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Abstract.  A nonlinear Schrödinger equation with varying disper-
sion, nonlinearity and gain (or absorption) is studied for ultrashort 
optical pulses propagating in inhomogeneous optical fibres in the 
case of normal dispersion. Using the modified Hirota method and 
symbolic computation, the bilinear form and analytic soliton solu-
tion are derived. Stable bright and dark solitons are observed in the 
normal dispersion regime. A periodically varying soliton and com-
pressed soliton without any fluctuation are obtained. Combined and 
kink-shaped solitons are observed. Possibly applicable soliton control 
techniques, which are used to design dispersion-managed systems, 
are proposed. The proposed techniques may find applications in 
soliton management communication links, soliton compression and 
soliton control.

Keywords: symbolic computation, nonlinear Schrödinger equation, 
solitons. 

1. Introduction

Since the first theoretical [1] paper and experimental [2] work 
on solitons in the optical fibres, studies of the solitons have 
been attractive and active for their potential applications in 
the long-distance communication systems and all-optical 
ultrafast switching devices [3 – 6]. Solitons arising as a result 
of balance between the focusing-type nonlinearity and anom-
alous group velocity dispersion (GVD) of the pulses are called 
bright solitons [7] as they are in essence a kind of the localised 
nonlinear light. In turn, dark solitons resulting from the mutual 
compensation between the defocusing-type nonlinearity and 
normal GVD of the pulses appear as the localiased intensity 
dips against a finite carrier wave background [8].

Solitons can be used to encode digital optical data for high-
speed and long-distance communication systems [9]. However, 
when applying the soliton techniques to these systems, there 

arises a problem associated with the GVD distribution in the 
already installed optical fibres [10]. In this case, the dispersion 
management (DM) technique has been used to overcome the 
GVD distribution, thereby ensuring better transmission quality 
than a uniform GVD line [11]. However, this technique has its 
limitations, for example, the Gordon – Haus jitter [10], which 
is caused by the GVD [12]. Besides, it seems difficult to trans-
mit a single-channel high-speed signal over transoceanic dis-
tances because of the large nonlinear interaction between the 
adjacent solitons, which limits the transmission distance [13]. 
Hence, soliton control techniques have been proposed to 
extend the transmission capacity and distance [9, 14].

By using the soliton control technique, Nakazawa et al. [15] 
have succeeded in transmitting solitons over unlimited distances. 
Next, the active soliton control through synchronous regenera
tion by such modulators as the LiNbO3 Mach – Zehnder [16], 
Kerr fibre [17] and electroabsorption modulators [18] has been 
demonstrated [19], and an inline synchronous modulation 
technique for the DM transmission line composed of the dis-
persion shifted fibre (DSF) with the dispersion compensation 
(DC) has been proposed [20, 21]. With the inline synchronous 
modulation technique, a 40-Gbit s–1 soliton transmission experi
ment covering 70 000 km has been reported [20]. Besides, a 
similar technique has been used to stabilise the soliton energy 
in the wavelength-division multiplexing soliton transmission  
system with the DSF [22], and a modified soliton control 
method has been proposed and extended to a strong DM line 
composed of the standard (non-dispersion shifted) fibre with 
the DC [23]. Using that modified soliton control method, the 
40-Gbit s–1 return-to-zero pulses have been transmitted over 
more than 20 000 km through a DM line [23]. Moreover, a lin-
ear stability analysis of the DM solitons controlled by the 
inline narrow-band filters has been presented [24], and the 
spectral filtering technique has been employed for soliton con-
trol [25]. Furthermore, the authors of paper [26] have intro-
duced a novel approach to achieve completely nonlinear con-
trol of the process, and the predicted phenomena in Ref. [27] 
have offered different opportunities for soliton control. 
Recently, the stable control of the pulse time delay has been 
achieved by means of the resonance soliton solutions [28].

The above techniques are aimed at a search for a possible 
control of the bright soliton motion [29]. However, the bright 
soliton has a drawback: it fully utilises the line capacity because 
it is necessary to keep relatively large separation between the 
solitons in order to avoid the accumulation of bit errors [30]. 
In addition, the optical losses decrease the bright soliton 
intensity with increasing duration [30]. The influence of this 
effect on the dark soliton is much less than that on the bright 
soliton [30]. For the dark soliton, it appears as an intensity dip 
against a finite carrier wave background [29]. Compared with 

Symbolic computation of solitons in the normal dispersion regime 
of inhomogeneous optical fibres

Wen-Jun Liu, Bo Tian, Min Li, Yan Jiang, Qi-Xing Qu, Pan Wang, Kun Sun

Wen-Jun Liu, Min Li, Yan Jiang, Qi-Xing Qu, Pan Wang, Kun Sun   
School of Science, P.O. Box 122, Beijing University of Posts and 
Telecommunications, Beijing 100876, China;	
Bo Tian  School of Science, P.O. Box 122, Beijing University of Posts 
and Telecommunications, Beijing 100876, China; State Key Laboratory 
of Software Development Environment, Beijing University of 
Aeronautics and Astronautics, Beijing 100083, China; Key Laboratory 
of Information Photonics and Optical Communications (BUPT), 
Ministry of Education, P.O. Box 128, Beijing University of Posts and 
Telecommunications, Beijing 100876, China; 	
e-mail: tian.bupt@yahoo.com.cn	
	
Received 20 September 2010	
Kvantovaya Elektronika  41 (6) 545 – 551 (2011)	
Submitted in English

Solitons
PACS numbers: 42.81.Dp; 42.65.Tg

DOI: 10.1070/QE2011v041n06ABEH014437



	 Wen-Jun Liu, Bo Tian, Min Li, Yan Jiang, Qi-Xing Qu, Pan Wang, Kun Sun546

the bright soliton, the time jitter in the dark soliton is lower 
than in the corresponding bright one [31]. In view of its poten-
tial applications, the dark soliton has been the object of grow-
ing attention [32] and a review on the dark soliton has been 
given [3]. Besides, the dark soliton propagation in the nonlinear 
optical fibres has been analysed [29]. Furthermore, a soliton 
control system has been considered and the main features of 
the dark soliton have been presented in Ref. [33].

On the other hand, soliton control in the nonlinear inho-
mogeneous media is a subject of interest [26]. The nonlinear 
inhomogeneous media include the discrete and bulk media with 
such periodically varying coefficients as dispersion and non-
linearity [34], as well as the systems with the localised defects 
[35]. In the inhomogeneous optical fibres, the propagation of 
the optical solitons in the normal dispersion regime can be 
described by the nonlinear Schrödinger (NLS) equation [36]:
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where g(x), b(x) and g(x) are the functions of the normalised 
propagation distance x, which are related to amplification (or 
absorption), GVD and Kerr nonlinearity, respectively; u(x, t) 
is the complex envelope of the electric field (t is the normalised 
delay time, subscripts x and t denote partial derivatives). 
Equation (1) is said in Ref. [36] to be able to describe physical 
systems in nonlinear optics and condensed matter physics. In 
the optical context, it describes the evolution of the slowly 
varying envelope u(x, t) of an optical pulse propagating along 
the x axis in a fibre amplifier or compressor.

In the practical applications, Eqn (1) is of interest not only 
for the amplification and compression of optical solitons in 
inhomogeneous systems, but also for the stable transmission 
of the DM solitons [37]. However, we should note that ana-
lytical discussions of Eqn (1) about soliton control in inhomo-
geneous optical fibres in the normal dispersion regime (except 
Ref. [33]) are absent.

In this paper, we will study the soliton control in the inho-
mogeneous optical fibres and pursue two goals. First, based 
on symbolic computation, we will obtain a family of the 
analytic soliton solutions for Eqn (1) solved by the modified 
Hirota method; then, we will study the dynamics of the soli-
tons in the presence of the nonuniform dispersion, gain and 
nonlinearity analytically. Second, we will consider the GVD 
coefficients of Eqn (1) based on the dispersion profiles of the 
dispersion-decreasing fibre (DDF) earlier developed for the 
adiabatic soliton compression in the anomalous GVD regime 
(see Ref. [38]), which has not been studied in details yet, and 
discuss how to control the dark soliton in the inhomogeneous 
optical fibres. The structure of the present paper will be as 
follows. In Sec. 2: with the aid of symbolic computation, the 
bilinear form for Eqn (1) will be derived using the modified 
Hirota method. In Sec. 3: the fundamental soliton solution will 
be presented based on its bilinear form, and the analysis of the 
solitons via the obtained soliton solutions will performed. 
Finally, our conclusions will be given in Sec. 4.

2. Bilinear form for Eqn (1)

With symbolic computation [6, 39, 40], in the normal disper-
sion regime, we will present the bilinear form for Eqn (1) using 
the modified Hirota method. 

Let us introduce the dependent variable transformation [5] 
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where h(x, t) is a complex differentiable function; A(x)  and 
f(x, t) are both real parts. After some symbolic manipulations, 
we obtain the bilinear form for Eqn (1): 
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Here, l is a parameter to be determined and Hirota’s bilinear 
operators Dx and Dt [41, 42] are defined by
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Equations (3), (4) can be solved by introducing the following 
power series expansions for h and f:

h = h0(1 + eh1 + e2h2 + ...), 	 (6)

f = 1 + ef1 + e2f2 + ..., 	 (7)

where e is a formal expansion parameter. It is assumed that 
f1,  f2, ..., h1, h2, ... tend to zero at x ® –¥. Substituting expres-
sions (6), (7) into Eqns (3), (4) and equating coefficients of the 
same powers of e to zero we can obtain the recursion relations 
for fn(x, t) and hn(x, t) (n = 1, 2, ...).

3. Soliton solution for Eqn (1)

To obtain the fundamental soliton solution for Eqn (1), we 
assume that

h0 = meq,   h1 = –eJ,   f1 = meJ,	 (8)

where m is an arbitrary complex parameter; q = ia(x) + ibt and 
J = k(x) + wt + d with functions a(x) and k(x) to be determined; 
b, w, d and m are real constants. Substituting h(x, t) into the 
resulting set of linear partial differential equations, and after 
some calculations, we can get 
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and

, 0, , , , ,... .h f n0 2 3 4n nx t x t= = =^ ^ ^h h h

Here, mr  is the complex conjugate of m. Without loss of gener-
ality, we set e = 1. Thus, the one-soliton solution can be 
expressed as
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Expression (9) is the solution for a fundamental dark soliton, 
shown in Fig. 1a at g(x) = 0. The dark soliton is remarkably 
stable during its propagation. If we use the following fixed 
parameters: m = 1, d = 4, b(x) = 1, w = 2 and b = 0.5, than 
u(x, t) = tanh(bx + t + 2) and the soliton velocity depends on 
–1/b. Thus, the propagation velocity of the soliton can be 
affected through changing the value of b in Fig. 1a. The higher 
the value of b, the faster the soliton velocity. The nonlinear 
effects can cancel perfectly the GVD effects and neither the pulse 
shape nor the pulse spectrum changes along the optical fibre. 
Relevant issues can be found in Ref. [43].

The aforementioned is valid if g(x) = 0, i.e., the results 
shown in Fig. 1a describe the fundamental dark soliton in the 
absence of absorption/amplification. Consider now the 
behaviour of the soliton evolution when g(x) ¹ 0. Firstly, we 
assume that b = 0. When g(x) = –0.01x and all other parame-
ters are identical to those used in Fig. 1a, we obtain the bright 
soliton shown in Fig. 1b. The pulse width and the wave num-
ber of the bright soliton both remain constant during its prop-
agation along the optical fibres. The bright soliton can only 
be observed in the anomalous GVD regime [4]. To our knowl-
edge, the bright soliton for Eqn (1) in the normal GVD regime 
is first reported in this paper. 

At g(x) = –0.1 cos (2x), the soliton shown in Fig. 1b periodi-
cally oscillates with x (Fig. 2a). The rapidly moving solitons 
result in multiple intensity oscillations (Fig. 2b). These oscil-
lations become more pronounced, and the number and the 
amplitude of oscillations increase with increasing parameter 
g(x). Therefore, the amplitude and period of the soliton can 
be controlled by changing g(x), namely: the larger the coeffi-
cient and period of g(x), the stronger the soliton amplitude 
and period. Besides, the soliton amplitude increases with the 
propagation distance. This may find applications in the soli-
ton management communication links where the fibre absorp-
tion is compensated periodically by an amplification system. 
In fact, the form of g(x) can be used to generate other types of 
solitons (see Figs 3 – 5). 

Figure 3 shows the intensity profile for the bright soliton 
in the normal GVD regime. As can be deduced, a clean sech-
shaped soliton is generated in that regime. The two solitons 
(Figs 1b and 3a) have almost the same power but different full 
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Figure 1.  (a) Stable propagation of the dark solitons with b = 0.5 and 
g(x) = 0 and (b) the bright soliton with b = 0 and g(x) = –0.01x in the 
nonlinear optical fibres with m = 1, d = 4, w = 2 and b(x) = 1. 
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Figure 2.  (a) Periodic oscillations of the soliton intensity as a function 
of the fibre absorption loss modulation g(x). The parameters adopted 
here are m = 1, d = 4, b(x) = 1, w = 2, b = 0 and g(x) = –0.1 cos (2x). 
(b) Cross section plot of (a).
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width at half maximum. Note that the soliton has a sech-
shaped profile and is totally smooth under the condition b = 0. 
If b ¹ 0, the soliton envelope will exhibit fluctuations. This 

property might be useful for the soliton compression and 
pulse clean-up application.

If g(x) = –sech(x), the absorption drastically affects the 
soliton properties. The representative example of the intensity 
profile for the soliton is depicted in Fig. 4, which shows a 
combined soliton. One can see from Fig. 4 that the correspond-
ing profiles can be considered as a combination of a bright 
and dark soliton. Besides, the amplitude of the solitons can be 
controlled by changing the parameters of g(x). Interestingly, the 
combined soliton can be transmitted over unlimited distances 
without any distortion. This may find potential applications 
in the optical communication systems which produce bright 
and dark solitons simultaneously. When g(x) = –0.01 exp (x), 
the combined soliton (Fig. 4) turns into the kink-shaped soli-
ton (Fig. 5a). To our knowledge, the kink-shaped solitons for 
Eqn (1) have not been reported earlier.

Figure 6 shows the evolution of the fundamental dark 
soliton in an optical fibre with x-dependent GVD but con-
stant values of g(x) = 0 for the specific case b(x) = 0.1x. The 
figure illustrates the parabolic-type evolution of the soliton 
and describes the non-travelling-wave features of the soliton 
with variable propagation velocities. We hope that these phe-
nomena could be observed in the future nonlinear optics 
experiments. 

Figure 7 displays another situation of the soliton pro
pagation in the homogeneous optical fibre, when the GVD 
profile of the inhomogeneous optical fibre is linear (b(x) = 
|18 + 18(18–1 – 1)x |), and the soliton undergoes a fascinating 
change in its velocity. With changing the parameters of b(x), 
the influence of the soliton velocity in the inhomogeneous 
optical fibre can be simultaneously enhanced. This phenomenon 
can prove important for the control of the evolution and propa
gation of the solitons in a real optical communication system.
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Figure 3.  (a) Stable propagation of the bright soliton in the nonlinear 
optical fibres with m = 1, d = 4, b(x) = 1, w = 2, b = 0 and g(x) = –0.5 tanh (x), 
(b) comparison of the intensity profile of the solitons at g(x) = –0.01x 
(solid curve) and g(x) = –0.5 tanh (x) (dashed curve). 
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Figure 4.  (a) Combined soliton with the parameters similar to those given 
in Fig. 3, but with g(x) = –sech(x), (b) cross section plot of (a).
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Figure 5.  (a) Intensity profile of the kink-shaped soliton with the param-
eters m = 1, d = 4, b(x) = 1, w = 2, g(x) = –0.01x and b = 0, (b) cross 
section plot of (a).
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Figure 6.  (a) Nonlinear evolution behaviour of the dark soliton given by 
Eqn (1) at b(x) = 0.1x. The parameters adopted are: m = 1, d = 4, g(x) = 1, 
w = 2 and b = 0.5, (b) contour plot of (a).
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Figure 7.  (a) Nonlinear evolution behaviour of the dark soliton given 
by Eqn (1) with parameters similar to those given in Fig. 6, but with 
b(x) = |18 + 18(18–1 – 1)x|, (b) contour plot of (a).

–6

–3

0

0

t

–2

2

6

x

x

1

–9 –3–6 30 t

–6

0

6

3

–3

|u|2

a

b

Figure 8.  (a) Nonlinear evolution behaviour of the dark soliton given 
by Eqn (1) with parameters to similar those given in Fig. 6, but with 
b = |cos[cos–1(18–1)x]|, (b) contour plot of (a).

–7

–2

3

t

–1.5

0

0

1.5

x

1

–8 0 4–4 8 t

–2

–4

0

2

x

|u|2

a

b

Figure 9.  (a) Nonlinear evolution behaviour of the dark soliton given 
by Eqn (1) with parameters similar to those given in Fig. 6, but with 
b(x) =|–18 exp[–log(18)x2]|, (b) contour plot of (a).
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If b(x) is a periodic function, namely, b = |cos[cos–1(18–1)x]|, 
i.e., the dispersion profile of the inhomogeneous optical fibre 
is determined by the cosine, the dark soliton evolves in a peri-
odic one. Figure 8 depicts the soliton whose structure oscil-
lates periodically. One can clearly see from this figure that the 
soliton velocity changes during its propagation due to the 
variation in the dispersion profile of the inhomogeneous opti-
cal fibre. Using this type of an optical fibre, we may generate 
the periodic soliton in the soliton management system. Thus, 
we can conclude that we are able to control the velocity of the 
solitons by means of the function forms of b(x) in the optical 
soliton communication systems. 

When the dispersion profile of the optical fibres is Gaussian 
b(x) = |–18 exp[–log(18)x2]|, an S-shaped soliton is produced 
(Fig. 9a). On the contrary, the accelerated soliton structure is 
achieved (Fig. 10a) when b(x) = exp x + exp (–x). These results 
indicate that we can control the soliton velocity using the 
optical fibres with the different dispersion profiles.

Figure 11 presents the evolution of a stable dark soliton 
with the accelerated structure when the dispersion profile of 
the optical fibres is exponential. The position of the funda-
mental soliton shifts because the variable GVD is imposed on 
it. The velocity and time shift of the soliton vary with the 
GVD distribution while the soliton width decreases and the 
dark soliton keeps its shape. A noteworthy feature is that the 
trajectory of the pulse centre does not follow a straight line 
that is the case in Fig. 1a. This can be explained if we turn to 
the expression u(x, t) = tanh[ òb(x)dx + t + 2]. This property 
implies that we can control solitons by controlling the GVD 
in the soliton management system.

4. Conclusions

To model the propagation of ultrashort optical pulses in 
inhomogeneous optical fibres in the normal dispersion regime, 
we have considered Eqn (1) with varying dispersion, nonlin-
earity and gain (or absorption). With the aid of symbolic 
computation, we have carried out our study from an analytic 
viewpoint. Directly applying the modified Hirota method, we 
have presented the bilinear form for Eqn (1). Based on the 
bilinear form, the analytic soliton solution has been generated. 
Of physical and optical interests, relevant properties of the 
soliton solution have been analysed and graphically discussed 
in details depending on the values of the parameters. Not only 
the dark soliton but also the bright has been observed in the 
normal GVD regime. To our knowledge, the bright soliton 
for Eqn (1) in the normal GVD regime is reported for the first 
time in this paper. 

Moreover, we have shown that rapidly moving solitons 
develop the multiple intensity oscillations which become more 
pronounced with increasing the parameters of g(x), which has 
the potential applications to the soliton management commu-
nication links where the fibre absorption loss is compensated 
periodically by an amplification system. Furthermore, we have 
derived the compressed soliton without any fluctuation for 
such a system under the condition b = 0. This property might 
be useful for the soliton compression and pulse clean-up appli-
cation. Through changing the value of g(x), the combined and 
kink-shaped solitons have been observed. Finally, using dif-
ferent GVD coefficients b(x) describing the dispersion profiles 
of the DDF, we have found that the DDF profiles can be used 
to control the soliton velocity under certain conditions. The 
obtained results have certain applications in producing the 
bright and dark solitons simultaneously and may be meaningful 
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Figure 10.  (a) Nonlinear evolution behaviour of the dark soliton given 
by Eqn (1) with parameters similar to those given in Fig. 6, but with 
b(x) = exp x + exp (–x), (b) contour plot of (a).
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Figure 11.  (a) Nonlinear evolution behaviour of the dark soliton given 
by Eqn (1) with parameters similar to those given in Fig. 6, but with 
b(x) = exp(0.2x), (b) contour plot of (a).
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and irradiative to manage the evolution and propagation of 
the solitons in the real optical communication systems.
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