
Abstract. We present the modiéed Frantz ëNodvik equation
for calculating the gain of the divergent laser beams with
allowance for saturation. We present the results of calcu-
lations by the proposed equation and compare their accuracy
with the numerical calculations by the `Fresnel' software.
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1. Introduction

Kuznetsova and Mikheev [1] analysed theoretically the
system of Franz ëNodvik equations taking into account the
speciéc character of ampliécation of laser beams with a
spherical wavefront. In formulating the problem of the
applicability conditions of the truncated equations to
describe the propagation of spherical waves, they consid-
ered the possibility of using the active gaseous media to
amplify femtosecond pulses [1]. A similar problem was
solved previously for solid-state ampliéers (see [1] and
references therein).

However, although Kuznetsova and Mikheev [1]
describe the features of the gain saturation for the beams
with divergence angles 04 2y0 4 608 for the unsaturated
gain levels up to exp5, simple estimates can be useful in the
practical realisation of the gain of divergent laser beams
under different experimental conditions. The results of [1]
provide such an opportunity only in the limit of very weak
or very strong gain saturation {see expressions (34) and (35)
in [1]}.

2. Frantz ëNodvik equation for diverging laser
beams

The Frantz ëNodvik equation is well known and has the
form [2]

Qout � Qs lnf1� exp�N0sL��exp�Qin=Qs� ÿ 1�g; (1)

where Qin and Qout are the energy densities at the input and

output of the ampliéer; Qs is the saturation energy density;
N0sL is the unsaturated gain; N0 is the concentration of
active particles; s is the cross section for stimulated
emission; L is the length of the ampliéer. We will show
that equation (1), used to calculate the gain of collimated
laser beams, can be modiéed for the case of the beams with
a spherical wavefront.

For a freely propagating laser beam (having the diver-
gence angle of 2y0 and the initial radius r0) with a spherical
wavefront, we can give the relation, which describes the
decrease in the beam energy density as a function of the
coordinate z:

Q�z� � Qin

�1� �z=r0� tan y0�2
: (2)

In an amplifying medium, the energy density in the beam
can be conveniently represented in terms of the saturation
energy density Qs:

Q�z�
Qs
� Qin

Qs�1� �z=r0� tan y0�2
: (3)

Formally, the saturation density in the left-hand side of
equality (3) can be considered dependent on z, i.e., take
Qs(z) � Qs�1� �z=r0� tan y0�2 and consider (3) as a relation
corresponding to the propagation of a collimated beam in a
medium with a variable saturation energy density. In this
case, the average saturation energy density can take the
value

Qs�z� �
Qs�0� �Qs�L�

2
�

Qsf1� �1� �L=r0� tan y0�2g
2

: (4)

After substituting (4) into (1), we obtain

Q 0out � Qs�z� lnf1� exp�N0sL��exp�Qin=Qs�z�� ÿ 1�g: (5)

Because the area of the divergent beam at the ampliéer
output is �1� �L=r0� tan y0�2 times greater than at the input,
the energy density at the ampliéer output has the from

Qout �
Qsf1� �1� �L=r0� tan y0�2g

2�1� �L=r0� tan y0�2

� lnf1� exp�N0sL��exp�Qin=Qs�z�� ÿ 1�g: (6)
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Accordingly, for the beam energy gain we obtain the
expression

K � 1� �1� �L=r0� tan y0�2
2Y0

ln

�
1� exp�N0sL�

�
�

exp

�
2Y0

1� �1� �L=r0� tan y0�2
�
ÿ 1

��
; (7)

where, as in [1],Y0 � Qin=Qs is the energy density of
radiation at the ampliéer input in terms of the energy
saturation. Similarly, we can consider the ampliécation of
the laser beam with different divergences along the x and y
axes.

We will assess the accuracy of calculations by expression
(7) by comparing them with the numerical calculations for
divergent beams, obtained with the `Fresnel' software [3].
According to [3], ampliécation of the laser beams is
calculated numerically on a spatial grid consisting of N 2

cells when sectioning the ampliéer of length L into m
independent sections and performing sequential calculations
within each section:

(i) changes in the spatial structure of the beam due to the
divergence and diffraction on the length L=(2m);

(ii) changes in the beam energy within each section of the
ampliéer length L=m;

(iii) changes in the spatial structure of the beam due to
the divergence and diffraction on the length L=(2m) after
ampliécation.

In this paper, we performed calculations for Y0 � 0:04,
0.1, 0.25; the beam radius r0 � 1 cm; N0s � 0:05 cmÿ1; and
the ampliéer length L4 100 cm. For the adequate compar-
ison of the calculations by expression (6) with the results of

[1] and the numerical calculations by the `Fresnel' software
(N � 512, L=m � 2 cm), the diffraction effects in the latter
case were excluded from consideration*.

Figure 1 shows the results of calculations by expression
(7) for Y0 � 0:1 and a set of angles 04 2y0 4 608. The range
of deviations of the gains K (Fig. 1) from the coefécients KF,
calculated by the `Fresnel' software

dK � KF ÿ K

KF
(8)

amounts to ÿ0:016:::0:08. This range, however, can be
reduced by using the correction factor p, taking into

*The radiation wavelength was chosen so small that it was possible to
neglect the diffraction effects in the used geometry of the ampliéer.
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Figure 1. Dependence of the gain of the laser beam energy on the
dimensionless parameter N0sL at divergence angles of 2y0 � 0 ( 1 ), 1.258
( 2 ), 2.58 ( 3 ), 58 ( 4 ), 108 ( 5 ), 208 ( 6 ), 308 ( 7) and 608 ( 8 ). The energy
density of the beam at the ampliéer input is Y0 � 0:1.
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Figure 2. The relative error in computing the gain of the divergent laser
beam with an initial energy density Y0 � 0:1 as a function of the gain
parameter N0sL and the divergence angle. Curve numbers correspond to
those in Fig. 1.
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Figure 3. Deformation of the laser beam with the initial Gaussian
distribution of the energy density at Y0 � 0:25, w0 � 1:3 cm, N0sL � 5,
2y0 � 58 ( 2 ) and 0 ( 3 ). Curve ( 1 ) is the initial energy density
distribution in the beam, and curve ( 4 ) is the ratio of the beam energy
density proéle calculated by the `Fresnel' software to the calculated
values at 2y0 � 58.
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account the nonlinearity of the gain saturation. If we
assume that

Qs�z� �
Qsf1� �1� �L=r0� tan y0�2g

2p
; (9)

then the optimised value of p � 0:893 leads to a decrease in
the range of variation (7) for all used values of Y0 to
dK � �0:025. Figure 2 presents the dependences of
dK(N0sL) at Y0 � 0:1 and 1:2584 2y0 4 608 .

Equation (7) can also be used to calculate the spatial
deformation of the divergent laser beam in the case of the
gain saturation. To do this, Y0 should be replaced by the
dependence Y0(r) in the input plane of the ampliéer. The
calculation results for a Gaussian beam of type
Y0(r) � Y0 exp�ÿ2(r=w0)

2� with Y0 � 0:25, w0 � 1:3 cm,
2y0 � 58, N0sL � 5 and their comparison with numerical
calculations are shown in Fig. 3.

3. Conclusions

Thus, the main parameters of the divergent laser beam
ampliécation can be determined with a high accuracy by
the modiéed Frantz ëNodvik equation, which uses the
average value of the saturation energy of the active
medium. The presented equation is easily generalised to
the case of a beam with different divergence along the axes.
Note that the advantage from the use of divergent beams
will be obvious if another way to éll the aperture of the
ampliéer is impossible. This situation takes place, partic-
ularly when élling the conical aperture of the ampliéers [4]
and in some schemes of multipass ampliéers [5].
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