concern, first, the feed-
back factors M, c, which as a result of renormalisation (12) 
are transformed into M1, c1. Secondly, the quantity (w2 – wr2)–1 
is replaced by another quantity denoted by S: 
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As a result, the desired quantities are found from the sys-
tem of transcendental equations: 
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In deriving these formulas, we excluded the coefficients a, b 
by using the expressions 

a cos c1 = sin c1 + 2(M1/w) sin(wtd), 	
(17)

b cos c1 = –2(M1/w) sin(wtd/2).

Equation (14) determines the relationship of the fre
quency with the oscillation amplitude w[M1, S–1(x1)] and does 
not depend on the effective feedback phase. Equation (15), 
by contrast, explicitly contains both the feedback parameters 
w(M1, c1). In turn, the effective feedback factors are calculated 
using equation (16), which uses coefficients (17), obtained by 
solving a linear problem for the perturbations with respect 
to the unknown nonlinear solution. Only perturbations with 
parameters w, a, b have a zero growth rate, while others 
(because we search for a steady-state periodic solution) are 
unstable and decay with time. Therefore, the coefficients 
obtained by solving a linear problem can be used in deriving 
the formula for effective feedback. Thus, w, M1, c1, and the 
parameter x1 which determines the size of the real part of 
oscillations, are calculated from the complete system of equa-
tions (14) – (16).

These equations are analysed for P = 0.8, M = 0.02, 
T = 1000, td = 40 and c = –209°, corresponding to bifurcation 
destroying steady-state generation. The feedback phase c cor-
responds to a jump 0 – 2 on the stability diagram of steady 
states (Fig. 2). The performed numerical calculations revealed 
three solutions for 0 < x1 < 3, of which only one is stable, and 
can be compared with results of direct dynamic calculations. 
The stable solution is in good agreement with the oscillation 
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frequency 1.07 wr, obtained from dynamics calculations in 
the vicinity of the selected bifurcation point in the regime of 
periodic oscillations (Fig. 2). Table 1 shows the parameters 
of oscillations and effective feedback of stable and unstable 
solutions. 

Note that the effective feedback parameters of the mode 
differ quite significantly from those for unperturbed values: 
M1/M = 0.47, c1 – c = 132.8°. This leads to the formation of 
the oscillations markedly different in shape from the har-
monic oscillations. For the same reason, the bifurcation 
in this regime follows a scenario that differs from the Hopf 
bifurcation. Dynamic calculations show that first we observe 
the growth of small harmonic oscillations at a frequency 1.4wr 
[before the bifurcation point, these oscillations decay (Fig. 3)]. 
At this point, the roots of equations (14) and (15) are different 
and equal to 1.23wr and 1.33wr, respectively. Only after a spe-
cific form of oscillations is achieved (Fig. 3) (with a gradual 
change in their repetition rate), the roots of both equations 
become equal. This type of solution is preserved with a further 
change in the feedback phase (Fig. 2) up to the value c = –190°, 
where the period-doubling bifurcation takes place. 

Unstable solutions obtained in the analysis of these equa-
tions are not realised. Table 1 shows the data for one of the 
unstable solutions with two roots with Re g > 0 of character-
istic equation (20). The characteristics of this decision indicate 
that the phase shift of effective feedback is equal approximately 
to 39°. Another unstable solution has one root with a positive 
growth rate; its oscillation frequency (1.36wr) is close to the 
initial (transient) oscillations that arise when crossing a bifur-
cation point. The amplitude of steady oscillations is also high: 
x1 = 1.78. 

Formulas (14) – (16), which were obtained in analytical cal-
culations, allow one to generalise the results found previously 
in the analysis of the steady-state solution at the bifurcation 
point of equations (8), (9). The equations have two differences 
associated with the transition to periodic phase trajectories. 
The first difference consists in the fact that the effective feed-
back parameters (M1, c1), according to (16), are adjusted to the 
established regime of nonlinear oscillations, and the second 
consists in the fact that there arises a dependence of the repeti-
tion rate of oscillations on amplitude (14). 

For the Hopf bifurcations, the oscillation amplitude x1 = 0, 
so that formulas (14), (15) and (8), (9) are identical. This limit 
is interesting, because it explains the emergence of two types 
of bifurcations from the steady state in the regime of periodic 
oscillations. From equations (8), (9) in this case, we can derive 
a bicubic equation with respect to the frequency of developing 
oscillations: 

w2(w2 – wr2) (4M2 + wr2 – w2) 

	 = M2 [ wr2(sin c – R cos c) – 2w2 sin c ]2.	 (18)

The form of the cubic expression with respect to w2 in the 
left-hand side of the equation suggests that one of its roots is 
always negative (Fig. 4). The cubic equation can have either 
one or three real roots. Only in the latter case, we can expect 
the appearance of real oscillation frequencies (i.e., roots with 
w2 > 0). The existence of real roots corresponds to the Hopf 
bifurcation with zero oscillations. 

Equation (18) predicts the existence of a bifurcation that 
differs from the Hopf bifurcation when the system of equa-
tions (8), (9) turns inconsistent in the case of the real oscillation 

Table 1.  Parameters of nonlinear oscillations and effective feedback.

Parameter
	 Stable	 Unstable 

	 solution	 solution

Oscillation frequency w	 1.05wr	 1.67wr
Oscillation amplitude x1	 0.58	 2.9
Effective feedback ratio M1/M	 0.47	 1.7
Effective feedback phase c1 – c	 132.8°	 39°
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Figure 3.  Behaviour of the laser field amplitude behind the bifurcation 
point (a) and decaying relaxation oscillations to the steady-state mode 
before the bifurcation, w = 1.38wr (b). 
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0 1 2 x–1

Figure 4.  Illustration to the solution of equation (18) in the form y = p, 
p > 0 (dashed line) and y = x(x – x1)(x2 – x), where x = w2, x1 = w2r, 
x2 = w2r + 4M2 (solid curve). One root is always negative. 
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frequencies. Numerical studies describe these bifurcations as 
regimes with hard switching of the states. 

Using the catastrophe theory, we can find the parameters 
which cause a change in the type of bifurcation in the case 
of  a  loss of the steady-state generation stability. The cusp 
catastrophe occurs along the separatrix and leads to a phase 
transition in the dynamic behaviour of the laser on different 
sides of the line. Formulas (14), (15) allow one to analyse the 
regimes for which characteristic equations (8), (9) become 
inconsistent. The consistency of their counterparts – equa-
tions (14), (15) – is provided by adjusting the effective feedback 
factors M1, c1. Since there are two equations, we have two 
parameters to be estimated, namely, the oscillation frequency 
and amplitude x1. If the nonlinear solution lies on the stable 
orbit, then any perturbation either decays or neutrally stable. 
In fact, only one combination of modes cos(wt) and cos[w(t – 
td/2)] is stable if it is present in the spectrum of a nonlinear 
solution, while others disappear in time. On this basis, effective 
feedback factors (16) are calculated using parameters (17), 
obtained from the linear problem for the perturbations.

From expressions (14), (15) we can derive a purely algebraic 
equation that is similar to (18):

w2S–1(4M1
2 – S–1) 

	 = M1
2 [S–1(R cos c1 – sin c1) – w2(sin c1 + R cos c1)]2. 	(19)

If the definition of S [see (13)] takes into account the sec-
ond term in the series expansion, equation (19) will be the 
fifth-degree equations with respect to the square of the fre-
quency w2. Since according to (14), 0 G S–1 G 4M1

2, then 
the number of real solutions can be from zero to four; one 
root of w2 is always negative. The remaining roots appear 
in  pairs with one root of the pair satisfying the condition 
w sin (wtd) [S–1(R cos c1 – sin c1) – w2(sin c1 + R cos c1)] > 0. 
Thus, the analysis of (19) predicts the existence (from zero 
to two) of the desired real oscillation frequencies for system 
(14), (15). One of the possible roots lies in the vicinity of the 
frequency wr, and the other – the frequency wr/2 (period dou-
bling regime). 

5. Instability criterion 

To determine the character of the nonlinear solution stability, 
we will take advantage of a linear equation for perturba-
tions (4), using the parameters of the periodic orbit M1, c1, p. 
The stability of such nonlinear solutions is determined by the 
sign of increments of growth of perturbations of types dx = e gt 
and dy = ae gt along the phase trajectory. The parameters 
M1, c1, p correspond to solutions for the problem for the spec-
trum of harmonic perturbations, found from (14) – (16): 

f º G –1 + (M1/g)2 (e– gtd – 1)2  g(g + T –1)

	 – (M1/g) (e– gtd – 1) [G –1 (sin c1 – R cos c1)

	 + g(g + T –1) (sin c1 + R cos c1)] = 0,	 (20)

where G = S Jn
2(p) [(wr + nw)2 + g(g + T –1)]–1. 

In the general case, the roots are complex, and so the sta-
bility of the solution corresponds, obviously, to the absence 
of roots with a positive real part in this equation. We can 
verify this by calculating the integral over a closed loop (11), 

which includes the imaginary axis and closes in the right half-
plane around a circle of an infinitely large radius. 

Figures 5, 6 show the results [obtained by (14) – (16)] of the 
analysis of stability of two different solutions on the attractor 
near the bifurcation point from the steady state with M = 0.02 
and c = –209°. The solutions differ in the oscillation amplitude: 
in the first solution x1 = 0.58, and in the second x1 = 1.78. In 
the numerical integration, the nonlinear solution with a lower 
modulation and frequency of oscillations w = 1.05wr is imple-
mented (Fig. 5). In the vicinity of the effective feedback phase 
c1 = –76.2°, the number of roots with Re g > 0 is equal to zero; 
however, the boundary of the stability region lies in close 
proximity (c1 = –78°). In this interval, the hysteresis region is 
realised, i.e., two different types of solutions – both steady-
state and periodic – can be implemented. In the latter case, 
the  modulus of the effective feedback is half the feedback 
parameter M. Another solution (Fig. 6), obtained with the 
same feedback phase ( c = –209°), has no stability because of 
the appearance of the root with Re g > 0. The effective feed-
back factors are indicated in the figure captions. Let us pay 
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w = 1.05wr

Periodic solution

Steady-state solution

Figure 5.  Number of unstable roots of equation (20) with the parameters 
p = 0.53, M1 = 0.47M and c1 – c = 132.8° in the vicinity of c1 = –76.2°. 
The solution at the frequency w = 1.05wr is stable, because near the 
c1 = –76.2° the number of roots with Re g > 0 is zero (the instability 
emerges at c1 = –78°). The dashed line shows the stability region for an 
alternative steady-state solution. 
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Figure 6.  Number of unstable roots of equation (20) with the parame-
ters p = 0.96, M1 = 1.3M in the vicinity of c1 = –50.6°. The solution at 
the frequency w = 1.36wr is unstable, because near the c1 = –50.6° there 
already exists one root with Re g > 0.
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attention to the fact that they differ markedly from the feed-
back factor. If the feedback phase changes in the direction of 
the values c = –190°, we can find the period-doubling bifurca-
tion. In this case, along with the frequency w = wr there appear 
small oscillations at half the frequency.

6. Conclusions 

In this paper we have proposed a constructive solution to the 
stability problem at the point of transition to nonlinear peri-
odic solutions. Using the model Lang – Kobayashi equations, 
describing the dynamics of a diode laser with delayed optical 
feedback, we have demonstrated a new method for analysing 
nonlinear dynamic solutions. This approach is not associated 
with direct integration of dynamic equations, and therefore 
cannot cover transitional regimes; however, it may be useful for 
analysing both steady-state regimes and solutions on periodic 
attractors. In the analysis we have used the linearisation of 
original equations applied directly on a periodic phase tra
jectory. Formally, the equations belong to the class of linear 
equations with periodic coefficients and, according to the 
Lyapunov theory, are reducible to an equivalent system of 
ordinary differential equations. 

We have describes a method for finding the coefficients of 
the reduced system that is equivalent to the system of linear 
equations of the perturbation theory as applied to periodic 
regimes. In the first approximation, the dynamics can be 
described by one Lyapunov parameter through the introduc-
tion of the effective feedback factor. Formulas presented in 
this approximation make it possible to calculate the period of 
nonlinear oscillations and well describe the solution in the 
vicinity of the bifurcation destroying the steady-state stabil-
ity, even if it is not the Hopf bifurcation but a bifurcation in 
the anharmonic regime. In analysing bifurcations with a hard 
switching to a periodic attractor of finite size, we have obtained 
not only the dynamic characteristics of the possible regime 
but also studied their stability. The results of numerical inte-
gration of the dynamic equations are in good agreement with 
those obtained with the help of the Lyapunov method. 

The peculiarity of this approach is the reduction of dynamic 
equations with delay to the class of eigenvalue problems. The 
solution of the problem leads to algebraic transcendental equa-
tions. Despite the complicated form of the derived equations, 
the proposed method helps more fully explore the nature of 
possible nonlinear solutions, which exist in the given physical 
conditions. Beyond the bifurcation point, the method retains 
its validity but requires a more rigorous mathematical repre-
sentation with application of special functions. 

Appendix 

System (2) was obtained from (1) under the assumption that 
the intensity is given by the formula I (t, z) = |E (t, z)|2. Let us 
apply to system (2) the method of small perturbations to find 
the frequency spectrum. Because the functions depend on two 
variables, then the general form of the perturbation is deter-
mined by two increments: 

n, y µ exp( lt + hz) = exp [ l(t – z) + hz] 

	 = exp [ lt + (h – l)z].

In the laboratory coordinate system, the dependence on 
z  is periodic, and with account for the periodic conditions, 
(h – l)t2L = 2pki. We will consider the effect of the feedback as 
an external force. In the case of resonance with the spectrum 
of eigenoscillations, possible is the amplitude of oscillation 
modes corresponding to different longitudinal modes (with 
the index k). However, in view of the relation t2L << td, per-
turbations with h = l dominate, because other oscillations dif-
fer substantially in frequency. The spectrum of decaying eigen
oscillations of the system in the absence of delayed feedback 
is found from the analysis of the characteristic equation for 
system (2): 

l2 + l(T1
–1 + 2pik/t2L) + (2pik/t2L)T1

–1 + wr2 = 0.

In particular, when k = 0, the roots describe the usual 
relaxation oscillations with a frequency wr and slow decay: 
l = –(2T1)–1 ± i wr. Analysis of the roots of the characteristic 
equation at nonzero k and the appropriate choice of the sign 
leads to the expression 

l » –T1
–1 + i wr2 t2L/(2pk),

which allows one to specify the range of applicability of the 
zero-dimensional model. As is well known [1], the presence of 
delayed feedback leads to the development of oscillatory insta-
bilities at a characteristic frequency close to wr. Perturbations 
at the other eigenfrequencies decay. Moreover, the dynamics 
of the solution in the numerical calculations of complete 
model (1) is very similar to that found in the zero-dimensional 
model (i.e., when h = l). Thus, the behaviour of the one-di-
mensional model transforms into the behaviour of the zero-
dimensional model while we study the regular dynamics with 
a relatively simple spectrum. 

Controlling the system parameters, we can complicate the 
oscillation spectrum by performing a series of period-dou-
bling bifurcations. If as a result, there arise resonances with 
the frequencies of the characteristic equation at k H  1, which 
are close to wr2 t2L/(2pk), then the degeneracy is removed. Given 
that the transition to chaos occurs after a few period dou-
blings, it is expected that the regular dynamics corresponds 
to the degenerate case. That is, until the oscillation frequency 
w >> wr2 t2L /(2p) µ 1/T, oscillations corresponding to differ-
ent longitudinal modes of the internal cavity cannot be excited. 
Therefore, in the limit wT >> 1, when the characteristic fre-
quency of the arising oscillations far exceeds the inverse relax-
ation time of inversion, the dynamics of solutions of equa-
tions (2) will be close to the dynamics of the zero-dimensional 
model and the intensity distribution (inside the cavity) has no 
effect on the dynamics of oscillations excited by the delayed 
feedback. 
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