
Abstract. Relations for estimating the reliability of
heterolasers operating under irradiation conditions are
calculated based on the probabilistic analysis. The accumu-
lation of defects in their active regions is considered to be the
physical cause of their failure.
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1. Introduction

Currently, heterolasers (HLs) are successfully used in
various technical applications. In some cases, an important
factor is the HL reliability under natural irradiation by fast
particles, for example, in open space. To determine this
parameter, it is necessary to develop methods for estimating
the probability of failure-free HL operation under irradi-
ation.

It has been shown previously that application of
probabilistic estimates for `ageing' (degradation) of cw
HLs is efécient for determining their service life [1 ë 6].
Below, we consider an approach to estimate the reliability of
HLs in the case of their degradation under simultaneous
effect of both the operation time and the irradiation dose by
fast particles of different types on the degradation rate.

The up-to-date concept of the HL failure statistics as the
most adequate approach to reliability prediction is based on
the Weibull distribution (see, for example, [2, 5, 6] and
references therein). A cumulative distribution within the
Weibull statistics is presented as 1ÿ R(x), where the
function R(x) has the form

R�x� � exp�ÿ�x=y�b� at x5 0;
0 at x < 0:

�
(1)

Here, y, and b > 0 are numerical parameters. Within this
approach the probability of preserving the HL operation
capacity, for example, for an operation time t5 0 is

R�t� � exp

�
ÿ
�
t

y

�b �
, (2)

whereas the failure probability for this time is 1ÿ R(t).
The distribution parameters y and b are only determined

empirically based on failure tests of a series of HLs, beyond
their relationship with any processes occurring in the HL.
Accordingly, in a number of cases some very important
conditions of the HL operation remain disregarded. An
example is the HL operation in space, where reliability is a
very urgent problem. These conditions are characterised by
an additional (with respect to terrestrial conditions) effect of
penetrating cosmic rays, which leads to enhanced HL ageing
and increases the failure probability. The purpose of this
study is to analyse the HL reliability from the point of view
of the aforementioned additional effects, proceeding from
the physical concepts of the HL ageing.

2. Failure distribution

Let us érst consider the properties of the Weibull
distribution and the physical meaning of the parameters
entering it. According to Eqn (2), the HL failure proba-
bility during a suféciently narrow time interval Dt (between
instants t0 and t0 � Dt) is

r�t0�Dt � ÿ
dR

dt

����
t�t0

Dt � R�t0�
�
t0
y

�bÿ1�b
y

�
Dt. (3)

For the particular cases b � 1 and b � 2 the probability
density distributions r(t) (3) are, respectively, the well known
exponential and Rayleigh distributions.

The distribution r(t0) characterises the conditional
probability of a failure event, in which the condition is
the probability R(t0) of the sample operation capacity by the
previous instant t4 t0. The failure probability v for an
operating sample during the period between t0 and t0 � Dt
can be written as

v � r�t0�Dt
R�t0�

� ÿ 1

R

dR

dt
Dt �

�
b
y

�

�
�
t0
y

�bÿ1
Dt � FR�t0�Dt; (4)

where F is the failure rate. It follows from (4) that for the
Weibull distribution F is generally a power-law function of
time t, with an exponent b � 1. Obviously, for b � 1 the
failure rate F � 1=y; it is time-independent. Physically, the
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parameters of a system (device, HL) described by an
exponential distribution law r(t) do not age at all. In other
words, the probability 1=y for this system to pass from one
state (operation) to another (failure) per time unit is
determined by only the internal parameters of this system,
which in turn are time-independent, i.e., do not age. It is
well known that this is a characteristic property of such
elementary systems as an excited atom or excited nucleus.
The probabilities of their spontaneous transitions to the
ground state are determined by the corresponding matrix
elements and world constants and are also time-independ-
ent. As a result, we deal with an exponential distribution
law for these elementary excited systems. Obviously, if the
internal parameters of a system are aged, F increases with
time and the distribution law (2) must have an exponent
b > 1.

If the HL ageing is characterised as accumulation of
internal defects with some effective conditional rate q, the
HL degradation state by an instant t will depend on the total
number of accumulated defects with a conditional measure
Q. These defects can be dislocations in the active region;
microscopic damaged portions in this region, induced by
thermoelastic and other stresses; clusters of lattice defects,
for example, vacancies or interstitials migrated from the
surface to the bulk of the active region; deviations from
stoichiometry; etc. Their conditional measure Q can be, for
example, the total number of defects or the total volume
occupied by the defects accumulated during the HL opera-
tion time t. Anyhow, it is obvious that their measure
increases during the process, for example, as follows:

Q � qt: (5)

It is also obvious that F should increase with increasing the
number of accumulated defects. However, it is difécult to
predict the speciéc form (for example, power-law or some
other) of this dependence by a given instant. Certainly, the
simplest version is a linear dependence. In any case, at
suféciently small Q (which is quite allowable for high-
quality reliable HLs), the function F(Q) can be expressed in
terms of a Taylor series expansion with m érst powers
retained:

F � F0 �
Xm
n�1

anQ
n �F0 �

Xm
n�1

an�qt�n

� F0 �
Xm
n�1

ant
n; (6)

an �
1

n!

d�n�F
dQ �n�

����
Q�0

; an � an�q�n;

where F0 is a constant, which is independent of Q, and,
correspondingly, of time t. Obviously, a Weibull distribu-
tion is implemented when one of the terms that are
proportional to t�bÿ1� dominates in the right-hand side of
(6).

Note that in the initial stage of HL tests one can always
énd a small time interval t in which the inequality

F0 >> ant
n

is satiséed.

In this interval the failure statistics will have a distri-
bution similar to exponential, because F is almost constant.
This fact is in agreement with the experimental data of [6].
Practically, this test time interval is used for laser `training'
in order to reject obviously unét samples. Indeed, since F0

is time-independent, its value is only determined by the
number Q0 of `frozen' initial defects, which were formed
during laser fabrication.

Let us analyse the case of HL ageing under penetrating
radiation. Each ith type of penetrating radiation with an
intensity I �i� forms speciéc defects Q �i�, which additively
contribute to F. This additive contribution is characterised
by the individual coefécient a �i�n , which enters Eqn (6).
Moreover, the formation rate q �i� of these defects is also
individual for each ith radiation type. It is natural to assume
that q �i� is proportional to the intensity I �i� with a
proportionality factor g �i�:

q �i� � g �i�I �i�: (7)

As a result, for a combination of several ageing mecha-
nisms, the an values in (6) take the form

an �
X
i

a�i�n ; a�i�n � a�i�n �g�i�I �i��n: (8)

Finally, the probability of failure-free operation during a
time interval t can be written as

R�t� � exp�ÿx�; (9)

where

x � t
Xm
n�1

an
n
t n: (10)

Formula (10) refers to the selected (subjected to training)
HL samples; therefore, x does not contain the érst-power
term in t, related to F0. Each ith term in the sum (8) for an
is determined by the speciéc ageing mechanism. Obviously,
the érst (i � 1) term that is necessarily present in these sums
is due to the laser operation. Thus, g �1� in (7) is a
proportionality factor between the rate q �1� of the defect
production caused by laser operation and, for example, the
laser pump current I �1�.

In the absence of penetrating radiation the defect
production rate is indeed controlled by the pump current.
The latter determines both the temperature and the volume
density of the laser energy in the cavity, which in turn
determine the production rate of the defects leading to
catastrophic degradation and HL failure [7]. For this
reason, it is expedient to consider the quantity g �1� in
formula (7) speciécally as a proportionality factor
between q �1� and I �1�. The other quantities q �i� with
i5 2 are coefécients that characterise the increase in the
number of defects due to the penetrating external radiation.

Due to the presence of different powers of time t in
formula (10), the joint distribution (9) is not of Weibull type.
Nevertheless, in practice, having again approximated the
polynomial x by only the dominant term of power n, we
énally have the Weibull distribution (2) with an integer
value b � n� 1 and y � (n=an)

1=n�1. In this context we
should note that the reason for using the fractional b values
to ét experimental data with the Weibull distribution can be
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arise from the fact that x is unsatisfactorily approximated by
only one term with a speciéc power of n (i.e., the effective
number Q of defects increases as a fractional power of time
t).

Obviously, the polynomial coefécients an can be found
only experimentally, because, as was mentioned above, there
is no complete understanding of the physical nature of the
dependence FR(Q). Nevertheless, it is obvious that this
dependence contains (as parameters) quantities character-
ising the HL operation conditions (for example, the heatsink
temperature) and (as arguments) the I �i� values.

Consider now the possibility of determining the factors
an from experimental results of HL reliability tests in the
presence of penetrating radiation. Being initially based on
the Weibull statistics, one can use in principle the exper-
imental data on the laser mean time between failures
(expected lifetime) T and on its variance dT 2, which are
deéned as

T � 1

N

XN
k�1

tkr�tk� �
y
b
G
�
1

b

�
; (11)

dT 2 � 1

N

XN
k�1
�tk ÿ T �2r�tk�

� y 2

�
2

b
G
�

2

b

�
ÿ 1

b 2
G
�

1

b

��
; (12)

where N is the number of HL samples subjected to tests, tk
is the failure time of the kth sample, and G(:::) is the gamma
function.

It follows from (11) and (12) that T and dT 2 are
independent; therefore, when their experimental values
are known, one can érst énd b, using the relation

dT 2

T 2
�
�
2b

G�2=b�
G�1=b� ÿ 1

��
G
�
1

b

��ÿ1
; (13)

and then derive y from (11), using the known value of b.
For the experimental ´ and dT 2 values, measured both

in the presence and in the absence of penetrating radiation,
one can select separately each y �i� value.

As was mentioned above within the Weibull statistics,
due to the different mechanisms F is characterised by a
power-law dependence with the same exponent and, there-
fore, the same b value. Obviously, this is a strict
requirement, which means that the ratio dT 2=T 2 is the
same for all ageing types; therefore, the summation index n
is absent in formulas (6). In this case, we omit n by replacing
the power n with bÿ 1 in the formulas.

Having successively tested the HL under the conditions
of each effect, characterised by the reference intensity I

�i�
0 ,

one can énd y �i�0 in the aforementioned way and then
determine g �i�, which enters (7), according to the relation

g�i� � �bÿ 1��y �i�0 �ÿb�I �i�0 �1ÿb: (14)

The énal y value for the joint distribution and arbitrary
intensities of the effect I �i� has the form

y �
�X

i

y �i�
ÿb

0

�
I �i�

I
�i�
0

�bÿ1�ÿ1=b
: (15)

Thus, we can completely determine the two-parameter (y
and b) Weibull distribution (2), and, correspondingly, the
HL failure probability in the presence of external irradi-
ation sources with arbitrary combinations of intensities I �i�.

Along with the stringent requirements to the possibility
of describing the reliability in terms of the Weibull statistics
and under the conditions of combined irradiation (see
above), we should also note some experimental diféculties,
related to the measurement of ´ and dT 2. These diféculties
are caused by the following. The time necessary to precisely
measure them is rather long, because the possible range of
variation in dT 2=T 2 within the Weibull statistics is narrow:
according to (13), 0:719dT 2=T 2 < 1 for b changing from 1
to 1. This time should obviously exceed T, which is
especially problematic in the case of highly reliable HLs,
for which T may be few years even under enhanced
degradation conditions at elevated temperatures. In this
context, it may be reasonable to determine the an values,
which directly enter Eqn (6) for F. One can experimentally
énd F(tk):

F�tk� �
DNk

N�tk�Dt
; (16)

where DNk is the number of samples that failed during the
time interval from tk to tk � Dt, and N(tk) is the number of
samples that functioned properly by the instant tk. Note
that, in view of the practical importance of the parameter F,
it is often measured using a specially introduced unit 1 FIT
(equal to 10ÿ9 hÿ1). When the number of measurements
F(tk) is suféciently large, one can énd the dependence F(t)
for the time sequence tk using interpolation of the F(tk)
values by a polynomial of some power m and thus
determine the coefécients an. Then, having found ~a�i�n for
each speciéc case of irradiation with a reference intensity
I
�i�
0 (see above), one can easily énd the polynomial x, which
enters (9), for the speciéc HL operation conditions,
characterised by the values I �i�:

x � t
Xm
n�1

1

n
tn
�X

i

~a�i�n

�
I �i�

I
�i�
0

�n�
: (17)

Thus, the probability R of failure-free operation during a
time interval t is given by relation (9), where x is determined
from Eqn (17).

3. Conclusions

We determined the dependences of the HL failure-free
operation probability as a function of time and intensity of
penetrating radiation. The approach used to énd these
dependences is based on the following concept: the HL
failure is physically caused by the accumulation of defects.
Based on the sample tests, we proposed some ways for
determining the numerical factors characterising the HL
ageing rate. It was shown that the Weibull distribution,
which is often used to describe the HL failure statistics, is
not always adequate when several ageing mechanisms are
simultaneously involved.
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