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Cascaded second-harmonic generation, summation of the wave
vectors of the bulk defect-deformation waves,
and generation of multimode micro- and nanostructures

by laser irradiation of solids

V.I. Emel’yanov

Abstract.  We consider for the first time three-wave
interactions of bulk quasi-static defect-deformation (DD)
waves (generation of the second DD harmonic and summation
of the wave vectors), similar to three-wave interactions in
nonlinear optics and acoustics, leading to cascaded broad-
ening of the spectrum of spatial DD harmonics. Based on the
theory developed, we interpret the recently observed effect of
laser-induced generation of the bulk periodic structure of
silver nanoparticles with a discrete spatial spectrum, extend-
ing from micro- to nanometres.
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1. Introduction

Emel’yanov and Seval'nev [1] have shown that there are
quasi-static counterparts of classic dynamic nonlinear
optical [2] and acoustic [3] wave effects [second harmonic
generation (SHG) and frequency summation], which
involve waves of new types — the quasi-static surface
(zero frequency) defect-deformation (DD) waves excited by
laser irradiation of solids. These effects include SHG of a
surface relief: 2g = q; + ¢» (¢ = ¢» = ¢), where ¢; are the
wavenumbers of surface relief gratings, and wave-vector
mixing of surface DD gratings (¢3 = ¢; & ¢,). In this paper
we show that similar three-wave DD interactions, for which
the DD anharmonicity is responsible, also take place in the
bulk of solids. We have established that in the presence of
one seed bulk DD harmonic with a micron period, the
cascaded SHG and wave-vector mixing of DD harmonics
lead to generation of a bulk multimode DD structure with a
spectrum of spatial harmonics, which extends from micro-
to nanometres. Based on these results, we have interpreted
the laser-induced generation in a polymer matrix of the
layered structure of Ag nanoparticles with a discrete spatial
spectrum, occupying the region from ~ 530 to 30—15 nm
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2. Equation for the Fourier amplitudes
of the concentration field of mobile
laser-induced defects

Suppose that in the bulk of a solid exposed to laser
radiation, mobile point defects (‘inclusions’) with the
concentration Ny are generated. The plane z = 0 coincides
with the free surface of the sample, the z axis being directed
perpendicular to the surface inside the sample. We consider
a one-dimensional case where all variables depend only on
the coordinate z.

The diffusion equation for Ny in this case has the form
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where 03 = Q4K is the deformation potential of the defect;
Q4 is the change in the medium volume during the
formation of a defect; K is the elasticity modulus; &=
X(z,t) = Ou./0z is the deformation in the bulk; u = u(z, ?) is
the vector of the medium displacement; Dy is the coefficient
of bulk diffusion of defects; T is the temperature. The
second term in the right-hand side of (1) takes into account
the strain-induced drift of defects interacting with the
deformation. Equation (1) corresponds to the energy of the
DD interaction H = —04¢.

The equation for the medium strain corresponding to the
same interaction energy has the form
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where c¢ is the longitudinal sound velocity; p is the medium
density.

The system of equations (1) is closed and describes the
DD instability in the bulk with mobile defects. We will use
below the spatial Fourier transforms in the form

Na(z,1) =Y N(g) expligz + ()1,

(3a)
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Expression (3) specifies the bulk DD structure as a

superposition of one-dimensional DD gratings (quasi-static

waves), consisting of coupled gratings of the concentration
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of defects and the strain whose amplitudes increase in time
with the growth rate A(g).

Assuming that the strain is adiabatically adjusted to the
defect subsystem (8%¢ /6t2 = 0), we obtain from expressions
(1), (2) for the Fourier amplitudes of the defect concen-
tration the equation
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where the critical concentration of defects 1., = pc’ky, T/ 03
is introduced. The growth rate has the form

A(g) = Dag’*(e— 1),

where ¢ = Nyy/n., is the control parameter of the DD
instability, which is determined by the spatially uniform
concentration of the defects Nyy = N(¢ = 0).

3. Equations for bulk three-wave interactions of
DD gratings

We will consider the interaction of three DD gratings with
wave vectors ¢, ¢, ¢z, directed along the z axis. In
particular, as the wave vector ¢; use can be made of the
wave vector of the seed DD grating (see Sections 4 and 5).
The equations for the Fourier amplitudes of the interacting
DD gratings follow from (4) and have the form
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Passing in (5) to real variables N(q,) = n(q;)explip(q))],
where ¢; = q1,42, 41 + g2, we obtain a system of three
equation for the real amplitudes n(g;):
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and the equation for the phase difference ®=¢(q;+¢>)
(1) —9(q2):
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Below we will be interested in the case when at the initial
time ¢=0, the nonzero n(g,,t=0) and n(g;,t=0)
(9g1=¢q>=¢q) are given, and n(q;+¢,,t =0) = 0. Then, the
first positive term in square brackets in (7) is much larger of
the other two negative terms [for ¢ = 0 fluctuation plays the
role of n(q; + ¢»,t = 0) in the denominator of the first term
in (7)]. Therefore, equation (7) describes the relaxation of
the phases @ — 0 over time. Comparison of equations (7)
and (6) shows that the ratio of the characteristic relaxation
time of the phases to the characteristic time of transfer of
defects from one DD grating to another has the form
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Therefore, when considering nonlinear transformations of
the DD gratings in (6) we can put @ = 0.

4. Generation of even DD harmonics
in the bulk

Let the volume initially contain a spatially uniform
concentration of mobile defects ny, = n(qg = 0) = const,
and in addition, one seed stationary DD grating with the
wavenumber ¢, given by expression (3), where A(g) = 0 (see
Section 6). We will show that in the process of summation
of two identical wavenumbers 2Mq = Mq+ Mq
(M=1,2,3,...), a DD grating with the wavenumber
2Mgq is generated in the bulk. This process corresponds
to SHG in a nonlinear optical crystal, when the exact
phase-matching condition is fulfilled [2]. In addition to this
process, the process of summation of the wavenumbers
2Mg=(Q2M — 1)g+q (M =2,3,4,...) is also possible. Due
to the cascaded repetition of these processes, there occurs
cascaded generation of the spectrum of DD gratings with
the wavenumbers 2Mq (M = 1,2,3,...).

Consider the process of cascaded generation of even DD
harmonics at the initial stage, when we can neglect the back
effect of the generated harmonics on the generation process
and assume n(g) = const. For this case, the last of the three
equations in (6) with the ¢ = 0 yields the equation for the
real Fourier amplitude of the DD gratings with the wave-
number 2Mg (M =1,2,3,...):

on(2Mgq) A(2Mgq)

TR /I(ZMq)n(2Mq) + m

|2 atg) + 2020 = i1 - 140 ®)
where the growth rate AQ2Mgq) = Dg2Mg)*(c — 1)

(M =1,2, 3,...); 6, is the Kronecker delta.
The solution of equation (8) with the initial condition
n(2Mgq, t = 0) = 0 has the form

;“(2Mq) ! 2 l
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where M =1,2,3,....

n(2Mq, 1) =
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5. Generation of odd DD harmonics
in the bulk

Summation of the wavenumbers leading to the appearance
of DD gratings with the wavenumbers QM + l)g
(M =1,2,3,...) is described at the initial stage by an
equation following from the last equation in (6) at @ = 0:

an((2M + 1)q)
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where A((2M + 1)q) = Dg[2M + )g)*(c — 1).
The solution of equation (10) with the initial condition
n((2M + 1)g,t = 0) = 0 has the form
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6. Discussion of the results and their comparison
with the experiment

For a graphic illustration of the results, we consider the
generation of the three lowest harmonics with wave-
numbers 2¢, 3¢ and 4q. We pass to dimensionless variables
noy = n2Mq)ne/n* (@) and  moyy = n(2M + 1)g) x
[ne/n*(q)) (M =1,2,3,...) and the dimensionless time

T=2(2q)t. Putting M =1, we obtain from (9) the
dimensionless amplitude of the second DD harmonic
1 T
ny(T) = IJ exp (T —T")dT". (12)
e—1Jo

At M =1, we find from (11) the dimensionless ampli-
tude of the third DD harmonic

9b JTeXp {M}nz(jﬂ)d]ﬁ, (13)
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where b = n(q)/ne,.
At M = 2, we find from (9) the dimensionless amplitude
of the fourth DD harmonic

2 T
ng(T) = ;ﬁ IJO exp [4(T— T')]
2 l 2 l l
XPAT)+5n4TﬂdT. (14)

In this case, the dimensionless amplitude n; of the seed
(steady-state) harmonic with the wavenumber ¢ is equal to
1/b.

Figure 1 shows the time dependences of the amplitudes
of the second, third and fourth DD harmonics in the
constant amplitude approximation of the first seed har-
monic. One can see that there takes place a successive
switching on of the generation of DD harmonics when their
wavenumbers increase.
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Figure 1. Dependences of the dimensionless amplitudes of the second
(ny), third (n3) and fourth (n4) DD harmonics on the dimensionless time
T, constructed with Eqns (12)—(14) at b = 10~!, ¢ = 2. The amplitude of
the seed first harmonic is n; = 10.

The obtained results are valid only at the initial stage of
the cascaded SHG and summation of the wavenumbers. At
later stages, it is necessary to solve numerically the complete
systems of equations (6) in the same way as was done in [1]
for the case of surface DD gratings and take into account
the depletion of the pump, i.e., to remove the restriction
ngo = n(qg = 0) = const. In addition, system (6) for large ¢
should additionally take into account the stabilising effect of
the elastic anharmonicity of the medium. However, the
results obtained here already suggest that the resulting bulk
DD structure is indeed given by (3), the summation being
performed over values of the wavenumbers that are multi-
ples of natural numbers: ¢, 2¢, 3¢, 4q, etc., where ¢ is the
wavenumber of the seed DD grating. Note that all these DD
harmonics in the studied nonequilibrium (metastable)
medium with laser-induced nonequilibrium defects are
unstable [A(2Mg) > 0 and A(2Mg + 1) > 0], when the thresh-
old (¢ >1) is exceeded: their amplitudes n(2Mq) and
n((2M + 1)q) grow over time due to pumping the defects
in the harmonics from a spatially uniform concentration Ny,
of the defects [our analysis is valid if n(2Mg),
n((2M + 1)q) < Ng]. The growth rate increases with
increasing harmonic number (Fig. 1). The exception is
the seed (by assumption — steady-state) fundamental har-
monic with the wavenumber g¢.

The instability of DD harmonics and an increase in their
growth rate with increasing harmonic number qualitatively
distinguish the studied effect of three-wave DD interactions
from the cascaded SHG and summation of frequencies in
nonlinear optics [2], where all the generated harmonics are
stable and their amplitudes decrease sharply with increasing
harmonic number. Note that the above process of gen-
eration of a broad spectrum of DD harmonics is also
possible (but with a lower efficiency) for ¢ < 1. In this
case, the amplitudes of all the harmonics, except (by
assumption) the first one, first increase and then decay
over time. The time decay of the harmonics is caused by the
spatial diffusion of defects that erase the DD gratings. In the
case of ¢ > 1, the strain-induced drift flux of the defects in
equation (1) exceeds the diffusion flux, and the harmonic
amplitudes, on the contrary, increase in time.

The physical mechanism for the generation of harmonics
in the DD system consists in the spatial redistribution of
defects under the action of the self-consistent strain grating
on the initial defect grating. For example, in the case of
SHG, the defect grating with a wavenumber ¢ is affected by
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a strain grating with the same wavenumber ¢, but phase-
shifted by /2. This leads to the appearance of a grating of
the defect fluxes with the wavenumber 2¢, which serves as a
source in the equation for the concentration field of defects
(1) [or, in the Fourier transform, in equation (4)]. Thus, the
nonlinear (quadratic) flux of defects in the case of the second
DD harmonic is similar to the quadratic polarisation (or
current) in the case of generation of the second optical
harmonic.

In [4], laser-induced decomposition of molecules with
silver atoms, introduced previously in the polymer film, lead
to the formation of periodic layered structures of silver
nanoparticles (nanoclusters) with layers parallel to the
exposed surface of the film. When using incoherent radi-
ation, the structure was not formed. The authors of [4] made
in this connection a hypothesis that the interference of
coherent incident and reflected waves is responsible for the
formation of a periodic structure of nanoparticles; this
interference forms a standing wave in the bulk of the
film and leads to a spatially periodic modulation of the
photolysis (pyrolysis) rate, and hence to modulation of the
concentration of Ag atoms and nanoparticles. According to
[4], the period of the interference pattern is A = 1/(2n) ~
200 nm (4 = 532 nm, n ~ 1.35 is the refractive index). The
wavelet analysis of the structure performed in [4] reveals the
existence of not one harmonic but of a broad spectrum of
harmonics extending from A ~30nm to A ~ 530 nm
(Fig. 2a), which contains also one harmonic with the period
A ~ 260 nm, close to the evaluation period of the interfer-
ence pattern (Fig. 2a). The origin of the remaining spatial
frequencies in the spectrum remains unclear.

Using the results of this paper, we may give the following
interpretation of the effect of formation of a broad discrete

A/nm

1000

100

Figure 2. Wavelet transforms of experimental (a) and theoretical (b)
[expression (3a)] concentration fields of defects. Dark areas in Fig. 2a,
taken from [4], correspond to an increased concentration of Ag atoms
and nanoclusters, and bright areas in Fig. 2b — to a high concentration of
defects. Expression (3a) takes into account the first four harmonics:
Ny(z) = cosz +cos(2z) + cos(3z) + cos(4z).

spectrum of spatial harmonics of a silver concentration field
observed in [4]. In the laser photolysis (pyrolysis) there
appear silver atoms, which play the role of mobile micro-
scopic inclusions (defects) in the polymer matrix. The seed
DD harmonic is the DD structure with an interference
period A; ~ 200 nm. Generation of the second DD har-
monic leads to the formation of structures with a period
Ay ~ 100 nm, close to the period of 90 nm of the most
intense harmonic in the experimental spectrum [4]. Cascaded
generation of the second DD harmonic and summation of
spatial frequencies result in the transformation of the
vectors of DD gratings up, i.e., in the formation of DD
structures with periodsAs;, A4, As, etc., which explains the
presence of a high-frequency part of the spectrum (A; <
200 nm) in Fig. 2a. The formation of a low-frequency part
of the spectrum (A; > 200 nm) should then be attributed to
the decay of DD harmonics and generation of difference
spatial frequencies. This interpretation is confirmed by a
similar form of wavelet transforms of the experimental
(Fig. 2a) and theoretical [Eqn (3) and Fig. 2b] concentration
fields of defects.

The characteristic formation time of a structure with a
period A, = 100 nm by the SHG, as seen from formula (12)
and Fig. 1, is estimated as A ~'(2¢), where the growth rate is
determined in (8). Therefore, for this structure to have time
to be formed during the irradiation time #, = 5 min [4], the
diffusion coefficient of the Ag atom in the polymer matrix
must satisfy the condition Da, > A3 /[An 13 (e — 1)] ~ 8%
107" cm? s! at ¢ = 2. This condition is met with a safety
margin in polymers (see, for example, [5]). The stability of
the produced periodic structure can be achieved through the
formation of immobile nanoparticles (nanoclusters) of silver
in places where silver atoms aggregate.
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