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Interaction of femtosecond pulses of p-polarised radiation

with a rapidly heated metal

S.G. Bezhanov, A.P. Kanavin, S.A. Uryupin

Abstract.  The effects of rapid nonuniform heating of
electrons on reflection of a p-polarised pulse from the metal
are quantitatively described. Under conditions of normal and
high-frequency skin effects, the absorption coefficient and
phase shift of the reflected wave are calculated numerically
upon irradiation of a gold target.
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1. Introduction

In modern experiments on interaction of femtosecond laser
pulses with metals, the conditions under which the lattice
remains relatively cold during the pulse action and electrons
are heated during the time shorter than the time of heat
removal from the skin layer, are relatively simply realised
(see, for example, [1—6]). Under these conditions, the time-
varying electron temperature 7,(z, ?) is significantly nonuni-
form in the skin layer and significantly exceeds the lattice
temperature Tj,(z,?). The nonuniformity of the electron
temperature leads to nonuniformities in the electron
collision frequency v(z,¢) and dielectric constant &(z,¢) of
a metal. The dependence of ¢ on the coordinates
necessitates the revision of the optical properties of a
metal, the description of which is usually based on the use
of the Fresnel formulas [7]. In the case when the electron
collision frequency v is small compared with the laser
frequency , the nonuniform part of the dielectric constant
is less homogeneous and the perturbation theory can be
used to construct an analytical solution of reflection and
penetration of the field in the metal. This approximate
description of the absorption coefficient and phase shift of
the reflected wave is given in [8, 9].

However, opposite conditions are possible in the experi-
ment: the electron collision frequency v is comparable to the
radiation frequency and can be even higher. For example, in
the optical frequency range it takes place at an electron
temperature of ~ 1 ¢V, while in the IR frequency range — at
a much lower temperature. In this paper we consider the
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optical properties of a metal whose electrons are rapidly
heated to a temperature at which vz w. We study the typical
experimental conditions, when the metal is irradiated by two
laser pulses at the same fundamental frequency. It is
assumed that the heating pulse is normally incident on a
metal surface, and a weaker probe p-polarised pulse
propagates at an angle 0 to the normal. The electron
and lattice temperatures are determined from the system
of equations, which takes into account the nonuniform
heating of the metal when the heating pulse energy is
absorbed in the skin layer. In this case, the field equation
takes into account the dependence of the dielectric constant
¢ on the coordinates arising due to the nonuniform heating
of the electrons and lattice. The influence of metal heating
resulting from absorption of a weak probe p-polarised pulse
in the metal, is neglected. The field produced by a p-
polarised pulse in the metal is also determined from
Maxwell’s equations, which take into account nonuniform-
ity of . Then, the absorption coefficient 4, and the phase
shift ¢, of the reflected p-polarised wave are found.

The complex reflection coefficient is calculated numeri-
cally for a gold target. It is shown that when the target is
irradiated by a Cr:forsterite laser, the method of analytic
description proposed in [9] yields values of 4, close to the
results of numerical calculations. In contrast, when exposed
to a CO, laser, the established change in 4, with time
cannot be described either by approximate analytical
formulas [9] or Fresnel formulas. Similar results were
obtained for the phase shift ¢, of the reflected wave.
The account for the nonuniformity of ¢ in the skin layer
in describing the reflection of pulsed p-polarised radiation is
as important as the reflection of s-polarised radiation [10].

2. Metal in a heating field

To describe the response of a metal to the effect of laser
radiation with a frequency @ under conditions of a high-
frequency skin effect, the dielectric constant can be
represented in the form
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where ¢, = ¢y + gy is the contribution of bound electrons
and the lattice; ), is the plasma frequency. Note that in the
case of a high-frequency skin effect, the electron mean free
path is small compared with the thickness of the skin layer.
Such an approximation of the dielectric constant is also
possible in a normal skin effect. However, in this case, an
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expression that defines the static conductivity of the metal
should be used for v. In pure normal metals, the electron
collision frequency v in formula (1) is equal to the sum of
the frequencies of collisions between electrons and phonons
and electron—electron collisions, accompanied by the
umklapp processes. At lattice temperatures T7j,, higher
than the Debye temperature @®p, the electron—phonon
collision frequency v, is proportional to 7j,. When the
thermal energy of electrons kg7, is smaller than the Fermi
energy &p, the electron—electron collision frequency v is a
quadratic function of the electron temperature [11]. Thus,

Tlat a k]% Te2
TO Tie F
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Ty > Op, kpT, <ep,

where kg is the Boltzmann constant; 7 is Planck’s constant;
a is a numerical coefficient depending on the band structure
of the metal; and T, the initial temperature of the metal.

According to the above relations, dielectric constant (1)
is nonuniform due to the nonuniformity of the collision
frequency v (2). Nonuniformity of v results from nonun-
iformities of the lattice (7},;) and electron (7,) temperatures,
arising due to the relatively rapid heating of electrons and
the lattice upon absorption of a femtosecond laser pulse in
the skin layer. For typical metals, the time of the energy
transfer from electrons to the lattice is several picoseconds;
therefore, the lattice temperature remains smaller than the
electron temperature during the entire action of the femto-
second pulse. To describe such a nonequilibrium state, use is
made of a system of equations for the temperatures of
electrons and the lattice. The equation for the temperature
of electrons takes into account their heating due to
absorption in the skin layer of the field produced by the
heating pulse, cooling due to the transfer of energy to the
lattice and the change in their temperature due to heat
transfer from the skin layer into the metal [12]:

oT. 0 (, 0. g v 2
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where C, = Cy(z, 1) = n>Nkj T,./(2¢g) is the heat capacity of
electrons with the concentration N; A= A(z,1) = C,vf x
[3v;(z, t)]f1 is the thermal conductivity coefficient; E, =
E,(z,t) is the complex amplitude of the absorbed field
strength; G is the coupling constant of electrons to the
lattice; vg is the Fermi velocity; v,(z,7) is the electron
collision frequency, which determines A. Effective frequen-
cies of electron—phonon and electron —electron collisions in
v, differ from those which determine the conductivity, but
have the same temperature dependence:

Ty, k§T?
V)= Vep).(TO)%+h ;?T;,
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where a # b. Note that in a simplified expression for the
absorbed power in equation (3), at v < w we should use for
v a quantity, which determines the high-frequency con-
ductivity, and at v > o — the quantity, which determines the
static conductivity. A change in the temperature of the
lattice is described by the equation [13], which takes into

account its heating during the energy transfer from
electrons:

- Tlat)a (5)

where Cy,; is the heat capacity of the lattice, for which the
estimate Cy, ~ 3kgN, is possible at T}, > Op; N, is the
concentration of lattice atoms. The lattice temperature is
small compared with the melting temperature. The field in
the metal is found from Maxwell’s equations, which take
into account the nonuniformity of the dielectric constant of
the metal (1). For the field amplitude E; slowly varying in
time 2n/w, we have the equation

d’E,

02 +k%E, =0, z>0 (6)

with the boundary conditions

1 dE;,
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where k = w/c; c is the speed of light; Ep,,,(¢) is the real
field strength amplitude, which varies only slightly during
the time 2m/w and is related to the flux density of the
heating pulse lpump(t):(c/8n)E§ump(z)‘ Note that small
derivatives E; over time are omitted in (6) and (7). The
equations presented in this section form the basis for
describing the behaviour of characteristics of a nonequili-
brium metal in a heating electromagnetic field. It is assumed
that the electron energy distribution can be approximated
by the Fermi distribution, but with a temperature higher
than the lattice temperature, and the concept of the lattice
temperature is meaningful. The influence of electron
emission is neglected, assuming that the electron temper-
ature is much smaller than the work function.

= 2Epump(t)> Eh(Z - 00, t) =0, (7)

3. Interaction of p-polarised radiation pulses

The structure of the field produced by a probe laser pulse
depends on its polarisation. Consider the interaction of a
laser pulse of p-polarised probe electromagnetic radiation
with the metal heated by the pump pulse and occupying the
half-space z > 0.

The magnetic field of the p-polarised wave has the form

% B; exp(—iwt + ikyr) +c.c., z <0, ®)
where B; = (0, B;,0) changes weakly over time 2n/w; k; =
k(sin 8,0, cos 0); 0 is the angle between the vector k; and the
axis z (Fig. 1). The wave (8) is reflected from the surface
z =0 and penetrates into the metal. The field of the wave
reflected in the direction k, (|k;| = |k.| = k) has the form

1 . . . .
3 B, exp(—iwt + ikxsin 0 — ikzcos0) +c.c., z<0, (9)

where B, = R,B;; R, is the complex reflection coefficient.
The field in the metal is expressed as

1 . o
= Bexp(—iowt +ikxsinf) +c.c, z> 0,

: (10)
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1 . o
= Eexp(—iwf + ikxsinf) +c.c, z>0,

> (11)

where

B =(0,B(z,1),0) = (0, B,0);

E = ((ike) 'dB/dz,0, —Bsin 0/e).

Functions E, B,, B vary weakly over time 2n/w, due to a
change in B; and dielectric constant (1) that evolves during
heating and cooling of electrons and the lattice. In
accordance with Maxwell’s equations, the distribution
B(z,t) in a metal is described by the equation

d /1dB 5 sin” 6
— (2= 1 =
dz(e dz>+ ( €

The electric and magnetic fields are continuous on the
surface z = 0:

)B:O, z>0. (12)

1 dB
BicosO(1 — R,) = e de o (13)
Bi(14+R,) =B(z=0,1). (14)

From (13), (14) we find the boundary condition on the
metal surface

1 dB
(%5—5—30030)‘:0 = 2B;cost (15)
and the complex reflection coefficient
B(z=0,1 .
R, = -1 +T) = rpexp(ip,), (16)
where r, is the absolute quantity of the reflection

coefficient; ¢, is the phase shift of the reflected wave.
The quantity 7, is related to the absorption coefficient A:
2
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Figure 1. Scheme of interaction of pulses with a metal.

In equation (12) the dielectric constant varies with time
due to electron heating by the heating pulse. Therefore, B
and the complex reflection coefficient (16) also vary with
time. To establish the time dependence of the dielectric
constant &, it is necessary to solve jointly the equations for
the temperatures (3), (5) and for the field E}, (6) produced by
the heating pulse. Next, using the function &, we determine
from equation (12) the field B, the absorption coefficient and
phase shift of the reflected probe wave.

In the case of v € w, equation (12) admits an approx-
imate analytic solution. In this case, with an accuracy up to
terms of the second order of smallness in v/w, for the
dielectric constant (1) we have

&~ ¢ + 0¢g; + ey, (17)
where
2 2 2 2
w v Vo
_ ! p. N p. _ p
&l =&)y——, & =¢§ +—3, 681— 7 - (18)
w w w

In this approximation, following paper [9], we find from
(12)—(16) the absorption coefficient

2cos b 2sin0 — ¢
A, = ] (&2)

\V/sin20 — ¢, &fcos? 0 — & +sin” 0

and the phase shift of the reflected wave

(19)

tan g, = 2¢; cos 04/sin? 0 — ¢,
P\ gfcos?0—sin? 0+ ¢
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In formulas (19), (20), we used the following notations:

) =3 amm@en(-%). e
(56, = %J:o dzde, (=) exp (— 27;) , 22)
& =3 aen ()20

:%J:O dzexp (-27;) HO dz/s2(z/)r, 23)
6 =5 @i e (— g) (24)

where d is the effective depth of penetration of a p-polarised
wave [(kd) > =sin? 0 — g > 0].

Note that relation (20) follows from formula (42) [9], if
in simplifying the latter for the function 5(z) from [9], use is
made of expression (34) [9] in which a minus sign instead of
a plus sign is in front of the third term containing derivatives
8¢1(z) and &5(z). Correction of the sign in formula (34) from
paper [9] leads to a change in expression (50) from [9],
obtained under the assumption that in equation (3) we can
neglect heat removal from the skin layer and the transfer of
energy from the electrons to the lattice. Under these
conditions, when @ > v and kd < 1, we have from (2),
(3) and (7) [9]
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i -eolon(3)

16ad*w,
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(25)
J de'1(t").

Taking into account relations (18) and (25), we find from
21)-(24)

(e2) = e2(To) (%~ 1), () = 3(To) 5 (7 — 1),

(301) = 801 (Ty) 5 (¢ — 1) (6)

@h=éﬂ@§r@@”—&x

oaJy X

where &(7T,) and 8¢ (T,) are the values of & and 8¢, at
temperature Tj. Substituting expressions (26) into (20), we
arrive at a modified formula (50) from [9]. In this case,
Fig. 3 from paper [9] also changes. However, these
quantitative changes do not affect the main statement in
[9] about the inapplicability of Fresnel formulas under
conditions of nonuniform heating of electrons in the skin
layer.

4. Physical parameters of gold

To further describe the interaction of femtosecond pulses
with a target made of gold, we will give data from some
experiments and reference books. According to [14], the
density N of conduction electrons with the effective mass
m=0.91x 107 g [15]is 5.9 x 10*2 cm 3. In this case, the
Fermi energy F=5.5¢eV, the Fermi velocity vgp ~ 1.4x
10* cm s™' [16], and the plasma frequency wp, = 1.37x
10" s7'. At room temperature, 7, = 300 K, the frequencies
of collisions between electrons and phonons, v,(7)) ~
0.93 x 10" s7" [15] and vep(Ty) ~ 3.7 x 107 57" [17], are
significantly higher than the frequencies of electron—elec-
tron collisions. The heat capacity of the lattice is Cp, >~
2.5x 107 erg K™' cm™ [18], and the electron—lattice cou-
pling constant is G ~ 3.5 x 10! W K~! em 2 [19].

According to [10], the calculations of the phase shift of
the reflected wave and the absorption coefficient are very
sensitive to the value g, = g + ig). To determine &) and &,
we use the experimental data [15] obtained at w > v. It
follows from relation (1) that

2 2
o O g, Voo,
A B il L e ] 7

Paper [15] lists the values of the real and imaginary parts of
the refractive index ny + iky = /¢ measured for gold with
99.99 % purity at room temperature. For the real and
imaginary parts of the dielectric constant, determined by
the lattice and bound electrons, we have the expressions

2

36:”%—/(%4‘@27_:_)‘)2, (28)

w

2
(VL . (29)

o(w® +v?)
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The results of calculations by formulas (28) and (29) are
shown in Fig. 2. It should be noted that in [15] the
experimental data are presented in the wavelength range
0.8—8 um. This allows for relatively accurate calculations
under the irradiation of gold by a ~ 1.25-um Cr : forsterite
laser. For longer wavelengths the data are not available.
However, at w%, > w? +v? the contribution of ¢ to the
dielectric constant (1) is small. The latter makes it possible,
in particular, to discuss the impact of IR radiation on gold,
without sufficient information about the value of ¢.

’ "
€0, &0
12

L S 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 oflo¥s!

Figure 2. Frequency dependence of the real (¢)) and imaginary (g() parts
of the dielectric constant &, of gold.

5. Results of numerical calculations

Let us dwell on the numerical solution of the equations for
fields and temperatures when the metal is irradiated by the
pump pulse whose radiation flux density varies with time
according to the law Iy, (1) = Iymp €Xp (—tZ/tg), and the
parameter f, is related to the pulse duration t,, as
determined by FWHM of the function Iy,,,(7), by the
expression 1, = 2¢,In2. Figures 3—5 shows results of the
numerical solutions of equations (3), (5), (6) and (12)
corresponding to the effect of such a pulse. The calculation
was performed for the heating pulse of a Cr: forsterite laser
with the frequency o = 1.5 x 10" s™'. The heating pulse
parameters were as follows: Iymp = 10 W em ™2, ty =
18 fs (1, =30 fs). A probe pulse of the same laser is
incident on the metal at an angle 0 = n/4 to the normal.
For gold, according to Fig. 2, we have g) ~ 11, & ~ 1.17.
In accordance with the results of paper [12], we have chosen
the constants « = 1, b = 2. The initial temperatures of the
lattice and electrons are considered equal: T,(z,t — —o0)
= Tiu(z, t — —o0) = Ty = 300 K.

Figure 3 shows the collision frequency as well as the
temperatures of electrons and the lattice on the metal
surface as functions of time. The electron temperature
increases to ~ 1.5 x 10* K and then decreases monotoni-
cally. At the same time interval, the lattice temperature
increases monotonically up to 330 K. In the course of the
pulse action the electron collision frequency changes mainly
due to changes in temperature. According to Fig. 3 the ratio
v/w is still relatively small, but increases six-fold compared
with the initial values. The resulting nonuniformity of the
dielectric constant leads to differences in the absorption
coefficient and phase shift of the reflected wave from their
values Apr and ¢pp calculated from the Fresnel formulas:
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Figure 3. Time evolution of the electron temperature 7, = T.(z =0, ¢)
on the surface of a metal during its heating by radiation of a Cr: for-
sterite laser. The insets show the time dependences of the lattice
temperature Ty, = Ty,(z = 0,7) and the frequency of collisions between
electrons v = v(z = 0, 7).

2kecos O

Ryp = —1 + 80
pE +kecosOJruc

= rpp exp(idpr),
(30)

ApF =1- ”I%Fa
where ¢ and k =k, — ik, = kV/sin?0 — ¢ are found using
the values of the temperature on the metal surface. Because
under these conditions the ratio v/w is small, the results of
the calculation can be described using approximate
relations (19)—(24).

Figure 4 shows the time dependences of the absorption
coefficient, corresponding to the numerical solution of
equations (3), (5), (6) and (12), to the calculation by Fresnel
formulas (30) and expression (19). According to Fig. 4 the
Fresnel formulas give a higher value of the absorption
coefficient (at a maximum absorption — by 60%). In
contrast to [8, 9], expression (18) for & contains a small
supplement &; to the imaginary part &,. At the initial stage
of heating, when v/w ~ 0.06, retention of &; improves the
accuracy of the A4, calculation by 20 %. At a peak temper-
ature v/w ~ 0.4 and the contribution of ¢; is 3 %. One can
see from Fig. 4 that the dotted curve corresponding to the
calculation by formula (19) almost merges with the solid

Ay, Ap/107" rad

0.16 - "

0.14 - d ~

0.12 ! S~
0.10
0.08
0.06
0.04
0.02

0
-50 25 0 25 50 75 t/fs

Figure 4. Time evolution of the absorption coefficient 4, and phase shift
A¢ of the reflected wave upon irradiation of a gold target by pulses from
a Cr: forsterite laser. Solid curves — the numerical solution of equations
(3), (5), (6) and (12); dashed curves — the calculation by Fresnel formulas
(30); dotted curves — the calculation by approximate formulas (19), (20).

curve illustrating the results of a more accurate numerical
calculation. Figure 4 also presents the calculations of the
phase shift A@(#) = ¢, (1) — ¢,(t — —o0) of the reflected
waves. One can see that formula (20) describes the phase
shift with sufficient accuracy. It can be used for processing
the experimental data, if —g > max[l, (&), (d¢)]. At
—&; > (&), expression (19) also yields good accuracy for
the absorption coefficient. These inequalities are fulfilled if
the radiation frequency w is much smaller than the electron
plasma frequency , but significantly higher than the
frequency of collisions. Note that in this frequency range,
small changes in the phase shift are very sensitive to the
accuracy of the quantities ¢} and ¢}. The latter should be
considered when analysing the experimental data on the
phase shift.

The inequality v < w may be violated. In particular, this
is possible when a femtosecond pulse from a CO, laser with
the frequency o ~ 1.8 x 10'* s™! interacts with a gold
target, thereby heating the electrons. In the process of
heating, there occurs a transition from the condition
v < w to the opposite one. At v < w relations (17), (18)
are valid for the dielectric constant, while at v > w we have
[cf. expression (1)]

2
e~¢gy+1 &.

v,

(3D

In accordance with the Wiedemann—Franz law, when
writing formulas (31) it is assumed that the conductivity
and thermal conductivity depend on the same collision
frequency v; (4). Since in transition from small to large
collision frequencies v, ~ v ~ @, then approximation for ¢
is possible

2 2
w w
&gy — P 4 P . (32)
2 2
w4+ vy, ol + ;)

Using relation (32), the form of the first term in the right-

hand side of equation (3) is modified. Now to describe the

heating due to absorption of the alternating field it is

necessary to use the expression
(Ds v |2

— ——|E 33
8nw2+vv;l|h (33)

Relations (32) (33) introduce the largest error at w? ~ vv;.
However, if the time interval in which W ~ vy, is much
smaller than the laser pulse duration, the effect of this error
on the dependences given below in the region v; >  is
largely weakened.

The collision frequencies v (2) and v, (4) entering
formulas (32), (33) depend on the parameters a and b.
This dependence manifests itself at electron temperatures
exceeding several thousand kelvins, when electron —electron
collisions make the main contribution to v (2) and v, (4).
Because the parameter b is known with insufficient accuracy,
in the case of electron heating and reflectance of CO, laser
radiation, calculations were performed for several b, close to
the value established in [12] in processing the experimental
data of paper [4].

The results of calculations of the evolution of the
temperatures, collision frequency, absorption coefficient
and phase shift of the reflected waves are given below
for the pulse duration #, = 60 fs and flux density /,;,, = 6x
10> W em 2. The characteristics of gold are the same as
above. Figure 5 shows the time dependences of temper-
atures of electrons and the lattice. They are qualitatively
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similar to those presented in Fig. 3. However, because the
radiation frequency of a CO, laser is approximately eight
times smaller than the radiation frequency of a Cr : forsterite
laser, the ratio ,/vv;/w in the process of electron heating
reaches the values that are higher than unity (Fig. 5). For
the maximum heating, \/%v; /0 ~ 4. At \/4V; 2 ©, approx-
imate formulas (19), (20) are inapplicable. The Fresnel
formulas are also inapplicable, because the medium is
inhomogeneous. In this connection, Fig. 6 shows only
the results of numerical calculations for a=1 and b =1,
1.5 and 2. The quantity « is defined in [12] from the data on
radiation absorption in gold [4] with greater accuracy than
b; therefore, the calculations are performed for a=1.
According to Fig. 6, the absorption coefficient the greater
the larger the parameter b. The dependence of A4, on b
manifests itself most strongly at relatively long times, when
the electron temperature decreases due to heat removal from
the skin layer. In contrast, at short times if » doubles, then
A, varies only slightly. In particular, the maximum values of
Ay, corresponding b = 1 and 2 differ only by 20 %. Relative
changes in the phase A¢(f) are more sensitive to changes in
b. One can see from Fig. 6 that a two-fold increase in b is
accompanied by an increase in A¢ in the maximum by about
2.5 times. Therefore, by measuring A¢, we can determine b
with relatively good accuracy if reliable data on other

T,/10* K |
1.8 1.2
1.6 L1
1.4
1.2
1.0
0.8
0.6
0.4
0.2

Tlal / TO 2

1.0
—200 0 200 /fs

oo~

1
2
3

1 1
200 0 200 t/fs
1 1 1

0
—-200 —100 O 100 200 300 400 t/fs

Figure 5. Time evolution of the electron temperature 7, = T.(z =0, ¢)
on the surface of a metal during its heating by radiation of a CO, laser
forb=2(1),1.5(2)and 1 (3). The insets show the time dependences of
the lattice temperature Ty, = Ti,(z = 0,7) and the characteristic fre-

quency of collisions between electrons /vv; = \/v(z = 0,1)v,(z = 0, 7).

A,, Ag /rad
0.06 -
0.0 I
2
.04
0.0 3
0.03
0.02
1
0.01 A 2
3
0 1 1 1 1 1 1
—-200 —100 0O 100 200 300 400 t/fs

Figure 6. Time evolution of the absorption coefficient A4, and the phase
shift A¢ of the reflected wave upon irradiation of a gold target by pulses
from a CO, laser forb=2(17),1.5(2)and 1 (3).

quantities is available. The parameter a, as in [12], is easier
to determine from the measurements of A4,. At the same
time, the description of A4, and A¢ should be naturally
based on the above description of the field structure in the
skin layer.

6. Conclusions

Thus, we have demonstrated the need for a consistent
description of the field distribution in the skin layer in the
study of reflection and absorption of radiation by the metal
whose electrons are heated nonuniformly upon absorption
of radiation of a femtosecond laser pulse. The nonun-
iformity of the dielectric constant resulting from the rapid
heating of the metal leads to significant changes both in the
absorption coefficient and phase shift of the reflected wave.
Given the relatively small heating of electrons previously
proposed in [9], an approximate analytic description of the
optical properties of the nonequilibrium metal is consistent
with a more precise numerical calculation. If the electron
heating leads to a strong nonuniformity of the dielectric
constant, then the description of the optical properties of
the nonequilibrium metal necessitates consistent numerical
calculations of the field as well as of electron and lattice
temperatures.
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