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On focusing of laser radiation with an axicon

|A.A. Malyutin|

Abstract. The influence of axially symmetric perturbations of
the intensity and phase of the laser beam on its focusing by
means of an axicon is considered. It is shown that such
perturbations give rise to variations in the radiation energy
density on the axicon axis with two periods, 4/y and Az/ A
where A is the period of perturbation of the laser beam
intensity, and y is the angle of convergence of the focused
beam.
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1. Introduction

Focusing a laser beam by an axicon aimed at formation of
high-intensity Bessel beams was first discussed in Ref. [1].
Later the work was carried out [2] aimed at producing a
continuous laser gas breakdown with the longitudinal linear
dimension much greater than the transverse one. However,
it was found that instead of homogeneous plasma along the
focon axis ‘a sequence of point-dashed breakdowns is
formed.” Observations of similar quasi-periodic plasma
structures, obtained using axicons, were reported also by
authors of other papers. A detailed review of these papers is
presented in Ref. [3].

At least two theoretical models were proposed to explain
this quasi-periodic structure of the plasma. In the first of
them a nonlinear process of radiation self-modulation in
diffraction-free laser beams in the plasma is considered [4],
while in the second one the spatial modulation of the
heating radiation due to the interference of the incident
light and the one reflected from the plasma boundary is
taken into account [5]. In the present paper we propose a
simpler explanation, mainly associated with the difference of
focusing properties of axicons and common lenses.

2. Focusing the laser radiation with an axicon

In the geometrical optics approximation, assuming the
angle of refraction o to be small, a certain ring element of
the beam with the radius r at the axicon entrance (Fig. 1)
may be associated with a point on the axicon axis with the
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coordinate L = r/[a(n — 1)] = r/y, where n is the refractive
index of the axicon material; o is the angle between the
generating lines of its surfaces; y is the angle of convergence
of the focused rays. Similarly, neglecting the diffraction, the
width dr of the ring zone may be associated with the
element dL = dr/y of the focal line at the axicon axis. The
amount of energy, falling on the element dL, is determined
by the beam energy density Q(r) in the corresponding ring
element: dE = 2nQ(r)rdr. It follows that if Q(r) = const and
the laser beam diameter is limited (r < w), then the axicon
on-axis energy density will be maximal at the point z; =
w/y, which, therefore, may be conventionally regarded as
the axicon focus. In the shadow zone, i.e., at z > zp, the
maximum of the radiation energy density is reached off the
axicon axis. For a Gaussian beam with Q(r) = Ax
exp (—2r2 / wg), after performing elementary calculations,
we find that the axicon focus lies at the point zg = wg/(2y).

dr

Figure 1. To the calculation of the radiation energy density on the axicon
axis.

The length of the focal spot along the axicon axis can
also be estimated within a purely geometrical approach.
Assuming that the boundaries of the focal spot correspond
to the decrease in the radiation energy density by 10 % of
the maximal value, for a Gaussian beam we obtain Azg =
0.32wg /7. For an axicon with o = 1°, n = 1.5 in the case of a
Gaussian beam with the radius wg = 1.1 cm this yields
Azg ~ 40 cm at zg ~ 62 cm. For a lens with the focal length
F =062 cm, the beam waist length (Rayleigh length) will
equal only 0.2 cm in this case.

The presented values of the position and the length of
the focal region of the axicon, calculated within the
approximation of geometrical optics, agree well with the
results of diffraction numerical calculation using the pro-
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Figure 2. The radiation energy density on the axicon axis for a Gaussian
beam (/) and a flat-top beam (2). The axicon and beam parameters are
given in the text.

gramme ‘Fresnel’ (Fig. 2) for a Gaussian beam with the
radius wg = 1.1 cm and a flat-top beam with the diameter
2w = 4 cm (the scale of smoothing at the edges is 0.1 cm).

The only aim of all above statements is to emphasise
that, while for an ordinary lens the field in the focal region is
determined by the field in the entire entrance aperture, for
an axicon the radiation energy density at each point along
the optical axis depends mainly on the field magnitude in the
corresponding ring zone. This fact allows one to make use of
the geometrical optics for calculating the vector field behind
the axicon as well [6]. Therefore, axially symmetric pertur-
bations of the intensity or phase of the laser beam,
introduced at the axicon entrance, can nothing to do but
affect the distribution of the radiation energy density along
its axis.

3. Axially symmetric perturbations
of the radiation intensity and phase

The diffraction calculations, the results of which are
presented in this Section, were performed for a laser
beam with flat top, having the diameter 2w =4 cm, the
smoothing at the edges with the scale 0.1 cm and the pulse
energy 1J at the radiation wavelength 1.06 um. The
calculations were carried out for a glass axicon with
n=15and a=1°

3.1 The influence of intensity modulations

The energy density at the axicon entrance was given by the
function

0(r) = ()| 1+ meos (7). (1)

where F(r) is the intensity distribution (assumed standard in
the ‘Fresnel’ programme) for a flat-top laser beam; m is the
intensity modulation depth; A(r) is the period of radial
perturbations, which in the case of diffraction by apertures
is usually variable. The calculation was carried out both for
the constant A(r)=A; =0.1cm and for A(r)=4, =
0.5(1 +r) (in cm). The value of m was chosen within the
interval 0.01-0.33.

The radiation energy density distribution along the z axis
of the axicon Q(z) at the period A; and m = 0.08 is shown in
Fig. 3a [curve (7)]. The distortions, caused by the input
beam intensity modulation, are more clearly reflected by the
quantity

40 _ 0() - Qu(2)

0" 0 @

where Qg(z) is the radiation energy density distribution
along the axicon axis for the unperturbed beam. The
dependence dQ(z)/Q, at constant A; and m = 0.08 is
shown in Fig. 3b, and for the variable period A, and
m =0.08 in Fig. 3c. In both cases the maximal relative
amplitude of oscillations with the period A(z) = A,,/y is
almost exactly equal to the modulation depth m. This
relation holds in the whole range of m values (0.01-0.33).
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Figure 3. The energy density at the axicon axis Q(z) in the presence of
axially symmetric perturbations of the intensity of the flat-top beam (a)
and its variation dQ(z)/Qy at m = 0.08 (b—d) for 4; = 0.1 cm (b, d),
Ay =0.5(1+7) (c), A=1054 [(1); b, c] and 2108 pm [(2); d].

Note, that the dependence in Fig. 3b, alongside with the
oscillations having the fundamental period A,/y, exhibits
also ancillary modulation of the radiation energy density
Q(z) with a somewhat greater period.

The expansion of an ideal Bessel beam in plane waves is
represented in the k-space by a ring with the wave vector
projection k., = (2n/A)cosy. For the beam having form (1)
in the absence of modulation on the axicon axis we have a
quasi-Bessel beam, whose expansion contains the harmonics
with the spatial frequencies, determined only by the aperture
shape. The diameter limitation and the sharpness of the
beam boundary in this case result in the broadening of the
spectrum k., not manifesting itself unless in the character of
fall-off of curve (/) in Fig. 2 at z~ 200 cm. The small
singularity near z =0 is explained by the impossibility to
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describe the vertex of the conical surface in the calculation
with finite discreteness”. The same problem arises in axicon
manufacturing [7].

Due to the periodic perturbation of the intensity (or
phase), two more beams appear behind the axicon with the
projections of the wave vectors k. = (2n/A)cos(y — 4/ A)
and k! = (2r/1)cos (y + A/ A) on the z axis. The interference
of the three beams with k., k., and k. gives rise to the
modulation on the axicon axis with the fundamental (A/y)
and ancillary (42 /) periods. At the calculation parameters,
corresponding to Fig. 3b, the ratio of these periods is
2/(yA;)=0.116.

The dependence of the ancillary modulation period upon
the radiation wavelength is demonstrated by Fig. 3d, which
illustrates the result of calculation at the laser radiation
wavelength two times greater [1/(yA4;) = 0.232] than in
Fig. 3b. To a certain extent, the ancillary interference period
manifests itself also in Fig. 3c at the variable period A,.

The variation in the wavelength allows the demonstra-
tion of one more essential difference in focusing radiation
using a lens and an axicon. As known, the maximal intensity
is proportional to 2 2 in the focus of a lens and to 4! in the
focus of an axicon (Fig. 3a). The principal maximum radius
in both cases is proportional to the wavelength. Therefore,
for a lens the amount of energy in the central maximum is
constant and equals ~ 86 %, while for an axicon it varies
proportionally to A.

3.2 Effect of phase modulations

The modulation of phase in our calculations was described
by a phase screen

o) =i ¥ cos ( AZ(’;) ) 3

where  is the difference between the maximal and the
minimal phase deviations expressed in wavelengths. The
quantity y was varied from 1/250 to 4/5. The dependences
Q(z) and dQ(z)/Q,, obtained in calculations, are com-
pletely analogous to those presented in Fig. 3. At the phase
modulation with the variable period 4, one can also trace
in the dependence Q(z) both the correspondence of the
period of the energy density modulation to that of the
perturbation and the interference effects (Figs 4a and b). In
this case in the chosen range of y the approximate equality
max (dQ/Qy) =~ 5.5¢ holds, i.e., the phase perturbations
Y = 2/5.5 at some z cause almost a 100% increase or
decrease in the energy density on the axicon axis in
comparison with the corresponding values of Q(2)
(Fig. 4a).

The calculation was also carried out at random fluctua-
tions of the phase within the beam aperture. The
dependence dQ(z)/Q, for phase fluctuations £1/20 and
the correlation radius 0.1 cm is shown in Fig. 4c. It is seen
that although the variations in the energy density with
respect to Qy(z) can be also observed in this case, they are
almost two orders of magnitude smaller than for analogous
axially symmetric perturbations.

Axially symmetric periodical perturbations essentially
change the radial distribution of the radiation energy
density on the axicon axis. While in the ideal case it is

*The calculation was performed on a discrete mesh with 2048 x 2048
points.
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Figure 4. The energy density at the axicon axis Q(z) at perturbations of
the phase i = 2/10 of a flat-top beam (a) and its variations dQ(z)/Qy
(b, ¢): axially symmetric perturbations with periods 4; = 0.1 cm (a) and
Ay =0.5(1 4 r) (b), as well a random perturbations with the correlation
radius 0.1 cm (c).

the Bessel function J, (Fig. 5a), in the presence of pertur-
bations the distributions Q(r) are not Bessel functions for
any z. Moreover, as shown in Figs 5b and c, they appear to
be different in the vicinity of maxima and minima of the
curve Q(z).

4. Discussion of the results

As follows from the performed calculations, the axially
symmetric perturbations of the intensity and phase of the
laser beam lead to the appearance of variations in the
radiation energy density on the axicon axis with two
periods, namely, the fundamental period (A/y) and the
ancillary one (A2 /2). In the laser gas-breakdown experi-
ments using the axicons [3] the presence of two periods
(differing nearly by an order of magnitude) in the structure
of spark plasma is also observed. Moreover, as mentioned
in Ref. [8], using the same axicon to focus the radiation in
different laser setups keeps the spark structure unchanged.
Since, as a rule, the intensity perturbations are associated
with the laser beam itself, it is hardly possible that they
could be responsible for the observed structure of the spark.
Taking the result of Ref. [8] into account, one can say the
same about the phase perturbations of the laser beams.
Thus, the observed structure of the laser spark is
possibly due to the phase perturbations, related to the
deformation of the conical surface of the axicon. The
type of this surface itself may give rise to axially symmetric
shape perturbations in the course of its manufacturing. Even
if these perturbations are nonperiodic, one can always
extract the fundamental modulation frequency or its har-
monics. As to the calculations, they show that even for
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Figure 5. Radiation energy density Q(r) in the vicinity of the axicon axis
without (a) and with (b, ¢) phase perturbations near the minimum (a, c)
and the maximum (b) of the function Q(z). In Figs 5a and b the maximal
values of Q(r) are not shown.

axially symmetric periodic phase perturbations ~1/10, i.e.,
for the precision of manufacturing and testing conventional
only for flat or spherical surfaces, the modulation of the
radiation energy density at the axis of the axicon may exceed
50 %.

5. Conclusions

The validity of the assumption made in the present paper
about the role of the axicon surface quality in the formation
of the spark structure, when focusing the beam with an
axicon, may be checked experimentally either by direct
measurements of the radiation energy density distribution
Q(z) or by studying the periodic structure arising in the
radial distribution Q(r). One may also compare the spark
structures, obtained for two wavelengths using the same
axicon. According to Refs [4, 5], the period of the spark
structure should vary as 1/y°. In our case (at least until
A > 1) one of the periods (A4/y) does not depend on the
radigltion wavelength, while the other one is equal to
~A/A
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