
Abstract. Laser processing of epitaxial PbSe élms has been
found to produce periodic concentric surface ring structures
that extend over several laser spot radii from the exposed
zone. The proposed theoretical interpretation of this effect in
terms of defect ë deformation interactions adequately
describes the observed morphology, periodicity and complex
(multimode) shape of the ring structures.

Keywords: epitaxial semiconductor élms, laser modiécation,
defect ë deformation instability.

1. Introduction

A nanostructured state of the narrow-gap semiconductors
PbSe (band gap Eg � 0:29 eV), PbTe (0.32 eV) and PbS
(0.41 eV) is of interest for gaining insight into quantum size
effects in relatively large systems, tens of nanometres in
dimensions [1]. Nanostructures based on PbTe, PbSe, PbS
and their solid solutions can be produced by a variety of
techniques [1 ë 3], including laser and laser-plasma deposi-
tion processes, which are of practical importance. Both
below-band-gap (�ho < Eg) and above-band-gap (�ho > Eg)
laser radiation, in different modes (e.g., laser ablation and/
or heating), effectively changes the structural and electrical
properties of the lead chalcogenides, producing micro- and
nanostructures [4, 5]. This paper examines a new effect:
generation of concentric periodic surface ring structures
that extend over several laser spot radii from the directly
exposed zone. Such structures result from cw laser
processing of epitaxial lead selenide élms at l � 1:06 mm
(�ho > Eg).

2. Experimental

PbSe/CaF2/Si(111) heterostructures were grown by molec-
ular-beam epitaxy at the ETH Zurich. The thickness of the

PbSe élm was varied from 0.3 to 4 mm. The CaF2 buffer
was 2 ë 4 nm in thickness and served to compensate for the
lattice mismatch between the silicon substrate and epitaxial
élm. The lead selenide layer was single-crystal, with its (111)
plane normal to the growth direction. The structural
parameters of the élms were reported elsewhere [6].

The experimental setup used for laser irradiation was
described earlier [7 ë 9]. A Nd :YAG laser beam (LS-02-T
laser, 5 to 15 W output power, l � 1:06 mm) was focused to
a spot diameter of 30 mm on the sample surface. The
incident power density was thus 104 to 105 W cmÿ2. During
the laser exposure, the sample was scanned with the laser
beam on a positioning stage, which was translated at
80 mm sÿ1. The laser-exposed zone on the sample surface
was examined in real time using a laser monitor, which
allowed us to directly control the exposure conditions.
Figure 1 presents typical instantaneous images of laser-
exposed surfaces in the solid-state and liquid-phase target
modiécation regimes. Solid-state modiécation (Fig. 1a) is
accompanied by a characteristic change in the reêectance of
the sample surface (5-W laser output). In the top right of the
image, there is a laser beam trace on the sample surface. The
trace is 30 mm in width, which corresponds to the laser spot
diameter on the sample surface.

In the liquid-phase modiécation regime (Fig. 1b),
involving laser-induced surface melting (15-W power), we
observe a qualitatively different picture. Laser heating
induces circular surface perturbation (of the order of
3 mm in width), which propagates away from the centre
of the zone under irradiation. Traces of the ejected material
are seen in the image. At a distance of the order of the laser
spot radius, another perturbation emerges on the élm
surface (of the same thickness) and travels in front of
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Figure 1. Instantaneous images of laser-exposed PbSe surfaces (real-time
examination using a laser monitor): (a) solid-state modiécation (incident
power, 5 W); (b) molten surface (incident power, 15 W).



the laser beam. Between these two perturbations are
separate droplets up to 2 mm in radius.

Figure 2 shows the surface of a PbSe/CaF2/Si sample
after two sequential exposures to 5-W cw laser radiation in
the solid-state modiécation regime (2-mm-thick PbSe élm).
The surface image was obtained on a Ntegra-Aura atomic
force microscope in intermittent contact mode. During the
érst exposure of the sample surface, the centre of the laser
spot was in the top left corner of the image. Before the
second exposure, the sample was displaced so that the centre
of the laser spot was in the bottom left corner during the
second exposure. Both exposures produced a periodic ring
structure on the surface around the centre of the laser spot
(in Fig. 2, the two centres of the exposed zones associated
with the displacement of the sample are connected by a dark
band due to the laser exposure). The laser-induced surface
structure extends over a distance of � 50 mm, that is,
beyond the laser spot (� 15 mm). The surface proéle is
highly nonuniform (Fig. 3), with strong peaks 10 ë 14 mm
apart, which is about twice their width. The roughness
height decreases with increasing distance from the centre of
the laser spot.

3. Defect ë deformation mechanism
of ring structure formation

We describe the observed effect in terms of a élm model for
defect ë deformation (DD) instability [10, 11], generalising it
to axisymmetric systems. Consider a PbSe élm of thickness
h on a CaF2/Si substrate. Laser radiation heats it within the
laser spot and in the surrounding region of radius equal to
the thermal diffusion length, rT �(wtL)1=2, where w �
0.1 cm2 sÿ1 and tL � 0:2 s are the thermal diffusivity and
exposure time, respectively. For rT > h, the élm is heated
throughout its thickness and has the form of an axisym-
metric membrane in the elevated-temperature region.

Laser heating causes the Pb and Se atoms in the heated
zone to leave their lattice sites, thereby producing vacancies.
This leads to active vaporisation of surface atoms, for-
mation of excess vacancies in the near-surface region, and
accelerated diffusion and drift of interstitials from the bulk
to the surface. Vacancies in turn drift against the temper-
ature gradient (thermal strain gradient), i.e., from the
surface to the bulk of the élm. This produces an increased
concentration of nonequilibrium vacancies in the bulk of the
heated membrane and excess interstitials on its surface.

Lead chalcogenide élms on Si(111) with a CaF2 buffer
are known to be in a tensile state in the plane of the élm
[6, 12]; i.e., the élm is under tensile stress, sk > 0. Assume
that laser heating does not change the sign of sk, which is
favoured by the high vacancy concentration in the élm.

Above a critical defect density, the stressed (tensile)
surface membrane saturated with mobile point defects is
unstable and passes into an axisymmetric, periodically bent
steady state, with defect accumulation at extrema in the
surface proéle of the membrane. The spatial distribution of
the static strain in the membrane is speciéed in the same way
as that in Lamb dynamic bending waves in plates [13]. Such
a periodically modulated surface proéle with the associated
defect accumulation grating constitutes an axisymmetric
surface DD ring structure, which can be characterised by
its wavenumber q. A DD structure results from the develop-
ment of a DD instability. In its linear regime, the amplitude
of ring structures increases over time as exp (lqt), where lq is
the growth rate. The value q � qm at which the growth rate
reaches a maximum determines the period of predominant
ring structures, Lm � 2p=qm, which stand out in the Fourier
spectrum of the surface proéle.

In a nonlinear regime, the axisymmetric system of DD
equations derived in this study describes three-wave inter-
actions of DD ring structures (in particular, surface-proéle
second harmonic generation, with a wavenumber 2q, and
third DD harmonic cascade generation, with a wavenumber
3q), like in a previous study [14]. The present results
demonstrate that a superposition of the érst to fourth
DD ring harmonics ensures a suféciently good description
of the observed ring proéle resulting from laser irradiation
of the sample surface.

4. Equations describing a DD instability
of a stressed circular membrane containing
mobile point defects

Consider a tensile circular PbSe élm (membrane) of
thickness h, containing a concentration nd of point defects
(interstitials and vacancies): nd � nv for vacancies and
nd � ni for interstitials. Let the z � 0 plane coincide with
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Figure 2. Atomic-force microscope image of a PbSe surface after laser
exposure (5-W power).
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Figure 3. Observed nonuniform surface proéle corresponding to a ring
structure with its centre in the bottom left corner of Fig. 2.
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the élm surface and the z axis be directed from the surface
to the bulk of the sample.

The defect distribution in the élm can be written in the
form

nd�r; z; t� � Nd�r; t� f�z�, (1)

where Nd(r, t) is the defect density in the z � 0 plane; r is
the in-plane distance from the centre of the laser spot; and
the function f(z) deénes the defect distribution along the
normal to the élm and will be determined below [see (12)].

In deriving the constitutive equations of this model, we
take the surface diffusion and defect drift to be isotropic.
The lateral surface êux of defects, jd, comprises diffusion
and deformation terms:

jd � ÿDdHNd �Nd

Dd

kT
F�r�. (2)

Here Dd is the surface diffusion coefécien;

F�r� � ydH�x�z�0 (3)

is the lateral force acting on a defect from the deformed
elastic continuum of the membrane;

H � er
r

d

dr
�r�

is the lateral gradient; er � r=r is a unit vector; yd � OdK is
the deformation potential of the defect; Od is the volume
change upon the formation of one defect; K is the elastic
modulus; x � x(r, z) � divu is the strain in the membrane;
u � u(r, z, t) is the displacement vector of points in the
membrane; k is the Boltzmann constant; and T is the
absolute temperature.

Substituting (3) into the continuity equation for Nd, we
obtain an equation of surface diffusion which takes into
account the deformation-induced defect drift:

qNd

qt
� DdDNd ÿ

Ddyd
kT

div�NdH�x��z�0, (4)

where

D � 1

r

q
qr

�
r
q
qr

�
is the lateral Laplacian; and

divA � 1

r

d

dr
�rA�er�.

The strain of the élm, x � divu, is given by [15]

x�r; z; t� � ÿv
�
zÿ h

2

�
Dz�r; t�, (5)

where v � (1ÿ 2sp)=(1ÿ sp); sp is the Poisson's ratio of the
élm; and z is the bending coordinate of the élm (displace-
ment of the points in the median plane along the z axis).
The linear, sign-alternating variation of the strain in the
élm with z, represented by (5), is a characteristic feature of
Lamb waves in plates [13].

Substituting (5) into (4), we obtain

qNd

qt
� DdDNd ÿ

vhDdyd
2kT

div�NdH�Dz��. (6)

For z, we can write the linear equation [11]

q 2z
qt 2
� l 20 c

2D2zÿ sk
r

Dz �
X
d

�
yd
rh

� h

0

qnd
qz

dz

�
, (7)

where c 2 � E=r(1ÿ s 2
p ) is the stiffness coefécient of the

élm; E is Young's modulus; r is the density of the élm; and
l 20 � h 2=12. The summation on the right-hand side
comprises d � v (vacancies) and d � i (interstitials).

Note that the bending stiffness of the élm (the coefécient
in front of D2z ) depends on its thickness, h, which plays the
role of a speciéc scale parameter for the DD instability of
the élm. The sk on the left-hand side of (7) takes into
account the effect of the isotropic lateral stress arising from
the membrane ë substrate lattice mismatch and/or defect
generation in the near-surface region. We assume that
sk > 0: the membrane is under known tensile stress. The
right-hand side of (7) takes into account the defect-induced
bending force normal to the élm surface, which arises from
the nonuniform defect distribution along the z axis. We
neglect the elastic bending nonlinearity of the élm in (7),
whose effective contribution is smaller than that of the
nonlinearity of the deformation-induced drift in (6).

A more complete formulation of the problem should
take into account that élm bending gives rise to a displace-
ment u in the substrate, which in turn results in an
additional term on the right-hand side of (7): s?=rh, where
s? is the stress normal to the élm surface, which originates
from the action of the substrate on the élm (response of the
substrate). One should also take into account the boundary
conditions at the élmë substrate interface for quasi-Lamb
displacement waves in the élm and quasi-Rayleigh waves in
the substrate [11]. In this formulation of the problem, the
response of the substrate can be neglected when

sk > ms

�
Lm�1ÿ bs

ph

�
, (8)

where Lm is the DD structure period; bs � c 2t =c
2
l ; cl and ct

are, respectively, the longitudinal and transverse sound
velocities in the substrate; and ms is the shear modulus of
the substrate at the élmë substrate interface. Condition (8)
can be met e.g. when the effective shear modulus at the
élm ë substrate interface approaches zero: ms ! 0 [16, 17].
With focus on the conceptual feasibility of describing the
main experimental data presented in Section 2, consider the
simplest free élm model [10], neglecting the response of the
substrate.

Equations (1), (6) and (7) then constitute a closed system
if f(z) is known and describe the DD instability of a stressed
surface membrane containing mobile defects.

5. Increment of growth of the amplitude
of surface DD ring structures as a function
of their wavenumber (period)

The surface defect density can be represented as

Nd�r; t� � Nd0 �Nd1�r; t�, (9)
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where Nd0 is a spatially uniform term and Nd1(r, t) is a
spatially nonuniform term in the defect density (Nd1(r, t)5
Nd0). Linearising (4) and substituting (9), we obtain

qNd1

qt
� DdDNd1 ÿDd

vydh
2kT

Nd0D
2z. (10)

Let

nd�r; z; t� � nd0 � nd1�r; z; t�, (11)

where nd0 and nd1(r, z, t) are, respectively, a spatially
uniform and a spatially nonuniform term in the defect
density. It can be shown that, since h5Lm (where Lm is
the period of the laser-induced structure), the spatially
nonuniform z-axis defect distribution resulting from élm
bending, rapidly adjusts itself to the bending strain
distribution along the z axis and is given by

nd1�r; z; t� �
2

h

�
h

2
ÿ z

�
Nd1�r; t�. (12)

Therefore,

nd1�z � 0� � ÿnd1�z � h� � Nd1. (12Â)

Given that strain adiabatically adjusts itself to the defect
system, q 2z=qt 2 � 0, and taking into consideration (11) ë
(12a), we can bring Eqn (7) to the form

D2zÿ 1

l 2k
Dz � ÿ

X
d

AdDNd1, (13)

where Ad � 2yd=(hl
2
0 rc

2) and

lk � h

�
rc 2

12sk

�1=2
(14)

is a characteristic scale parameter. In what follows, (13)
takes into account only one defect species.

Equations (10) and (13) constitute a closed system. Its
solution can be written in the form

z�r; t� � zqJ0�qr� exp�lqt�, (15)

Nd1�r; t� � Nd�q�J0�qr� exp�lqt�. (16)

Here J0(qr) is the zeroth-order Bessel function, and zq and
Nd(q) are seed amplitudes. Equations (15) and (16) describe
a DD ring structure that comprises the surface proéle ring
structure (15) and defect density (16).

From (13), (15) and (16), we obtain a linear relation
between Nd(q) and zq in a DD grating with a wavenumber q:

zq � Zd�q�Nd�q�, (17)

where the DD coupling coefécient in a linear approxima-
tion, with the response of the substrate neglected, has the
form

Zd�q� � ÿ
2yd

hskq 2
ÿ
q 2lk � 1

� . (18)

Thus, the seed amplitude of a DD grating is the defect
density êuctuation at the initial instant: Nd(q) �
Nd(q, t � 0).

Substituting the Fourier transforms (15) and (16) to (10)
and using (17) and (18), we énd the growth rate for a DD
ring structure with a wavenumber q:

lq � Ddq
2

�
Nd0

Ncr

1

1� l 2k q
2
ÿ 1

�
, (19)

where

Ncr � sk
kT

vy 2
d

(20)

is the critical defect density.
The Nd0=Ncr � e ratio is a check parameter of DD

instability. The function lq has a maximum at q � qm, with

qm �
1

lk

��
Nd0

Ncr

�1=2
ÿ 1

�1=2
. (21)

The corresponding period of the dominant DD ring
structure, with a wavenumber qm, takes the form

Lm �
2p
qm
� 2plk
��Nd0=Ncr�1=2 ÿ 1�1=2

, (22)

i.e., it is proportional to the élm thickness, h [see (14)].
For a grating with q � qm, the maximum growth rate is

lm � Ddq
1=2
m

ÿ �����������������
Nd0=Ncr

p
ÿ 1
� � Dd

ÿ �����������������
Nd0=Ncr

p ÿ 1
�2

l 2k

� sign
ÿ �����������������

Nd0=Ncr

p
ÿ 1
�
. (23)

It follows from (21) and (23) that, above the critical
defect density (e �Nd0=Ncr > 1), there is a real value of qm
and the growth rate lm becomes positive, which corresponds
to the formation of a DD ring structure.

6. Comparison of conclusions from the DD
theory with experimental data and discussion

The dominant DD ring structure, with a wavenumber qm,
determining the observed surface morphology, has the form
of a Lamb static bending wave with a wavelength
Lm � 2p=qm, maintained by a self-consistent defect distri-
bution in the membrane. Equations (17) and (18) indicate
that, in a DD ring structure, interstitials accumulate
(yd > 0) at maxima (hillocks) of the surface proéle
(expanded zones) and vacancies accumulate (yd < 0) at
minima (depressions) of the surface proéle (compressed
zones).

At sk � 8� 109 erg cmÿ3, sp � 0:3 (v � 0:571), kT �
0.1 eV (T � 103 K), and yd � 102 eV, the critical defect
density estimated from (20) is Ncr � 8:76� 1016 cmÿ3.
Figure 4 shows the growth rate lq � l(q) evaluated from
(19) with the following parameters: h � 2� 10ÿ4 cm,
rc 2 � 7� 1011 erg cmÿ3, sk � 1010 erg cmÿ3, Dd � 10ÿ6

cm2 sÿ1, and Nd0=Ncr � e � 3 or e � 30. It is seen that,
at a suféciently high defect density, above the critical level,
the growth rate has a maximum at Lm � 14 mm, which
corresponds to the measured period of the ring structure
(Fig.3).
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It follows from Fig. 3 that the Fourier spectrum of the
surface proéle after exposure should contain the érst to
fourth harmonics in the low-frequency region (Fig. 5). At
the same time, relations (15) and (16) predict the formation
of a ring structure containing one radial harmonic. To
describe the observed surface proéle, represented in Figs 2
and 4, one should take into account the possible generation
of higher DD ring harmonics. As shown earlier [14], three-
wave interactions of DD waves with collinear wave vectors
lead to the generation of the second and cascade third DD
harmonics. The generation of the second to fourth DD ring
harmonics can be analysed in a similar manner. Figure 6
shows a surface proéle obtained by simulation using a
superposition of the érst to fourth harmonics according to
the relation

z�x� � ÿ�1:7J0�x� � J0�2x� 2:5� � 1:2J0�3x� 2�

� 0:9J0�4x� 4��, (24)

where x is the longitudinal coordinate of the surface proéle.
The amplitudes of the harmonics in (24) were selected as

follows: Because the two-dimensional Fourier transform of
a radial function reduces to the zeroth-order radial Hankel
transformation, the amplitudes of the érst four harmonics in
(24) are equal to those in the experimental spectrum in Fig. 5

multiplied by one, two, three, and four (the phases of the
harmonics are zero). Nonzero phases of the harmonics in
(24) were introduced in an arbitrary manner in order to
better represent the observed surface proéle shown in Fig. 3.
Equation (24) takes into account that, with nonlinear DD
interactions, the amplitudes of higher harmonics may exceed
those of lower harmonics [14]. Moreover, the direction of
the z axis in (24) was changed to the opposite [the z axis is
directed upwards and the surface proéle is z(x) � z(x)]. This
is reêected by the change of sign in (18). In addition, we take
Zd(q) � 1. The positive defect ë bending coupling coefécient
[Zd(q) > 0] corresponds to the predominant role of surface
interstitials (yd > 0) in DD instability. The superposition of
four harmonics in (24) is seen to qualitatively reproduce the
key features of the observed surface proéle: the dip in the
centre of the laser spot, strong peaks whose amplitude
decreases with increasing distance from the centre, the
relatively large separation between the peaks (as compared
to their width) and, énally, the splitting of each strong peak
into two components.

7. Conclusions

We studied solid-state laser modiécation of the surface of
PbSe semiconductor élms and identiéed surface self-
organisation at photon energies above the band gap of
the semiconductor. Experimental data were used to
construct a model for defect ë deformation instability
developing on the surface of an epitaxial élm through
strain-induced drift of laser-induced point defects. The
model is capable of qualitatively describing the observed
surface morphology and predicting the surface proéle in
laser modiécation experiments.
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