
Abstract. We have proved for the érst time and proposed an
algorithm of unique spatial proéle reconstruction of the
components v �3�yyyy of complex tensors v̂ �3� (z;x 0;x 0;ÿx;x)
and v̂ �3� (z; 2x� x 0;�x 0;x;x), describing four-photon inter-
action of light waves in a one-dimensionally inhomogeneous
plate, whose medium has a symmetry plane my that is
perpendicular to its surface. For the media with an additional
symmetry axis 2z, 4z, 6z or 1z that is perpendicular to the
plate surface, the proposed method can be used to reconstruct
about one-éfth of all independent components of the above
tensors.

Keywords: cubic susceptibility, one-dimensionally inhomogeneous
medium, inverse problem, reêection coefécient, transmission coefé-
cient, conversion factor.

Reconstruction of the spatial dependence of nonlinear
optical properties of one-dimensionally inhomogeneous
structures is becoming a popular practical problem [1 ë 3].
We proposed for the érst time [4] a method for unique
reconstruction of proéles of some components of the cubic
nonlinearity tensor ŵ �3� (z,o,ÿo,o,o) in a one-dimension-
ally inhomogeneous plate. It was assumed that its dielectric
properties vary only along the z axis, that is perpendicular
to two parallel êat surfaces of the plate, and are arbitrary
frequency-dependent. In this paper we prove that a similar
method can be used to uniquely determine the coordinate
dependence of the complex components of the tensor
ŵ �3� (z,o 0,o 0,ÿo,o), ŵ �3� (z, 2oÿ o 0,ÿo 0,o,o) and
ŵ �3� (z, 2o� o 0,o 0,o,o), responsible for frequently used
in practice four-photon nonlinear interactions of two waves
with different frequencies [5]. Such a reconstruction can be
implemented using two series of experiments on the
interaction between a plate and signal waves with
frequencies o1 and o2, incident on the plate at different
angles within a certain range of angles, in the presence of a

high-power wave with the frequency o3; in this case,
o3 � 0:5(o1 � o2) or o3 � 0:5(o2 ÿ o1).

Consider a plate, which borders linear homogeneous
isotropic nonabsorbing and nondispersive media with the
real permittivity e0 along the planes z � z1 and z � z2
(z2 > z1). We assume that the point symmetry groups of
the various layers of a one-dimensionally inhomogeneous
plate are such that one of their common elements of
symmetry is a symmetry plane perpendicular to the surfaces
of the plate. Let us direct the axis x ? z along this symmetry
plane. Suppose that a low-intensity s-polarised plane signal
wave propagating in the positive or negative direction of the
z axis is incident on a plate at an angle a1. In the érst case,
its electric éeld strength is equal to E1�ey expfi�o1tÿ
kxxÿ k1z(zÿ z1)�g � c:c: (for z < z1), and in the second
case, it is equal to E1ÿey expfi�o1tÿ kxx� k1z(zÿ z2)�g�
c.c (for z > z2). Here, ey is the unit vector perpendicular to
the incidence plane; kx � k01 sin a1; k1z � k01 cos a1; k01 �
o1

����
e0
p

=c; c is the speed of light in a vacuum. Suppose,
moreover, that a plane high-power fundamental wave with
frequency o3 falls on a plate, perpendicular to its surface in
the positive direction of the z axis; for z < z1 the electric éeld
vector of this wave is equal to E0ey expfi�o3tÿ
k03(zÿ z1)�g � c:c:, where k03 � o3

����
e0
p

=c. In other words,
we consider simultaneously two independent problems. In
the érst problem a high-power and signal waves fall on the
same side of the plate under study (subscript `plus'). In the
second problem they fall on the opposite sides of the plate
(subscript `minus'). In the experiment use can be made of
any of these measurement schemes, and if necessary to
obtain results with high accuracy, measurements can be
carried out using both schemes.

We assume for deéniteness that the frequencies o3 and
o1, where o1 < 2o3, and nonlinear dielectric properties of
the plate medium are such that if the plate is exposed to a
high-power wave with frequency o3 and to a fairly weak
signal wave with frequency o1, only three waves effectively
interact in the medium, namely one high-power wave
Ef (z)ey exp (io3t)� c:c. and two weak waves ë an original
signal wave Es1�(z)ey exp�i(o1tÿ kxx)� � c:c: and a new
wave Es2�(z)ey exp�i(o2t� kxx)� � c:c:, produced in a non-
linear medium. Hereinafter, o2 � 2o3 ÿ o1. The new wave
Es2�(z)ey exp�i(o2t� kxx)� � c:c: arises as a result of non-
linear interaction of a high-power and signal waves, the
interaction being described by the cubic susceptibility tensor
ŵ �3�(z, ~o1 � ~o2 � ~o3, ~o1, ~o2, ~o3).

Our assumption, in particular, means that the nonlinear
interaction of a new and high-power waves, affecting the
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propagation of the original signal wave, does not lead to any
noticeable generation of the waves with other frequencies.
Then, taking into account self-action of a high-power wave
and weak signal and new waves in the linear approximation
in the amplitudes, for the selected polarisation of the
incident waves due to the presence of the local symmetry
plane my in the medium, only the y component of electric
induction vector in the plate is different from zero [6]:

Dy� �
�
eyy�z;o3� � 4pw �3�yyyy�z;o3;ÿo3;o3;o3�jEfj2

�
Ef

� exp�io3t��
��
eyy�z;o1�� 8pw �3�yyyy�z;o1;o1;ÿo3;o3�jEfj2

�
�Es1� � 4pw �3�yyyy�z;o1;ÿo2;o3;o3�E 2

f E
�
s2�
	

� exp�i�o1tÿ kxx�� �
��
eyy�z;o2�

� 8pw �3�yyyy�z;o2;o2;ÿo3;o3�

� jEfj2
�
Es2� � 4pw �3�yyyy�z;o2;ÿo1;o3;o3�E 2

f E
�
s1�
	

� exp�i�o2t� kxx�� � c:c: (1)

Substituting (1) into the wave equation for the electric éeld
strength and equating separately the terms that do not
depend on the coordinate x and the terms that are
proportional to exp�i(o1tÿ kxx)� and exp�i(o2t� kxx)�,
after some transformations we obtain

d2Ef

dz 2
� 0:5o 2

3 �eyy�z;o3�en3�z��
Ef

c 2
� 0, (2)

d2Es1�
dz 2

�
�
o 2

1 en1�z�
c 2

ÿ l
�
Es1� �

o 2
1 r12�z�E �s2�

c 2
� 0,

(3)
d2E �s2�
dz 2

�
�
o 2

2 e
�
n2�z�
c 2

ÿ l
�
E �s2� �

o 2
2 r
�
21�z�Es1�
c 2

� 0,

where l�k 2
x ; r12(z)�4pw �3�yyyy(z,o1,ÿo2,o3,o3)E

2
f (z);

r21(z)� 4pw �3�yyyy(z,o2,ÿo1,o3,o3)E
2
f (z); enk(z)�eyy(z,ok)�

8pw �3�yyyy(z, ok,ok,ÿ o3,o3)jEf (z)j2; k � 1, 2, 3.
Now suppose that instead of a signal wave with

frequency o1, the same plate is exposed to a signal wave
with frequency o2 � 2o3 ÿ o1 at an angle a2 such that
k02 sin a2 � kx, where k02 � o2

��
e
p

0=c. The electric éeld
strength of the signal wave is equal to E2�ey�
expfi�o2tÿ kxxÿ k2z(zÿ z1)�g � c:c: as it propagates in
the positive direction of z axis (z < z1) and to E2ÿey�
expfi�o2tÿ kxx� k2z(zÿ z2)�g � c:c. as it propagates in the
negative direction of z axis (z > z2). Here, k2z � k02 cos a2
and we assume that kx < k02.

It follows from the previously formulated hypothesis
that the nonlinear interaction of this signal wave with the
high-power wave Ef (z)ey exp (io3t)� c:c: propagating in the
plate will lead to the emergence of a new weak wave with
frequency o1 � 2o3 ÿ o2, whose electric éeld strength is
Es1�(z)ey exp�i(o1t� kxx)� � c:c: In this case, the equations,
describing the change in the values of Es1�(z) and E �s2�(z) in
the plate, will still have the form of (3).

Thus, when the signal wave Esq�(z) with frequency oq

propagates in the plate, the resultant nonlinear interaction
leads to the emergence of a new wave Esl�(z) with frequency

ol. Hereinafter, q � 1, 2 and l � 2 at q � 1 and l � 1 at
q � 2, i.e., l � 1� dq1, where dij is the Kronecker delta. The
new wave arising in the plate continues to spread in the
adjacent homogeneous linear media in the form of a wave
E
�l1�
s� ey expfi�olt� kxx� klz(zÿ z1)�g � c:c: in the region

z < z1 and in the form of a wave E
�l2�
s� ey expfi�olt� kxx

ÿ klz(zÿ z2)�g � c:c: in the region z > z2. At the same time,
the quantities E

�l1�
s� , E �l2�s� and Esl�(z) on the plate surfaces

meet the Maxwell boundary conditions:

Esl��z1� � E
�l1�
s� ,

dEsl�
dz

����
z�z1
� iklzE

�l1�
s� ,

Esl��z2� � E
�l2�
s� ,

dEsl�
dz

����
z�z2
� ÿiklzE �l2�s� .

Thus, this paper describes simultaneously four different
situations. Propagation of a signal and new waves in these
situations is described by the system of equations (3), but the
boundary conditions in each of them are different. Below we
present the boundary conditions for each of the situations
under study. If the signal wave with frequency o1 is incident
on the plate from the region z < z1, then the boundary
conditions have the form

Es1��z1� � �1� R1��E1�, Es1��z2� � T1�E1�,

dEs1�
dz

����
z�z1
� ÿik1z�1ÿ R1��E1�,

dEs1�
dz

����
z�z2
� ÿik1zT1�E1�,

E �s2��z1� �
ÿ
E
�21�
s�

�� � G
�21�
� E1�, (4.1)

E �s2��z2� �
ÿ
E
�22�
s�

�� � G
�22�
� E1�,

dE �s2�
dz

����
z�z1
� ÿik2zG �21�� E1�,

dE �s2�
dz

����
z�z2
� ik2zG

�22�
� E1�.

In the case when the signal wave with frequency o1 is
incident on the plate from the region z > z2, the boundary
conditions are given by the expressions

Es1ÿ�z1� � T1ÿE1ÿ, Es1ÿ�z2� � �1� R1ÿ�E1ÿ,

dEs1ÿ
dz

����
z�z1
� ik1zT1ÿE1ÿ,

dEs1ÿ
dz

����
z�z2
� ik1z�1ÿ R1ÿ�E1ÿ,

E �s2ÿ�z1� �
ÿ
E
�21�
sÿ

�� � G �21�ÿ E1ÿ, (4.2)

E �s2ÿ�z2� �
ÿ
E
�22�
sÿ

�� � G �22�ÿ E1ÿ,

dE �s2ÿ
dz

����
z�z1
� ÿik2zG �21�ÿ E1ÿ,

Spatial proéle reconstruction of individual components of the nonlinear susceptibility 535



dE �s2ÿ
dz

����
z�z2
� ik2zG

�22�
ÿ E1ÿ.

When the signal wave with frequency o2 falls on the plate
from the region z < z1, they have the form

Es1��z1� � E
�11�
s� � ÿG �11�� E2�

��
,

Es1��z2� � E
�12�
s� � ÿG �12�� E2�

��
,

dEs1�
dz

����
z�z1
� ik1z

ÿ
G
�11�
� E2�

��
,

dEs1�
dz

����
z�z2
� ÿik1z

ÿ
G
�12�
� E2�

��
, (4.3)

E �s2��z1� �
ÿ
1� R �2�

�
E �2�, E �s2��z2� � T �2�E

�
2�,

dE �s2�
dz

����
z�z1
� ik2z

ÿ
1ÿ R �2�

�
E �2�,

dE �s2�
dz

����
z�z2
� ik2zT

�
2�E

�
2�.

In the latter case, when the signal wave with frequency o2 is
incident on the plate from the region z > z2, the boundary
conditions are given by the formulas

Es1ÿ�z1� � E
�11�
sÿ � ÿG �11�ÿ E2ÿ

��
,

Es1ÿ�z2� � E
�12�
sÿ � ÿG �12�ÿ E2ÿ

��
,

dEs1ÿ
dz

����
z�z1
� ik1z

ÿ
G �11�ÿ E2ÿ

��
,

dEs1ÿ
dz

����
z�z2
� ÿik1z

ÿ
G �12�ÿ E2ÿ

��
, (4.4)

E �s2ÿ�z1� � T �2ÿE
�
2ÿ, E �s2ÿ�z2� �

ÿ
1� R �2ÿ

�
E �2ÿ,

dE �s2ÿ
dz

����
z�z1
� ÿik2zT �2ÿE �2ÿ,

dE �s2ÿ
dz

����
z�z2
� ÿik2z

ÿ
1ÿ R �2ÿ

�
E �2ÿ.

Here Rq� and Rqÿ are the amplitude coefécients of
reêection of signal waves Eq� and Eqÿ from the plate;
Tq� and Tqÿ are the amplitude coefécients of transmission
of these waves through the plate; G

�l1�
� � (E

�l1�
s� )�=Eq�,

G
�l2�
� � (E

�l2�
s� )�=Eq� are the conversion coefécients of the

signal wave Eq�. The latter characterise the conversion
eféciency of the signal wave with frequency oq into two
waves with frequency ol, propagating on opposite sides of
the plate. Given the linearity of boundary conditions (4)
with respect to E1� and E �2�, and the linearity of the system
of equations (3) with respect to Es1�(z) and E �s2�(z), we énd
that all introduced coefécients are independent of Eq�.
Recall that a high-power fundamental wave in all four cases
falls onto the plate in the positive direction of the z axis.

If the dependences en1(z), en2(z), r12(z) and r21(z) are
known, then by solving system (3), (4) we can uniquely
calculate the coefécients Rq�, Tq�, G

�l1�
� , G �l2�� for any angles

of incidence of a plane wave signal with frequency oq and,
hence, solve the direct problem. We are interested in a more
complex inverse problem: determination of en1(z), en2(z),
r12(z) and r21(z) for a layer of given thickness by eight
amplitude complex coefécients of reêection, transmission
and conversion of signal waves, namely, Rq�, Tq�, G

�qv�
� or

Rqÿ, Tqÿ, G
�qv�
ÿ (v � 1, 2), known for a certain interval of

angles of incidence. In Appendix 1 we prove that if such an
inverse problem has a solution then it is unique. At the same
time, components w �3�yyyy(z,o1,o1,ÿo3,o3), w �3�yyyy(z,o2,o2,
ÿo3,o3), w

�3�
yyyy(z,o1,ÿo2,o3,o3) and w �3�yyyy(z,o2,ÿo1,o3,

o3) can be reconstructed, in particular, by énding a single
zero minimum of a specially constructed functional on test
functions, describing the coordinate dependence of the
dielectric properties of the investigated plate. Principles
of construction of such a functional are described in detail
in [4], and its form is given in Appendix 2. In this case, the
proéles eyy(z,ok) (k � 1, 2, 3) of the linear permittivity of
the medium (the reconstruction method of such proéles was
proposed in [7] and tested in a numerical experiment in [8])
and the distribution of the electric éeld Ef (z) of a high-
power wave in the medium [4] are considered to be known.
Note that changing two of the three frequencies or all the
three frequencies (o1, o2 and o3), we can obtain informa-
tion not only about the spatial proéle, but also about the
frequency dispersion of the components w �3�yyyy of the tensors
ŵ �3�(z,o 0,o 0,ÿo,o) and ŵ �3�(z, 2oÿ o 0, ÿo 0,o,o).

Until now, we have assumed that the medium forming a
layer has only a symmetry plane my that is perpendicular to
its surface. We now consider media with the symmetry axis
2z, 4z, 6z or 1z. Without changing polarisation of a high-
power pump wave, we will change polarisation by 908 and
rotate the plane of the signal wave incidence by 908:

E1�ex expfi�o1tÿ kyy� k1z�zÿ z1;2��g � c:c:

or

E2�ex expfi�o2tÿ kyy� k2z�zÿ z1;2��g � c:c:,

where ky � k01 sin a1 � k02 sin a2. Then, in the above for-
mulated approximations, the expression for the nonzero
components of the electric induction vector will have the
form [6]:

Dx� �
��
exx�z;o1� � 8pw �3�xxyy�z;o1;o1;ÿo3;o3�jEfj2

�
Es1�

� 4pw �3�xxyy�z;o1;ÿo2;o3;o3�E 2
f E
�
s2�
	
exp�i�o1tÿ kyy��

���exx�z;o2� � 8pw �3�xxyy�z;o2;o2;ÿo3;o3�jEfj2
�
Es2�

� 4pw �3�xxyy�z;o2;ÿo1;o3;o3�E 2
f E
�
s1�
	

� exp�i�o2t� kyy�� � c:c:,

Dy� �
�
eyy�z;o3� � 4pw �3�yyyy�z;o3;ÿo3;o3;o3�jEfj2

�
Ef

� exp�iot� � c:c:
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Because the parameters of a high-power pump wave
remained unchanged, equation (2) and the dependence of
Ef (z) do not change compared with the previous geometry.
Boundary conditions (4) also retain their form. Equations
for Es1�(z) and E �s2�(z) still have the form of (3), but with
the parameter l replaced by ~l � k 2

y , the coefécients enq(z)
replaced by ~enq(z) � exx(z,oq)�8pw �3�xxyy(z,oq,oq,ÿo3,o3)�
jEf (z)j2, and rql (z) replaced by ~rql (z)�4pw �3�xxyy(z,oq,ÿol,
o3,o3)E

2
f (z) (q �1, 2; l �1�dq1).

Therefore, by measuring new coefécients of transmission
(R1ÿ, R2ÿ), reêection (T1ÿ, T2ÿ) and conversion [G �qv�ÿ ,
v � 1, 2] for each of the signal waves in some interval of
angles of incidence, we can uniquely reconstruct the depend-
ences ~en1(z), ~en2(z), ~r12(z) and ~r21(z) and, hence, the proéles
of the components w �3�xxyy(z,o1,o1, ÿo3,o3),
w �3�xxyy(z,o2,o2,ÿo3,o3), w �3�xxyy(z,o1,ÿo2,o3,o3) and
w �3�xxyy(z,o2,ÿo1,o3,o3):

w �3�xxyy�z;oq;oq;ÿo3;o3� � ~enq�z� ÿ
exx�z;oq�
8pjEf�z�j2

,

w �3�xxyy�z;oq;ÿol;o3;o3� �
~rql�z�

4pE 2
f �z�

.

Recall that the spatial distribution of the electric éeld Ef (z)
of a high-power wave in the plate can be reconstructed
using the method proposed in [4]. A change in two of the
three frequencies or in all the three frequencies (o1, o2 and
o3), which does not violate the equality o1 � o2 � 2o3,
makes it possible to study the frequency dispersion of the
component w �3�xxyy of the tensors ŵ �3� (z,o 0,o 0,ÿo,o) and
ŵ �3� (z, 2oÿ o 0, ÿo 0,o,o). For media with the axis of
symmetry of the lowest order (2z), we can also reconstruct
the proéles and to investigate the frequency dispersion of
the components w �3�xxxx, w

�3�
yyxx of these tensors. To do this, we

should rotate the plate by 908 around the z axis and fully
repeat all the above measurements. For media with the
symmetry axis 4z, 6z or 1z, these extra measurements are
not necessary, since for them w �3�xxxx � w �3�yyyy and w �3�xxyy � w �3�yyxx

[6].
Until now we believed that o1 < 2o3. We can consider

also the case o1 > 2o3. Then, o2 � o1 ÿ 2o3 and the
interaction of three waves with frequencies o3, o1 and
o2 is described by the components w �3�yyyy, w

�3�
xxxx, w

�3�
yyxx or w �3�xxyy

(depending on the symmetry of the medium and the
orientation of the planes of incidence of an s-polarised
high-power and signal waves) of the tensors
ŵ �3� (z,o1,o1,ÿo3,o3), ŵ

�3� (z,o2,o2,ÿo3,o3), ŵ
�3� (z,o1,

o2,o3,o3) and ŵ �3� (z,o2,o1,ÿo3,ÿo3). Therefore, their
proéles can be reconstructed as described above. Changing
two of the three frequencies, or all the three frequencies (o1,
o3, and o2), we can investigate the frequency dispersion of
the corresponding components of the cubic nonlinearity
tensors ŵ �3� (z,o 0,o 0,ÿo,o), ŵ �3� (z, 2o� o 0,o 0,o,o) and
ŵ �3� (z,o 0 ÿ 2o,o 0,ÿo,ÿo). In this case, the possibility of
reconstructing from one to four components of these tensors
is determined by the local spatial symmetry of the medium
of the studied inhomogeneous plate. As is known, the
spatial symmetry of one-dimensionally inhomogeneous
media, strictly speaking, refers to one of ten classes
(1, 2, m, mm2, 3, 4, 6, 3m, 4mm, 6mm) or to two limiting
symmetry groups (1, 1m) [4]. Unfortunately, our method
does not make it possible to determine and control the cubic
nonlinearity of one-dimensionally inhomogeneous media

with the symmetry classes 1, 2, 3, 4, 6 and 1. For media
with the symmetry m (more precisely my) or 3m, we can
reconstruct only the component w �3�yyyy of each of the above
tensors. The components w �3�yyyy, w

�3�
xxyy, w

�3�
xxxx and w �3�yyxx of these

tensors can be found for the media with the symmetry
classes mm2. In addition, for media with the symmetry class
4mm, 6mm or 1m, we can reconstruct the components
w �3�yyyy � w �3�xxxx and w �3�xxyy � w �3�yyxx. Finally, for media with the
symmetry classes mm2, 4mm, 6mm or 1m it is possible to
reconstruct approximately one-éfth of all independent
components of the cubic nonlinearity tensors
ŵ �3� (z,o 0,o 0,ÿo,o) as well as ŵ �3� (z, 2oÿ o 0,
ÿo 0,o,o) and (or) ŵ �3� (z, 2o� o 0,o 0,o,o).

Thus, we have fully investigated the case when the
frequencies of the used waves and nonlinear properties
of the plate are such that in the case of incidence of a
high-power wave with frequency o3 and of a relatively weak
signal wave with frequency o1 on the plate, only one new
wave is eféciently generated in it. In this case, the nonlinear
interaction of the latter with a high-power wave affects the
propagation of the signal wave, but does not lead to any
noticeable generation of waves with other frequencies. The
frequency of this new wave o2 can be equal to 2o3 ÿ o1 (at
o1 < 2o3), o1 ÿ 2o3 (at o1 > 2o3) or o1 � 2o3. Note that
the last two cases are physically equivalent, since they are
obtained one from another by replacing the indices 1$ 2.

The obtained results can be generalised to more com-
plicated cases, when a medium with a cubic nonlinearity
exhibits effective interaction of one high-power wave and
three (or more) weak waves affecting propagation of each
other only through interaction with a high-power wave,
which does not lead to the generation of waves with other
frequencies. Such a situation occurs, for example, if the
medium exhibits possible effective interaction between a
high-power wave with frequency o3 and three weak waves
with frequencies o1, 2o3 � o1 and 2o3 ÿ o1 (or o1 ÿ 2o3)
and there does not appear any noticeable generation of
waves at other frequencies (e.g., at a frequency 4o3 � o1).
However, in this case, reconstruction of the corresponding
components of the nonlinear susceptibility tensor
ŵ �3� (z, ~o1 � ~o2 � ~o3, ~o1, ~o2, ~o3) will require three series
of measurements. In each of these series, for different
angles of incidence it is necessary to determine the trans-
mission and reêection coefécients of the signal wave with
one of the three frequencies and four conversion coefécients
of this signal wave into weak waves with other two
frequencies. As a result, the number of necessary measure-
ments increases more than twofold compared to the case
described in detail in this paper.

Appendix 1. Proof of the uniqueness
of the solution of the inverse
electrodynamic problem

Recall that for a suféciently wide class of functions en1(z),
en2(z), r12(z) and r21(z) (piecewise continuous and bounded,
or even only integrable [9]) the system of equations (3) has
continuously differentiable solutions that we will sometimes
write for brevity in the form of a column

j
$�z� � jh

jg

� �
� Es1��z�

E �s2��z�
� �

.
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Let the columns j
$
m(z, l), where m � 1, 2, 3, 4, be the

solutions of system (3) with boundary conditions

j
$
1�z1; l� � 1

0

� �
,

dj
$
1�z; l�
dz

����
z�z1
� 0

0

� �
,

j
$
2�z1; l� � 0

1

� �
,

dj
$
2�z; l�
dz

����
z�z1
� 0

0

� �
,

(A1.1)

j
$
3�z1; l� � 0

0

� �
,

dj
$
3�z; l�
dz

����
z�z1
� 1

0

� �
,

j
$
4�z1; l� � 0

0

� �
,

dj
$
4�z; l�
dz

����
z�z1
� 0

1

� �
.

Then for any l they form a fundamental system of
solutions of equations (3), and the solutions j$�1�� (z, l),
j
$�1�
ÿ (z, l), j$�2�� (z, l) and j

$�2�
ÿ (z, l) of four problems (3),

(4) can be written as

j$�q�� �z; l� � C
�q�
1� j
$
1�z; l� � C

�q�
2� j
$
2�z; l�

�C
�q�
3� j
$
3�z; l� � C

�q�
4� j
$
4�z; l�, (A1.2)

where q � 1 corresponds to the case when a signal wave
with frequency o1 is incident on the plate, and q � 2
corresponds to the case when a signal wave with frequency
o2 is incident on the plane; the plus sign corresponds to the
incidence of the signal wave in the positive direction of z
axis, and the minus sign ë in the negative direction.

Consider the most important and easily implemented
experimentally case l 2 (0, minfk 2

01, k
2
02g), when k1z and k2z

are real values. Substituting j$�q�� from (A1.2) in (4) and
using (A1.1), we obtain the expressions for the coefécients
C
�q�
m�:

C
�1�
1� � �1� R1��E1�, C

�1�
1ÿ � T1ÿE1ÿ, C

�1�
2� � G

�21�
� E1�,

C
�1�
3� � ÿik1z�1ÿ R1��E1�, C

�1�
3ÿ � ik1zT1ÿE1ÿ,

C
�1�
4� � ÿik2zG �21�� E1�, C

�2�
1� �

ÿ
G
�11�
� E2�

��
,

C
�2�
2� � ��1� R2��E2���, C

�2�
2ÿ � �T2ÿE2ÿ��,

C
�2�
3� � ik1z

ÿ
G
�11�
� E2�

��
, C

�1�
4� � ik2z��1ÿ R2��E2���,

C
�2�
4ÿ � ÿik2z�T2ÿE2ÿ��.

In addition, we énd sixteen linear equations relating the
elements of columns j

$
m(z, l) and their derivatives at point

z � z2 with coefécients Rq�, Tq� and G
�qv�
� (q � 1, 2,

v � 1, 2):

T1ÿ f1 � G �21�ÿ f2 � 1� R1ÿ,
ÿ
G �11�ÿ

��
f1 � T �2ÿ f2 �

ÿ
G �12�ÿ

��
,

(A1.3)

T1ÿ f3 � G �21�ÿ f4 � G �22�ÿ ,
ÿ
G �11�ÿ

��
f3 � T �2ÿ f4 � 1� R �2ÿ,

R1� f1� G
�21�
� f2 � f5 � T1�,

ÿ
G
�11�
�
��
f1 � R �2� f2 � f6 �

ÿ
G
�12�
�
��
,

R1� f3� G �21�� f4 � f7 � G �22�� ,
ÿ
G �11��

��
f3� R �2� f4 � f8 � T �2�,

T1ÿ f9 � G �21�ÿ f10 � ik1z�1ÿ R1ÿ�,ÿ
G �11�ÿ

��
f9 � T �2ÿ f10 � ÿik1z

ÿ
G �12�ÿ

��
,

R1� f9 � G
�21�
� f10 � f13 � ÿik1zT1�, (A1.4)ÿ

G
�11�
�
��
f9 � R �2� f10 � f14 � ÿik1z

ÿ
G
�12�
�
��
,

T1ÿ f11 � G �21�ÿ f12 � ik2zG
�22�
ÿ ,

ÿ
G �11�ÿ

��
f11 � T �2ÿ f12 � ÿik2z�1ÿ R �2ÿ

�
,

R1� f11 � G
�21�
� f12 � f15 � ik2zG

�22�
� ,

ÿ
G
�11�
�
��
f11 � R �2� f12 � f16 � ik2zT

�
2�.

In (A1.3), (A1.4) we have used the notations

f1;5�k1z� � C1h�l� � ik1zC3h�l�,

f2;6�k2z� � C2h�l� � ik2zC4h�l�,

f3;7�k1z� � C1g�l� � ik1zC3g�l�,

f4;8�k2z� � C2g�l� � ik2zC4g�l�, (A1.5)

f9;13�k1z� � C1hz�l� � ik1zC3hz�l�,

f10;14�k2z� � C2hz�l� � ik2zC4hz�l�,

f11;15�k1z� � C1gz�l� � ik1zC3gz�l�,

f12;16�k2z� � C2gz�l� � ik2zC4gz�l�,

where

Cmhz�l� �
djmh�z; l�

dz

����
z�z2

; Cmgz�l� �
djmg�z; l�

dz

����
z�z2

;

Cmh�l� � jmh�z2; l�; Cmg�l� � jmg�z2; l�.
From equations (A1.3), (A1.4) and the constancy of the
Wronskian of (3), we can, in particular, obtain that D0 �
T1�T

�
2� ÿ

ÿ
G
�12�
�
��
G
�22�
� � T1ÿT

�
2ÿ ÿ

ÿ
G �11�ÿ

��
G �21�ÿ 6� 0 at

k1zk2z 6� 0.
Thus, for l 2 (0, minfk 2

01, k
2
02g) from equations (A1.3)

we can énd the functions f1(k1z), f2(k2z), f3(k1z) and f4(k2z):

f1�k1z� �
T �2ÿ�1� R1ÿ� ÿ G �21�ÿ

ÿ
G �12�ÿ

��
D0

,
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f2�k2z� �
T1ÿ

ÿ
G �12�ÿ

�� ÿ �1� R1ÿ�
ÿ
G �11�ÿ

��
D0

,

(A1.6)

f3�k1z� �
T �2ÿG

�22�
ÿ ÿ �1� R �2ÿ�G �21�ÿ

D0

,

f4�k2z� �
T1ÿ�1� R �2ÿ� ÿ G �22�ÿ

ÿ
G �11�ÿ

��
D0

.

On the other hand, the system of equations (3), obtained
for nonnegative values of l, can formally be considered at
all, including complex, values of l. For each éxed
z 2 �z1, z2� its solutions jmh(z, l) and jmg(z, l) are the
single-valued analytic functions of l without any singular
points in the énal part of the plane, i.e., integer functions of
l [9, 10]. Hence, Cmh and Cmg are also integer functions of
l and, therefore, k 2

1z � k 2
01 ÿ l or k 2

2z � k 2
02 ÿ l. The latter

means that Cmh and Cmg are even integer functions of k1z
or k2z, while f1;3 and f2;4 by the deénitions (A1.5) are the
integer functions of k1z and k2z, respectively. Given the
parity of the functions Cmh and Cmg relative to k1z;2z from
(A1.5) we obtain the relations:

C1h;1g�l� �
f1;3�k1z� � f1;3�ÿk1z�

2
,

C3h;3g�l� �
f1;3�k1z� ÿ f1;3�ÿk1z�

2ik1z
,

(A1.7)

C2h;2g�l� �
f2;4�k2z� � f2;4�ÿk2z�

2
,

C4h;4g�l� �
ÿf2;4�k2z� � f2;4�ÿk2z�

2ik2z
,

where l � k 2
x � k 2

01 ÿ k 2
1z � k 2

02 ÿ k 2
2z. Applying the results

of [11] to system (3), we immediately obtain that to
determine unambiguously en1(z), en2(z), r12(z) and r21(z) it is
sufécient to know Cmh and Cmg on the whole complex
plane of l values.

Let the coefécients T1ÿ, R1ÿ, G
�2v�
ÿ (v � 1, 2) be known

for some interval of angles of incidence 0 < a �1�1 4
a1 4a �2�1 < p=2 and the coefécients T2ÿ, R2ÿ, G

�1v�
ÿ ë for

some interval 0 < a �1�2 4a2 4a �2�2 < p=2. In this case,
k01 sin a

�1�
1 � k02 sin a

�1�
2 and k01 sin a

�2�
1 � k02 sin a

�2�
2 .

Then, using (A1.6), for real values of k1z 2
�k01 cos a �2�1 , k01 cos a

�1�
1 � and k2z 2 �k02 cos a �2�2 , k02 cos a

�1�
2 �

we can énd f1;3(k1z� and f2;4(k2z), which are the integer
functions. This is sufécient for their unambiguous analytical
continuation onto the whole complex plane of k1z and k2z
values, respectively [10]. Knowing f1;3(k1z� and f2;4(k2z), and
using (A1.7) we can énd Cmh(l) and Cmg(l) for any l, and
thus uniquely determine en1(z), en2(z), r12(z) and r21(z). A
similar result can be obtained using the known coefécients
T1�, R1�, G

�2v�
� and T2�, R2�, G

�1v�
� .

Appendix 2. Functional for the unique
reconstruction of proéles of the coefécients
e n1�z�, e n2�z�, r12(z) and r21(z) in the system
of equations (3)

Suppose that for some range K of values kx we exactly
know the coefécients of transmission, reêection and

conversion of the signal waves with frequencies o1 and
o2 for a layer whose boundaries have coordinates z � z1
and z � z2. In other words, we know Tq�(kx), Rq�(kx),
G
�qv�
� (kx) and (or) Tqÿ(kx), Rqÿ(kx), G �qv�ÿ (kx). To recon-

struct the coefécients en1(z), en2(z), r12(z) and r21(z) of the
system of equations (3) we énd eight solutions

j
$
p�z; l� �

jhp

jgp

� �
( p � 1, 2, 3, . . . , 8)

of an auxiliary system of equations with four test functions
qij (z), coinciding with system (3) at q11(z)� en1(z),
q22(z)� en2(z), q12(z)� r12(z), q21(z)� r21(z):

d2jh

dz 2
�
�
o 2

1 q11�z�
c 2

ÿ l
�
jh �

o 2
1 q12�z�jg

c 2
� 0,

(A2.1)

d2jg

dz 2
�
�
o 2

2 q
�
22�z�
c 2

ÿ l
�
jg �

o 2
2 q
�
21�z�jh

c 2
� 0.

Eight solutions (A2.1) we are interested in satisfy the
boundary conditions:

jh1�z1� � ah2,
djh1

dz

����
z�z1
� bh2,

jg1�z1� � ag2,
djg1

dz

����
z�z1
� bg2,

jh2�z2� � ah1,
djh2

dz

����
z�z2
� bh1,

jg2�z2� � ag1,
djg2

dz

����
z�z2
� bg1,

jh3�z1� � ah4,
djh3

dz

����
z�z1
� bh4,

jg3�z1� � ag4,
djg3

dz

����
z�z1
� bg4,

jh4�z2� � ah3,
djh4

dz

����
z�z2
� bh3,

jg4�z2� � ag3,
djg4

dz

����
z�z2
� bg3,

(A2.2)

jh5�z1� � ah6,
djh5

dz

����
z�z1
� bh6,

jg5�z1� � ag6,
djg5

dz

����
z�z1
� bg6,

jh6�z2� � ah5,
djh6

dz

����
z�z2
� bh5,

jg6�z2� � ag5,
djg6

dz

����
z�z2
� bg5,
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jh7�z1� � ah8,
djh7

dz

����
z�z1
� bh8,

jg7�z1� � ag8,
djg7

dz

����
z�z1
� bg8,

jh8�z2� � ah7,
djh8

dz

����
z�z2
� bh7,

jg8�z2� � ag7,
djg8

dz

����
z�z2
� bg7.

Here, ah1;h4 �T1�; ah2;h3 �1� R1�; ah5;h7 � (G
�12�
� )�;

ah6;h8 � (G
�11�
� )�; bh1;h4 � � ik1zT1�; bh2;h3 � � ik1z(1ÿ

R1�); bh5;h7 � ÿ ik1z(G
�12�
� )�; bh6;h8 � ik1z(G

�11�
� )�; ag1;g3 �

G
�22�
� ; ag2;g4 � G

�21�
� ; ag5;g8 � T �2�; ag6;g7 �1� R �2�; bg1;g3 �

ik2zG
�22�
� ; bg2;g4�ÿik2zG �21�� ; bg5;g8 � �ik2zT �2�; bg6;g7�

�ik2z(1ÿ R �2�).
Consider now a nonnegative functional

Gn�q̂� �
�
K

dkx
X8
p�1

�
mhp
��jhp

ÿ
~dp
�ÿ ahp

��2
� mgp

��jgp

ÿ
~dp
�ÿ agp

��2 � bhp

���� djhp

dz

����
z�~dp

ÿ bhp

����2

� bgp

���� djgp

dz

����
z�~dp

ÿ bgp

����2� (A2.3)

on the set of four test proéles q̂(z) � fq11(z), q12(z),
q21(z), q22(z)g, constructed in accordance with the principles
described in detail in [4]. In (A2.3), ~d

1;3;5;7
� z2, ~d

2;4;6;8
� z1,

and the weight coefécients mhp, mgp, bhp and bgp are any
éxed nonnegative numbers. Moreover, if we only know
Tq�, Rq�, G

�qv�
� (q � 1, 2; v � 1, 2), then mh1;h2;h5;h6 6� 0,

mg1;g2;g5;g6 6� 0, bh1;h2;h5;h6 6� 0, bg1;g2;g5;g6 6� 0, while the
remaining weight coefécients are equal to zero. If only
Tqÿ, Rqÿ, G �qv�ÿ are known, then, on the contrary,
mh3;h4;h7;h8 6� 0, mg3;g4;g7;g8 6� 0, bh3;h4;h7;h8 6� 0,
bg3;g4;g7;g8 6� 0, while the remaining weight coefécients are
equal to zero.

The functional Gn�q̂� is a measure of the difference of the
coefécients of transmission, reêection and conversion ~Rq�,
~Tq�, ~G

�qv�
� for a layer with a set of proéles q̂(z) from the

measured coefécients. Indeed, a comparison of formulas (4)
at Eq� � 1 with (A2.2), (A2.3) shows that Gn � 0 only in the
case of complete coincidence of the coefécients ~Tq�(kx),
~Rq�(kx) and ~G

�qv�
� (kx) and (or) ~Tqÿ(kx), ~Rqÿ(kx) and

~G �qv�ÿ (kx) with the coefécients Tq�(kx), Rq�(kx), G
�qv�
� (kx)

and (or) Tqÿ(kx), Rqÿ(kx), G
�qv�
ÿ (kx) in the range of K. In

Appendix 1 it was proved that this coincidence is only
possible in one case. Thus, the reconstruction of en1(z),
en2(z), r12(z) and r21(z) is reduced to énding a set of test
functions q̂ �0�(z), which correspond to the only zero mini-
mum of the functional Gn�q̂�. Note that the proéles eyy(z,oq)
of the linear permittivity of the medium and the spatial
distribution of the electric éeld Ef (z) of a high-power wave
in the plate can be reconstructed using the method proposed
in [7] and [4], respectively. Having found q̂ �0�(z) and
knowing eyy(z,oq) and Ef (z), we obtain

w �3�yyyy�z;oq;ÿol;o3;o3� �
q
�0�
ql �z�

4pE 2
f �z�

,

w �3�yyyy�z;oq;oq;ÿo3;o3� �
q �0�qq �z� ÿ eyy�z;oq�

8pjEf�z�j2
,

where q � 1, 2; l � 1� dq1; o1 � o2 � 2o3.
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