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Abstract.  A novel birefringent microstructured fibre (BMF) design 
is proposed, and its birefringence and dispersion characteristics are 
analysed using the finite element method. The results indicate that 
the proposed BMF design ensures high birefringence (~ 5 ́  10–3) at 
a low mode asymmetry. At a certain core ellipticity, the BMF con-
figurations considered may have equal mode field sizes along two 
orthogonal axes.

Keywords: microstructured optical fibres, birefringence.

1. Introduction

There has been unabated interest in the properties and poten-
tial applications of microstructured optical fibres since their 
advent [1, 2]. This is due to their unique characteristics, which 
differ markedly from those of conventional optical fibres 
[3 – 5]: wide single-mode range, unusual dispersion character-
istics, increased birefringence and others.

Birefringent microstructured fibres (BMFs) of various 
designs were first reported in Refs [6 – 9]. Owing to their high 
birefringence, which varies little with temperature [10], BMFs 
are used for polarised supercontinuum generation [11 – 13], 
physical measurements [14 – 16], Bragg-grating [17, 18] and 
long-period grating inscription [19, 20] and other purposes, 
and are at present commercially available.

Labonte et al. [21] proposed a simple analytical model for 
evaluating the birefringence related to the core shape in BMFs 
that guide light through modified total internal reflection. They 
considered the three most widespread BMF designs: with two 
increased air holes near the core (proposed by Suzuki et al. [9]), 
with two defects in the form of missing holes (proposed by 
Hansen et al. [8]) and with three holes missing. The fibre core 
was represented by an equivalent rectangle [21], whose propa-
gation constants were determined using an approximate ana-
lytical solution known for rectangular dielectric waveguides. 
In the case of the LP01 fundamental mode, the phase birefrin-
gence is given by [21]
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where l is the wavelength; n1 and n2 are the effective refractive 
indices of the fibre core and cladding, respectively; n  is the 
average effective refractive index for two orthogonally polar-
ised modes; and a and b are, respectively, the larger and smaller 
side lengths of the equivalent rectangle. Therefore, the birefrin-
gence of the BMFs considered by Labonte et al. [21] depends, 
in particular, on the relative difference between the core sizes 
along the two axes. Consequently, high birefringence can be 
reached by considerably increasing the a/b ratio, which would 
lead to a high azimuthal mode asymmetry in such fibres.

To quantify the mode asymmetry, we use a w parameter 
defined as the relative difference between the mode field sizes 
(full width at half intensity) along two orthogonal axes, that 
is, as the ratio of the difference between the mode field sizes to 
their average:
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where Wx and Wy are the mode field sizes along the two 
orthogonal axes. Typical w values for the mode field profiles 
calculated by Choi et al. [13] and Lee et al. [22] for BMFs are 
~0.45 and ~0.36, respectively. At such w values, high power 
losses arise when BMFs are coupled to standard, circular-
core fibres or when circular laser beams are used. To reduce 
such losses, Xiong and Wadsworth [12] used a BMF similar 
to those in Refs [9, 22] but with a reduced hole diameter ratio, 
d2 /d1 = 1.7 (instead of d2 /d1 = 1.9 in Ref. [22]). This reduced 
the core ellipticity to 1.25 and the measured coupling loss to 
6 % (the mode field profile was not reported by Xiong and 
Wadsworth [12], so w is unknown). At the same time, the 
1.064-mm birefringence dropped to ~1.24 ́  10–4.

The BMF design we propose here ensures high birefrin-
gence at a small mode asymmetry parameter, w.

2. Novel BMF geometry

The key features of the BMF design under consideration are 
that there is one or several concentric rings of holes of the same 
diameter around an elliptical or circular core and that the 
holes are the same distance apart except for one or two pairs 
of holes in the first ring, which are a greater distance apart.

One configuration of such BMFs is displayed in Fig. 1a. 
The BMF core (dashed line) is elliptical or circular in shape. 
The surrounding holes, of diameter d, are distance L apart 
(centre-to-centre distance), except for two holes, which are a 
greater distance, L1, apart. Distance L from these two holes, 
there is another hole. The increased bridge (opening) between 
the holes has a width Z = L1 – d. The diameters of the ellipti-
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cal core along and across the opening are Dx and Dy, respec-
tively. The BMF core ellipticity is e = Dx /Dy. Usually, ellip-
ticity is defined as the minor to major axis ratio. Accordingly, 
e G 1. Since the structures under consideration have a special 
direction, that along the opening, it is more relevant to use 
the above definition. A BMF with e > 1 then has an elliptical 
core elongated along the opening. An elliptical core with e < 1 
is elongated across the opening. The holes of the second ring 
‘close’ the spaces between the holes of the first ring, and each 
of them is distance L from its two nearest holes in the first 
ring. If necessary, the number of rings can be increased. At 
large d /L ratios, however, two rings of holes ensure a suffi-
ciently low leakage loss level, so we consider here single- and 
two-ring BMF designs.

For convenience, we use the following notation for BMF 
structures: MNKLsf, where M and N are, respectively, the 
numbers of holes and openings in the first ring; K is the num-
ber of intermediate holes that close openings; L is the number 
of holes in the second ring (L = 0 if there are no such holes); 
s specifies whether the core is elliptical (e) or circular (c); and 
f  specifies whether the holes are circular (c) or elliptical (e). 
Accordingly, the BMF structure shown in Fig. 1a is denoted 
as 6117ec.

Figure 1b shows a 6125ec structure, which differs from the 
configuration displayed in Fig. 1a in that the opening between 
the holes of the first ring is closed by two holes, which increases 
the depth of the opening. These holes are distance L apart 
and are the same distance from the holes of the first ring. That 
the second ring comprises only five holes is the result of the 
relatively small difference between L1 and L, so that the excess 
three holes do not reduce the leakage loss.

Another configuration of the proposed BMF design, with 
two increased openings, is displayed in Fig. 2. Figure 2a shows 
a 5227ec structure, with two identical openings, each closed 
by one hole. The 5243ec structure in Fig. 2b has two identical 
openings, each closed by two holes. BMFs may have openings 
that differ in width or are closed by different numbers of holes, 
but such configurations will not be considered in this study.

One input parameter for constructing an MNKLec struc-
ture (with preset Dx, Dy, d, L and L1) is the angle between two 
holes in the first ring, a. In the 6117cc structures, a can be 
varied from 60° (360°/6) to ~51.43° (360°/7).
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Figure 1.  (a) 6117ec and (b) 6125ec structures: d /L = 0.8, L1/L = 1.3, 
e = 1.2.
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Figure 2.  (a) 5227ec and (b) 5243ec structures: d /L = 0.75, L1/L = 1.33, 
e » 0.83.
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To characterise the shape of the BMF structure, we use the 
parameter d = 360°/M – a. For example, the 6117cc structures 
range in d from 0° to ~8.57°. In general, the d of MNKLcc 
circular-core structures ranges from zero to dmax = 360°/M – 
360°/(M + K). The d range of MNKLec elliptical-core struc-
tures depends on e.

Note that, at L = 0, the zero and highest value of the shape 
parameter d of the MNKLcc structures correspond to sym-
metric geometries that have, respectively, an M-fold and an 
(M + K)-fold rotation axis passing through the fibre axis (the 
birefringence of the symmetric structures is very low, so these 
will not be referred to as BMFs). At other d values, the struc-
tures with N = 1 and those with N = 2 and odd M have no 
rotation axes; there is only a mirror plane, which passes through 
the fibre axis.

3. Calculation results

The birefringence and dispersion characteristics of the above 
BMF structures were calculated numerically using the finite 
element method (FEM), which allows effective modal refrac-
tive indices and mode field distributions to be calculated for 
microstructured fibres with an arbitrary shape and arrange-
ment of air holes. Silica glass was taken as the BMF material, 
and its refractive index was determined using a Sellmeier 
equation [23].

The number of holes in the first ring should be at least 
three. In this study, one BMF type has six holes in the first ring. 
In the d = 0 limit, it has a conventional hexagonal structure. 
The other BMF type has five holes in the first ring. According 
to preliminary calculations, this configuration ensures a higher 
birefringence at a given core diameter in comparison with the 
configuration having six holes in the first ring.

In general, depending on the particular problem, input 
geometric parameters and conceivable structures, one should 
perform comparative calculations for BMF structures with 
different numbers of holes in the first ring in order to find the 
optimum number, which maximises the birefringence at a 
preset mode asymmetry.

3.1. Circular-core BMFs

To assess the contribution of the opening to the birefringence 
of the BMF, we calculated the above circular-core structures 
at various geometric parameters.

Figure 3a shows the phase birefringence B as a function 
of shape parameter d for different BMF configurations. For 
simplicity, we considered structures having one ring of holes 
(L = 0), which had little effect on the birefringence with the 
d /L ratio chosen to be 0.94. Our comparative calculations 
indicate that a second ring of holes changes the birefringence 
by less than 5 %.

Since the opening width Z depends on d, it is of some 
interest to know how the phase birefringence B varies with 
Z. It can be seen in Fig. 3b that, for Z G  Zc » 1.5, the open-
ing  depth has little or no effect on the birefringence. This 
value of Zc is close to the wavelength the calculations were 
made for.

In subsequent calculations, the shape parameter d was 
taken such that Z = 2.0 mm (5.28° for the 6117cc and 6125cc 
BMFs and 11.9° for the 5227cc and 5243cc BMFs). Figure 4a 
shows the spectral dependences of the phase birefringence B 
and group birefringence G for different BMFs. The B(l) data 
are well fitted by [21]

B(l) = Alg,	 (3)

where A and g are parameters (Table 1), and l is in microns.
The group birefringence G was evaluated using the well-

known relation [21]

.
d
dG B Bl
l
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Substituting (3) into (4) we obtain

G(l) = – (g – 1) B(l).	 (5)

Figure 4b shows the phase birefringence B as a function of 
core diameter D for different BMFs at l = 1.55 mm. The B(D) 
data are well represented by
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Figure 3.  Phase birefringence B as a function of (a) shape parameter d 
and (b) opening width Z for different BMFs: l = 1.55 mm, D = 4.5 mm, 
d /L = 0.94.

Table 1. 

Parameters	 6117сс	 6125сс	 5227сс	 5243сс

A (10–4)	 0.873	 1.114	 1.422	 1.640
g	 2.770	 2.798	 2.768	 2.759
C (10–2)	 1.867	 2.800	 3.049	 3.841
h	 2.761	 2.863	 2.763	 2.829



	 A.N. Denisov, A.E. Levchenko, S.L. Semjonov, E.M. Dianov246

B(D) = CD–h,	 (6)

where C and h are parameters (Table 1), and D is in microns.
It is worth emphasising that the phase and group birefrin-

gences are strong functions of core diameter. For example, 
BMFs with a 5243cc structure and D = 2.5 mm may have 
B ~  3 ́  10–3 and G ~ 5 ́  10–3 at 1.55 mm and a low mode 
asymmetry (w » 0.13).

For many practical applications, in particular for super-
continuum generation, it is important to know group velocity 
dispersion (GVD), which is given by [23, p. 18]

GVD » .
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Figure 5a shows the spectral dependences of group velocity 
dispersion for different BMFs. The zero dispersion wavelength 
of the structures ranges from 1.001 to 1.016 mm. Figure 5b 
presents such data for 6117cc BMFs with different core diam-
eters (D). The zero dispersion wavelength here ranges from 
0.885 to 1.075 mm. Also shown for comparison is the material 
dispersion curve of undoped silica glass.

Comparison of Figs 5a and 5b leads us to conclude that 
the structure of BMFs has a relatively weak effect on the group 

velocity dispersion in the fibres, whereas the core diameter 
has a significant effect.

3.2. Elliptical-core BMFs

Elliptical-core BMFs are of interest here for two reasons: 
first, to accurately calculate the birefringence of real optical 
fibres, whose core is always somewhat elliptical, and, second, 
to reduce the mode asymmetry due to the increased hole-to-
hole distances in the first ring.

Figure 6 shows the phase birefringence B as a function of 
shape parameter d for 6115ec and 5223ec BMFs with different 
core ellipticities, e. The birefringence is seen to be higher than 
that in the circular-core BMFs for e > 1 and lower for e < 1.

Phase birefringence is commonly defined as

B = |nx – ny|,	 (8)

where nx and ny are the effective refractive indices of two ortho
gonally polarised modes. Since the structures under consider-
ation have a special direction, that along the opening, and an 
elliptical core, elongated along or across the opening, we use 
a different expression for the phase birefringence:

B = nx – ny.	 (9)
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Figure 4.  (a) Spectral dependences of the phase birefringence B and 
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This allows us to retain information about the relationship 
between the contributions of the opening and elliptical core to 
the birefringence of the BMF. In particular, for e < 1 there 
are d ranges where B < 0, indicating that the contribution of 
the core ellipticity to the birefringence of the BMF prevails in 
such regions.

Figure 7 shows the phase birefringence B and mode asym-
metry w as functions of core ellipticity e for 6117ec and 5227ec 
BMFs with opening sizes of 1.85 and 1.55 mm. The birefrin-
gence is normalised to the maximum birefringence of the cir-
cular-core analogues, 2.985 ́  10–4 and 5.011 ́  10–4 (Fig. 6, data 
for e = 1.0). It can be seen from Fig. 7 that, with increasing 
opening width, the mode asymmetry parameter of circular-
core (e = 1.0) 6117ec BMFs increases from 0.04 to 0.06 and 
that of circular-core 5227ec BMFs increases from 0.08 to 0.10. 
It is worth pointing out that the w values obtained indicate 
that the mode asymmetry in these BMFs is substantially lower 
than that in the standard BMFs considered by Labonte et al. 
[21]. In particular, the w values of the mode field profiles cal-
culated by Choi et al. [13] and Lee et al. [22] for BMFs are 
~0.45 and ~0.36, respectively, exceeding those of our BMF 
structures by almost one order of magnitude.

It can be seen from Fig. 7 that, at Z = 1.55 mm, the mode 
field in the 6117ec BMF with e = 0.9 and in the 5227ec BMF 
with e = 0.8 has roughly equal x-axis and y-axis sizes (w » 0). 
This is possible because an increased hole-to-hole distance and 
BMF core ellipticity have different effects on the birefrin-

gence and mode asymmetry in the fibre. More precisely, a 
relatively small opening ensures an increased birefringence, 
whereas the mode asymmetry remains rather low and can be 
fully compensated by using a certain core ellipticity, which 
will slightly reduce the birefringence. Of particular interest in 
this context is the 5227ec BMF with Z = 1.85 mm: its birefrin-
gence is a weak function of core ellipticity.

Thus, the proposed BMF geometries, with one or two 
openings between holes in the first ring, allow for high bire-
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fringence at low mode asymmetry. If necessary, the mode asym-
metry can be compensated by a slight core ellipticity. This 
allows one to adjust the relationship between the birefringence 
and mode asymmetry parameter to a particular problem.

As an illustration, Fig. 8 shows the mode field profile 
(contours of constant intensity) calculated for a 5227ec BMF 
with two identical openings 1.55 mm in size.

4. Conclusions

We have proposed a novel design of birefringent microstruc-
tured fibres. Its key features are that there is one or several 
concentric rings of holes of the same diameter around an 
elliptical or circular core and that the holes are the same dis-
tance apart except for one or two pairs of holes in the first 
ring, which are a greater distance apart. Using the finite ele-
ment method, we have analysed the birefringence and disper-
sion characteristics of the BMFs. We examined the influence 
of the core size and shape parameters on the phase and group 
birefringences of the BMFs and the spectral dependences of 
group velocity dispersion for different fibre geometries. The 
results indicate that the proposed BMF design ensures high 
birefringence (~5 ́  10–3) at a low mode asymmetry. At a cer-
tain core ellipticity, the BMF configurations considered may 
have equal mode field sizes along two orthogonal axes.

We note that, depending on the particular problem, input 
geometric parameters and conceivable structures, one should 
perform comparative calculations for BMF structures with 
different numbers of holes in the first ring in order to find the 
optimum number, which maximises the birefringence at a 
preset mode asymmetry.
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