
Abstract. The phase part of the system of equations
describing two-wave mixing in a photorefractive strongly
inertial medium is studied analytically and numerically. It is
shown that the solution of the system of equations evolves
through a series of quasi-stationary states, and the system
switches between them due to a nonlinear wave. The velocity
and proéle of such a `switching wave' are completely
determined by these states, which is an indication of an
autowave process. The results show that the development of
four-wave mixing in a strongly illuminated photorefractive
medium is inevitably accompanied by intensity êuctuations.
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1. Introduction

We call the medium photorefractive if its refractive index
varies under the action of light. Conventionally, this term is
used if the refractive index varies slowly enough and it is
inappropriate to describe light propagation in the medium
by means of a phenomenological tensor of cubic suscept-
ibility neglecting the medium lagging. A reason for so slow
variations is usually an electron density redistribution in a
crystal, which results in arising a static electric éeld
modulating the refractive index. In the scale of nonlinear
optics, a photorefractive nonlinearity may have a giant
response time: in lithium niobate crystals doped with
copper or iron atoms, the characteristic Maxwellian time
tM may be seconds, hours, and even months [1, 2].

An analytical description of wave mixing in such media
is similar to that in a media with a conventional cubic
nonlinearity only in a stationary case. Nevertheless, even in
stationary conditions, an exact solution for an interaction of
three and more modes of electromagnetic radiation in a
nonlinear medium can only be obtained in speciéc cases
[3, 4]; hence, the solution is often limited to a numerical
calculation of the model behaviour.

A description of the dynamics of wave mixing neces-
sitates taking into account the non-instantaneity of the
medium response to the electromagnetic éeld, which con-

siderably complicates the problem. In this case, the system
of ordinary differential equations for slowly varying ampli-
tudes of éeld modes transfers to a system of partial
differential equations. From the mathematical point of
view, a similar problem arises in considering propagation
of limiting short light pulses in a nonlinear medium [5].

For the last 30 years, speciéc features of two-wave
mixing in photorefractive media were repeatedly studied
in various experimental conditions [4, 6 ë 11]. In a series of
experiments with photoinduced light scattering (PILS) it
was shown that at moderate intensity of light éelds the
eféciency of energy transfer from one light mode to another
increases gradually and monotonically [7]. However, at
increasing the light intensity, the eféciency of energy
exchange between modes êuctuates in a suféciently com-
plicated and unpredictable manner. For example, in [9], two
light beams with the intensities differing by three orders in
magnitude were mixed in a lithium niobate crystal doped
with copper atoms (it was placed in an electrolyte to
suppress surface éelds) and the intensity of the weak
beam behaved as shown in Fig. 1a. Numerous attempts
were taken to explain such êuctuations by electric discharges
arising inside a photorefractive crystal or by other parasitic
effects. However, a numerical investigation of two-wave
mixing in a photorefractive medium shows [12] that such
êuctuations arise even if noise sources are absent (see
Fig. 1b). This study is aimed at analytical investigation
of the mechanism of arising instabilities in such a system.

2. Phase subsystem dynamics

In the framework of the classical model for two-wave
mixing in a photorefractive medium the equations for mode
amplitudes in the mentioned experimental conditions have
the form [4, 10, 13, 14]:

qE1

qx
� igeE2;

qE2

qx
� ige �E1; (1)

tM
qE
qt
� e � gE1E

�
2 :

An interference of the two modes of the electromagnetic
éeld E1 and E2 results in that the refractive index is
modulated by an electrostatic éeld e, i.e., the volume
diffraction grating, on which the energy redistributes over
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the éeld modes, gradually increases. The factors g and tM
only determine the interaction scale and we will escape
those by making the substitution ~t � t=tM and ~x � gx. In
(1), g � b=s, where g � b=s is the medium conductance
and b is a component of the photovoltaic tensor [15, 16]
that is just responsible for arising photorefraction. Taking
into account that in the general case a photovoltaic tensor
has both real and imaginary parts we can write g � be id.

These combined equations neglect the dependence of the
photoconductance on coordinates (which is justiéed if the
intensity of one light beam is much greater than of the
other) and possible inêuence of the éelds of surface charges,
which arise if the crystal is in the `open' state [17].

In view of the energy conservation law jE1j2 � jE2j2 � I0
� const and indeéniteness of the total phase of the electro-
magnetic éeld, combined equations (1) present four real
equations, for which we have no method of solution. The
direction of energy transfer is determined by the phase
relationship for the electromagnetic éeld Ek �

����
Ik
p

e ijk and
electrostatic éeld e � Fe iw. In what follows, we will focus on
just the phase part of system (1). Let us separate the two
equations describing evolution of the phases j � j2 ÿ j1

and c � wÿ d:

ct � ÿA sin�c� j�;
(2)

jx � ÿB sin�c� jÿ a�;
where A � b

��������
I1I2

p
=F; B � F(I1 ÿ I2)=

��������
I1I2

p
; and the sub-

scripts are responsible for a partial derivative with respect
to the corresponding variable. The parameter a � p=2ÿ d,

which determines the relation between the imaginary and
real parts of photovoltaic tensor, is a substantial character-
istics of the photorefractive response. It is well known
[18, 19] that a stationary energy exchange is impossible on a
non-shifted diffraction grating, which arises in the case of a
real photovoltaic tensor (d � 0). On the other hand, in the
case of a purely imaginary photovoltaic tensor (d � p=2) or
diffusion mechanism of photorefraction, i.e., in the case of
the grating shifted by a quarter wavelength relative to the
interference pattern, combined equations (1) reduce to the
sin-Gordon equation with attenuation [12, 14]. We, how-
ever, will consider the general case of an arbitrary shift of
the diffraction grating 04a4 p=2.

Although the coefécients A and B, which are combi-
nations of amplitudes, are far from constant it is reasonable
to assume that the phase variations much faster change the
character of energy exchange qualitatively than the ampli-
tude variations do (except for a speciéc case of equal
intensities of the éeld modes). Hence, we may consider a
dynamics of system (2) in the approximation of constant
coefécients A and B. Below, we will show that the switching
autowave arises in such a system, which is partially similar
to the overthrow wave considered in 1937 in the pioneer
work by Kolmogorov, Petrovskii, and Piskunov [20]: the
form and shape of the autowave are only determined by the
states, between which the swtching occurs.

3. Quasi-stationary states and a switching wave

3.1 Quasi-stationary solution of combined equations (2)

At a 6� 0, the phases j and c cannot be constant
simultaneously in time and space. It is yet possible to
énd a solution for which the sum c� j � d is constant. By
integrating both equations (2) and comparing them with
each other, we obtain the form of such a solution, which we
will denote by subscript `q':

cq�x; t� � ÿAt sin d� Bx sin�dÿ a� � d� C;
(3)

jq�x; t� � At sin dÿ Bx sin�dÿ a� ÿ C:

The values constants d and C can be found from a
boundary or initial conditions. The phase difference for
modes of the electromagnetic éeld prior to entering the
crystal remains constant, which gives the boundary con-
dition j(0; t) � j0 � const, from which follows d1 � 0; p.
On the other hand, the initial phase of the diffraction
grating determines the initial condition
c(x; 0) � c0 � const, which entails d2 � a; pÿ a. Thus,
initially the solution is formed, which is constant with
respect to x and varies in time c2(x; t) � c0 ÿ At sin a,
j2(x; t) � d2 ÿ c(x; t). Then the solution is changed to the
stationary solution

j1�x; t� � j0 ÿ Bx sin a;
(4)

c1�x; t� � d1 ÿ j�x; t�:

One solution is changed to another through a passing
switching wave. In Fig. 2, the result of numerical calculation
of combined equations (2) is shown, which demonstrates
such a transition process.
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Figure 1. Two-wave mixing in a photorefractive medium: the experi-
mental intensity of a weak light beam versus time upon two-wave mixing
in a photorefractive crystal LiNbO3 :Cu [9] (the intensity of the strong
light beam is I � 20 mW) (a) and numerical solution of system (1) ë the
intensity of a signal light beam versus time and crystal length (the dashed
curve corresponds to Fig. 1a) [12] (b).
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3.2 Stability analysis

Prior to studying the switching wave, it is necessary to
specify which of two possible values for the constants d1
and d2 are realised. For this purpose, we will analyse
stability of solution (3). Let us introduce small deviations
c � cq � e and j � jq � r and linearise combined equa-
tions (2) with respect to them:

et � ÿA�e� r� cos d;
(5)

rx � ÿB�e� r� cos�dÿ a�:
Assuming a harmonic dependence of small deviations
e; r � exp (iotÿ ikx); we obtain

o � Ak cos d

B cos�dÿ a� ÿ ik
: (6)

From the stability condition we have Imo > 0, i.e., the
stable solutions are d1 � 0 and d2 � a.

3.3 Modiécation of the initial condition

As was shown, the stationary solution (4) is realised in
some time in a system, which corresponds to the boundary
condition j(0; t) � j0. But, if we make allowance for the
fact that the coefécient B, which plays the role of a spatial
scale for the system, is not, generally speaking, constant
then this solution cannot be considered complete. In
changing the coefécient B, the system leaves the stationary
state and a spatial distribution of the phase of an
electrostatic éeld c(x) will become a new initial condition
c(x; 0) � c0 � Boldx sin a � c0 � Bnewx sin g. To this initial

condition corresponds the quasi-stationary solution (3) with
the parameter d3 � a� g; p� aÿ g:

c3�x; t� � c0 � Bx sin gÿ At sin�g� a�;
(7)

j3�x; t� � d3 ÿ c�x; t�:
It is important that under the condition p=2ÿ a < g < p=2,
the solution is unstable at both values of the parameter d3.

Unstable character of the solution is revealed in that
several sharp oscillations periodically occur in the system,
then the system returns again to the previous state for a
certain time lapse. Then oscillations arise again and so on
until the switching wave reaches this particular place and
transfers the system into state (4). In Fig. 3, the results are
shown of a numerical solution of combined equations (2) for
this case, which reveal both the phase break resulting from
lost stability for the solution with d3 � a� g and the
switching wave.

3.4 Switching wave

Let us search for a switching wave in the form c� j �
f (xÿ Vt). Then from (2) follows the equation for the
function f:

Vf 0 � A sin fÿ BV sin� fÿ a� ÿ C: (8)

The wave velocity and constant C are determined by the
states with the parameters d1 and d3; between these states
the switching lim f (x)

x!ÿ1
� 0, lim f (x)

x!1
� a� g occurs:
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Figure 2. A numerical solution of system (2) at a � 0:2p ë the switching
between the quasi-stationary solutions j2 � c2 � d2 � a and j1 � c1

� d1 � 0: the switching wave at the instant t � 20, the arrow shows the
direction of switching wave propagation (a) and two-dimensional
dependence of sinj on time and coordinate (b).
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Figure 3. A numerical solution of system (2) at a � 0:2p, g � 0:48p ë the
switching between the quasi-stationary solutions j3 � c3 � d3 � a� g
and j1 � c1 � d1 � 0: the switching wave (0 < x < 15) and oscillation
caused by the instability (30 < x < 50) at the instant t � 3:3 min (a) and
two-dimensional dependence of sinj on time and coordinate (b).
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V � A cos

�
a� g
2

��
B cos

�
aÿ g
2

�
;

(9)
C � BV sin a:

By integrating (8) we obtain the shape of the switching
wave

f�x� � d3
2
� 2 arctan

�
tan

d3
4
tanh

�
4Bx tan

d3
2
sin a

��
: (10)

It is shown in Fig. 4 that this expression well describes a
shape of the switching waves obtained from a numerical
solution of combined equations (2) (see Figs 2a and 3a).

4. Conclusion

Thus, in the present study we investigated the subsystem of
equations (2), which describes evolution of the phase
difference of optical éelds j and the phase of electrostatic
éeld c in two-wave mixing in a photorefractive crystal. In
view of the results obtained, the solution for combined
equations (1) found numerically in [12] (see Fig. 1b) can be
written in the approximation of alternately changing phases
and amplitudes. At the initial stage, quasi-stationary phase
distribution (3) is formed with the parameters d2 � a,
which, after passing a switching wave, is changed to
solution (4). However, changes in the amplitudes of the
volume diffraction grating and electromagnetic éeld modes
force the coefécients A and B to change, which results in
forming solution (7) in the system. After a recurrent
switching wave passes, the latter solution is again changed
to solution (4) and so on. Additional êuctuations arise due
to instabilities, which develop in the quasi-stationary
conditions of type (7). This continues until the amplitude
distribution of the electrostatic éeld and light beams is
formed, which corresponds to the stationary solution of
combined equations (1) under the condition of constant
sum for the phases (c� j � d1 � 0):

A � 1;
(11)

B�x� � ÿI0b tanh�I0bx cos aÿ y0�;
where the initial phase y0 is determined by the boundary
condition for the relation between the intensities of

electromagnetic éeld modes at an input face of the crystal.
It is clear now, why êuctuations of the eféciency of energy
exchange are only observed at a suféciently high total
intensity of light beams: whereas the coefécient A
determining the time scale of the problem is actually
independent of I0, the coefécient B is proportional to the
total light intensity. In other words, the spatial scale of the
problem reduces at greater intensity I0, and the effective
length of a photorefractive crystal increases.

It worth noting that concurrently with the two-wave
mixing, PIRS may develop in a crystal thus absorbing a part
of the light intensity and affecting the phase of light beams.
However, if the intensity of the weak beam is well above that
of seed PIRS radiation [7, 9] then the two-wave mixing
develops faster and noisy holographic PIRS gratings cannot
compete with the grating, on which the two-wave mixing
occurs.

Hence, the investigation of phase subsystem (2) helps
explaining important features of the dynamics of two-wave
mixing in a photorefractive medium and demonstrates an
interesting mechanism of arising autowave solutions.
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Figure 4. Exact shape of the switching wave (10) with the parameters,
corresponding to those of the numerical solution from Fig. 2a (solid
curve) and from Fig. 3a (dashed curve).
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