
Abstract. Cross sections of scattering, absorption, and light
pressure for a chiral spherical particle in a circularly
polarised light éeld are studied for different values of the
radius, dielectric constant, permeability, and parameter of the
chiral particle. The conditions are found under which the
cross sections of absorption and light pressure differ
signiécantly when nanoparticles are exposed to light with
different polarisations, which can be used to improve synthesis
of chiral nanoparticles of complex structure.

Keywords: chiral particle, light scattering, light absorption, light
pressure.

1. Introduction

Chirality is a geometric property of three-dimensional
objects not to be superimposed with their reêection in the
mirror under any shifts and rotations. This property, for
example, is inherent in a human hand, DNA molecule,
spring. Chiral properties of continuous media are associ-
ated with a particular geometry of the molecules of chiral
substances [1]. Chiral media exhibit a number of unique
optical phenomena such as rotation of the plane of
polarisation, circular dichroism, etc. [2 ë 5]. The examples
of chiral substances are a solution of sugar, nucleic acids,
quartz, etc. Artiécial chiral objects are the basis for creation
of metamaterials with negative refractive properties of
electromagnetic waves [6 ë 8].

It is known that a material object, placed in a light éeld,
is subjected to the light pressure force [9]. This phenomenon
becomes particularly noticeable in a laser éeld, when there is
an opportunity to observe the levitation of transparent
dielectric particles [10], to capture and conéne them [11].
Currently, much attention has been devoted to studying the
forces of light pressure exerted by laser beams on dielectric
particles [12 ë 15]. Works which address the effect of the
light pressure on the objects made of `unusual' materials
(chiral, with negative refraction) are quite few. For example,

Riyopoulos [16] studies the effect of the light pressure force
on the êat interface between a dielectric medium and a
medium with negative refraction, Kemp et al [17] ë on a thin
plane-parallel plate made of a material with negative
refraction, and Ross and Lakhtakia [18] ë on a plate
made of a chiral material. Finally, Chen et al. [19] study
the light pressure force acting on a spherical particle made
of a hypothetical material with the property of an invisibility
cloak. Investigation of the effect of the light pressure force
on chiral spherical particles, to our knowledge, has not been
performed.

At the same time the optical properties of chiral
spherical particles have been studied quite intensively. To
date, scattering of a monochromatic plane electromagnetic
wave by homogeneous [3, 20] and inhomogeneous [21]
chiral spherical particles, scattering from chiral shells cover-
ing dielectric and metal spherical particles [22, 23], as well as
scattering of a Hermite beam éeld by a chiral microsphere
[24] and scattering of electromagnetic waves by a chiral
sphere located in a chiral medium [3, 25] been investigated
in detail.

The aim of this paper is to study the characteristics of
the action of the light pressure force on a chiral spherical
particle in the éeld of a plane monochromatic electro-
magnetic wave. Main attention is devoted to left- and
right-hand circularly polarised waves, which is due to the
difference in their action on chiral particles. To calculate the
light pressure we have used the formalism associated with
the Maxwell stress tensor [9], which allows one to énd an
analytical expression for this force in the case of a chiral
spherical particle of arbitrary radius.

2. Scattering of a circularly polarised
electromagnetic wave by a chiral spherical
particle

When solving the problem of an electromagnetic éeld in an
isotropic chiral medium, we follow the method proposed in
[26], by applying it to the medium described by constitutive
equations

D � epEÿ iwH, B � mpH� iwE, (1)

where D, E and B, H are the induction and strength of the
electric and magnetic éelds, respectively; ep and mp are the
dielectric constant and permeability of a chiral medium; w is
a dimensionless chirality parameter, which, in general,
depends on the frequency of incident radiation [2, 4].
Substituting (1) into Maxwell's equations, we obtain
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rotE� k0wE � ik0mpH, rotH� k0wH � ÿik0epE, (2)

where k0 � o=c is the wave number in vacuum; o is
frequency; c is the speed of light in vacuum.

The system of equations (2) can be conveniently reduced
to the matrix form:

rotE
rotH

� �
� K

E
H

� �
, K � ÿk0w ik0mp

ÿik0ep ÿk0w
� �

. (3)

With the help of a linear transformation of electromagnetic
éelds

E
H

� �
� A

QL

QR

� �
, A �

1 1

ÿ ikp
k0mp

ikp
k0mp

24 35, (4)

where kp � k0
���������
epmp

p
, we diagonalise the matrix K:

Aÿ1KA � kp ÿ k0w 0
0 ÿkp ÿ k0w

� �
� kL 0

0 ÿkR

� �
, (5)

where kL and kR are the wave numbers, which can
propagate in a chiral medium, and have left- (L) or
right-hand (R) circular polarisation. The components of the
transformed éeld (4) satisfy the equations

rotQL � kLQL, rotQR � ÿkRQR,

(6)

divQL � divQR � 0.

Thus, the electromagnetic éeld inside a chiral spherical
particle can be represented as follows [see formula (4)]:

E t � QL �QR, H t � ÿ ikp
k0mp

�QL ÿQR�. (7)

For the spherical geometry under consideration, the éelds
QL and QR have the form [26]

QL � exp�ÿiot�
X1
n�1

Xn
m�0

�
AL

mne

ÿ
nL
mne �mL

mne

�
�AL

mno

ÿ
nL
mno �mL

mno

��
,

(8)

QR � exp�ÿiot�
X1
n�1

X
m�0

�
AR

mne

ÿ
nR
mne ÿmR

mne

�
�AR

mno

ÿ
nR
mno ÿmR

mno

��
,

where AL
mne, AL

mno and AR
mne, AR

mno are the expansion
coefécients, which can be found using the boundary
condition of continuity of tangential components of the
electric and magnetic éelds on the surface of a chiral
particle. Spherical vector functions in (8) have the form [27]
( j � L, R)

n �j�mne

n �j�mno

( )
� n�n� 1�
�rkj�2

cn�rkj�Pm
n �cos y� cos�mj�

sin�mj�
� �

er

� 1

rkj
c 0n�rkj�

q
qy

Pm
n �cos y� cos�mj�

sin�mj�
� �

ey�

� m

rkj sin y
c 0n�rkj�Pm

n �cos y� ÿ sin�mj�
cos�mj�

� �
ej,

(9)

m �j�mne

m �j�mno

( )
� m

rkj sin y
cn�rkj�Pm

n �cos y� ÿ sin�mj�
cos�mj�

� �
ey

ÿ 1

rkj
cn�rkj�

q
qy

Pm
n �cos y� cos�mj�

sin�mj�
� �

ej,

where er, ey, ej are the vectors of the spherical coordinate
system; 04 r <1, 04y < 2p and 04j < 2p are the
coordinates; cn(x) �

�����������
px=2

p
Jn�1=2(x); Jn�1=2(x) is the

Bessel function [28]; the prime in the function is the
derivative of its argument; Pm

n (x) are the associated
Legendre functions [28]. Substituting (8) in (7), we énd
that TM- and TE-waves cannot exist separately within a
chiral particle, because the spherical vector functions n �j�mne

(n �j�mno) and m �j�mne (m
�j�
mno) with different spatial structure enter

into (8) as a sum or difference (but not separately). In the
case if the particle is made of a material that does not have
chiral properties, such separation can be achieved.

To investigate scattering of a plane monochromatic
electromagnetic left- or right-hand circularly polarised
wave by a chiral spherical particle, we consider an ellipti-
cally incident polarised wave:

E i � �E i
xex � E i

yey� exp�ikmzÿ iot�,
(10)

H i�ÿ i

k0mm
rotE i�ÿ

������
em
mm

r
�E i

yex ÿ E i
xey� exp�ikmzÿ iot�,

where em, mm > 0 are the dielectric constant and perme-
ability of the medium in which the particle is located. If
E i
x � ÿiE i

y � E0, the incident wave is left-hand circularly
polarised, and if E i

x � iE i
y � E0, it is right-hand circularly

polarised. The éeld (10) can be represented as an expansion
in spherical vector functions [27]:

E i � ÿ exp�ÿiot�
X1
n�1

i n
2n� 1

n�n� 1�
ÿ
iE i

xn
i
1ne � E i

ym
i
1ne

�

ÿ exp�ÿiot�
X1
n�1

i n
2n� 1

n�n� 1�
ÿ
iE i

yn
i
1no ÿ E i

xm
i
1no

�
,

(11)

H i � ÿ
������
em
mm

r
exp�ÿiot�

X1
n�1

i n
2n� 1

n�n� 1�
ÿ
E i
xm

i
1ne ÿ iE i

yn
i
1ne

�

ÿ
������
em
mm

r
exp�ÿiot�

X1
n�1

i n
2n� 1

n�n� 1�
ÿ
E i
ym

i
1no � iE i

xn
i
1no

�
,

where the vector function n i
1ne, n

i
1no and m i

1ne, m
i
1no can be

obtained from (9) in a special case m � 1, with successive
substitutions: the indices j! i and wave number kj ! km
� k0

�����������
emmm
p

.
The induced electromagnetic éeld outside a spherical

particle has the form

E r � exp�ÿiot�
X1
n�1

Xn
m�0

ÿ
Ar

mnen
r
mne � B r

mnem
r
mne

��
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� exp�ÿiot�
X1
n�1

Xn
m�0

ÿ
Ar

mnon
r
mno � B r

mnom
r
mno

�
,

(12)

H r � ÿi
������
em
mm

r
exp�ÿiot�

X1
n�1

Xn
m�0

ÿ
Ar

mnem
r
mne � B r

mnen
r
mne

�

ÿ i

������
em
mm

r
exp�ÿiot�

X1
n�1

Xn
m�0

ÿ
Ar

mnom
r
mno � B r

mnon
r
mno

�
,

where Ar
mne, B r

mne Ë Ar
mno, B r

mno are the expansion coefé-
cients, which can be found from boundary conditions.
Explicit expressions for the spherical vector functions n r

mne,
n r
mno and m r

mne, m
r
mno are obtained from (9) by successive

substitutions: the indices j! r, wave numbers kj ! km,
and functions cn(x)! zn(x) �

�����������
px=2

p
H
�1�
n�1=2(x), where

H
�1�
n�1=2(x) is the Hankel function of érst kind [28].
Thus, the induced electromagnetic éeld in the problem

on scattering of an electromagnetic wave (10) by a chiral
spherical particle has the form (7) and (12). To énd the
unknown coefécients of series (8) and (12) we should use the
condition of continuity of tangential components of electric
and magnetic éelds on the surface of a chiral particle of
radius a:�

E t; er
���

r�a �
�ÿ
E i � E r

�
; er
���

r�a , (13)�
H t; er

���
r�a �

�ÿ
H i �H r

�
; er
���

r�a .

Using equations (13) we énd the following explicit
expressions for the coefécients of series (12):

Ar
mne � d1mi

n�1 2n� 1

n�n� 1�
ÿ
anE

i
x ÿ cnE

i
y

�
,

Ar
mno � d1mi

n�1 2n� 1

n�n� 1�
ÿ
cnE

i
x � anE

i
y

�
,

(14)

B r
mne � d1mi

n 2n� 1

n�n� 1�
ÿ
bnE

i
y � cnE

i
x

�
,

B r
mno � d1mi

n 2n� 1

n�n� 1�
ÿ
cnE

i
y ÿ bnE

i
x

�
,

where d1m is the Kronecker delta. In (14) we introduced the
notations

an �
V L

n AR
n � V R

n AL
n

V L
n W R

n � V R
n W L

n

,

bn �
B L
n W R

n � B R
n W L

n

V L
n W R

n � V R
n W L

n

, (15)

cn � i
AL

n W
R
n ÿ AR

n W
L
n

V L
n W R

n � V R
n W L

n

,

which were written using the functions ( j � L,R)

W �j�
n � Pcn�akj�z 0n�akm� ÿ c 0n�akj�zn�akm�,

V �j�n � cn�akj�z 0n�akm� ÿ Pc 0n�akj�zn�akm�,
(16)

A�j�n � Pcn�akj�c 0n�akm� ÿ c 0n�akj�cn�akm�,

B �j�n � cn�akj�c 0n�akm� ÿ Pc 0n�akj�cn�akm�,

where P � kpmm=(kmmp). In the special case of a particle
without chiral properties (w � 0), the coefécient cn � 0 is
equal to zero, and the coefécients an and bn take a well-
known form of Mie coefécients [27]:

an �
�kp=km�cn�akp�c 0n�akm� ÿ �mp=mm�c 0n�akp�cn�akm�
�kp=km�cn�akp�z 0n�akm� ÿ �mp=mm�c 0n�akp�zn�akm�

,

(17)

bn �
�mp=mm�cn�akp�c 0n�akm� ÿ �kp=km�c 0n�akp�cn�akm�
�mp=mm�cn�akp�z 0n�akm� ÿ �kp=km�c 0n�akp�zn�akm�

.

In the case when the size of a chiral spherical particle is
much smaller than the wavelength of incident radiation, i.e.,
in the case of nanoparticles, the sphere can be represented as
a point particle with nonzero electric and magnetic dipole
moments. To obtain explicit expressions for these moments,
it is necessary to énd the asymptotics of the induced éeld
(12) at large distances from the particle (r!1). Note that
the main contribution will be made by the angular radiation
components damping proportionally to 1=r; in this case, it is
also necessary to expand the coefécients (12) in a series over
k0a! 0, using only the principal terms, and to take into
account that the main contribution is made by the coefé-
cients with index n � 1. Comparing the thus obtained
expressions for the induced éelds with the known expression
for the total éelds of electric and magnetic dipole sources
located at one point (see, for example, [27]), we énd the
expressions for the electric (d0) and magnetic (m0) dipole
moments of a chiral spherical nanoparticle in the éeld of the
incident electromagnetic circularly polarised wave:

d
�j�
0x �

�ep ÿ em��mp � 2mm� ÿ w 2

�ep � 2em��mp � 2mm� ÿ w 2
a 3E0

ÿ�dL j ÿ dR j�
3w

�����������
emmm
p

�ep � 2em��mp � 2mm� ÿ w 2
a 3E0,

d
�j�
0y � ÿ

3iw
�����������
emmm
p

�ep � 2em��mp � 2mm� ÿ w 2
a 3E0 (18)

� i�dL j ÿ dR j�
�ep ÿ em��mp � 2mm� ÿ w 2

�ep � 2em��mp � 2mm� ÿ w 2
a 3E0,

d
�j�
0z � 0,

m
�j�
0x �

3iw
�����������
emmm
p

�ep � 2em��mp � 2mm� ÿ w 2
a 3H0

ÿ i�dL j ÿ dR j�
�ep � 2em��mp ÿ mm� ÿ w 2

�ep � 2em��mp � 2mm� ÿ w 2
a 3H0,

m
�j�
0y �

�ep � 2em��mp ÿ mm� ÿ w 2

�ep � 2em��mp � 2mm� ÿ w 2
a 3H0ÿ (19)
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ÿ�dL j ÿ dR j�
3w

�����������
emmm
p

�ep � 2em��mp � 2mm� ÿ w 2
a 3H0,

m
�j�
0z � 0,

where H0�
�������������
em=mm

p
E0. If in (18) and (19) we put

dL j � dR j � 0, we obtain the known expressions for the
electric and magnetic dipole moments of a spherical chiral
particle located in the éeld of a plane monochromatic
electromagnetic linearly polarised wave [3, 29].

To énd the time-averaged power extinctions (attenu-
ation) and scattering of a plane monochromatic
electromagnetic circularly polarised wave by a chiral spher-
ical particle, it is necessary to calculate [with respect to the
surface of a sphere of inénite radius (r!1)] the integrals
[27]:

Wext � ÿ
c

8p

� p

0

dy sin y
� 2p

0

djRe
ÿ
er
�
E i;H r���r 2��

r!1

ÿ c

8p

� p

0

dy sin y
� 2p

0

djRe
ÿ
er
�
E r;H i���r 2��

r!1,
(20)

Wscat �
c

8p

� p

0

dy sin y
� 2p

0

djRe
ÿ
er
�
E r;H r���r 2��

r!1,

where the asterisk denotes complex conjugation. After
integration, normalising the obtained expressions by
W0 � cemjE0j2=(4p �����������

emmm
p

) ë the energy êux density in
the incident circularly polarised wave, we énd the
expressions for cross sections of extinction and scattering:

s �j�ext �
2p
k 2
m

X1
n�1
�2n� 1�Re�an � bn�

� 4p
k 2
m
�dL j ÿ dR j�

X1
n�1
�2n� 1�Imcn, (21)

s �j�scat �
2p
k 2
m

X1
n�1
�2n� 1�ÿjanj2 � jbnj2 � 2jcnj2

�

ÿ 4p
k 2
m
�dL j ÿ dR j�

X1
n�1
�2n� 1�Im��an � bn�c �n

�
. (22)

Expression (21) and (22) coincide with those given in
[26]. In the case of a nonchiral spherical particle, the
extinction and scattering cross sections will not depend
on the polarisation of the incident plane monochromatic
electromagnetic wave [in (21) and (22) we should put
cn � 0].

If the substance of which the chiral particle is made
absorbs incident radiation, we can calculate the absorption
cross sections as the difference between extinction and
scattering cross sections [27]: s� j�abs � s� j�ext ÿ s� j�scat. For non-
absorbing particles the scattering and extinction cross
sections are the same.

If the size of chiral particles is much smaller than the
wavelength of incident radiation which takes place in the
case of nanoparticles (k0a! 0), we can énd asymptotic
expressions for cross sections (21) and (22), using electric
and magnetic dipole moments (18) and (19). Using general
expressions for cross sections [9], we obtain

s �j�abs �
2pkm
jE0j2

Im
��
d
�j�
0x ÿ i�dL j ÿ dR j�d �j�0y

�
E �0
	

� 2pkm
jH0j2

Im
��
i�dL j ÿ dR j�m �j�0x �m

�j�
0y

�
H �0
	
, (23)

s �j�scat �
4pk 4

m

3jE0j2
ÿ��d �j�0x

��2 � ��d �j�0y

��2�

� 4pk 4
m

3jH0j2
ÿ��m �j�0x

��2 � ��m �j�0y

��2�. (24)

In the case of nanoparticles, the absorption cross section
exceeds the scattering cross section. We easily énd from (23)
that for right-hand circularly polarised radiation and at

ep � ÿ2em � w
������
em
mm

r
, mp � ÿ2mm � w

������
mm
em

r
(25)

the absorption cross section of light tends to zero, and
consequently, the nanoparticles absorb only left-hand
circularly polarised light. And vice versa, in the case of
left-hand polarised radiation and at

ep � ÿ2em ÿ w
������
em
mm

r
, mp � ÿ2mm ÿ w

������
mm
em

r
(26)

the cross section of light absorption also tends to zero, and
consequently, the nanoparticles absorb only right-hand
polarised light.

3. Light pressure force acting on a chiral
spherical particle in the circularly polarised
electromagnetic wave

To calculate the light pressure force acting on a chiral
spherical particle in the éeld of a plane monochromatic
electromagnetic circularly polarised wave, we will use the
formalism related to the Maxwell stress tensor [9, 27]. In
this case, we do not take into account the mechanical
deformations of the medium, which arise under the action
of the electromagnetic éeld, and their attendant effects. The
general expression for énding the time-averaged light
pressure force acting on the particle under study has the
form

F � 1

2
Re

�
S

dS
ÿ
nT̂
�
,

(27)

T̂ � em
4p

�
E s 
 E s �ÿ 1

2
jE sj2Î �� mm

4p

�
H s 
H s �ÿ 1

2
jH sj2Î �,

where S is an arbitrary surface, covering the considered
particle; n is the vector of the outward normal to S; T̂ is the
Maxwell stress tensor; E s � E i � E r and H s � H i �H r

are the total electric and magnetic éelds in a medium
outside the particle; the symbol 
 denotes the direct
product of the vectors; Î is the unit tensor. To calculate the
force (27), the surface S, covering the spherical particle, is
convenient to choose as a sphere of inénite radius (r!1).
As a result, (27) transforms into the expression

F � em
8p

� p

0

dy sin y
� 2p

0

djRe

�ÿ
erE

s ��E sÿ 1

2
jE sj2er

�
r 2
����
r!1
�
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� mm
8p

� p

0

dy sin y
� 2p

0

djRe

�ÿ
erH

s ��H sÿ 1

2
jH sj2er

�
r 2
����
r!1

.

(28)

After further simpliécations [30] and integration in (28), we
énd that the light pressure force has only one nonzero
component oriented along the z axis [the direction of
propagation of the incident wave (10)]. Normalising this
component by P0 � �����������

emmm
p

W0=c ë the momentum êux
density in the incident wave, we obtain the explicit
expression for the cross section of the light pressure:

s �j�pr � s �j�ext ÿ Z �j�s �j�scat, (29)

where

Z �j�s �j�scat �
4p
k 2
m

X1
n�1

Re

�
2n� 1

n�n� 1�
ÿ
anb

�
n � jcnj2

�

� n�n� 2�
n� 1

ÿ
ana

�
n�1 � bnb

�
n�1 � 2cnc

�
n�1
��

ÿ 4p
k 2
m
�dL j ÿ dR j�

X1
n�1

Im

�
2n� 1

n�n� 1� �an � bn�c �n

� n�n� 2�
n� 1

��an � bn�c �n�1 � �an�1 � bn�1�c �n
��

. (30)

The value of Z � hcos yi is called the asymmetry factor
and can be calculated by averaging the cosine of the
spherical angle y when using the intensity distribution
over y as a weighting function [31]. In the particular
case of a spherical particle made of a material without
chiral properties, the well-known Debye expression for the
cross section of the light pressure [31, 32], which does not
depend on the polarisation of the incident electromagnetic
wave, follows from (29).

The asymptotic expression for Z �j�s �j�scat in the case of
particles of very small radii (nanoparticles) can be found if
we expand the coefécients (15) in a series over k0a! 0,
while keeping only the leading terms, and take into account
the fact that the main contribution will be made by the
coefécients with index n � 1. However, to derive a more
compact asymptotic expression use should be made of the
general relation from paper [33]. As a result, for the desired
asymptotic of (30), we obtain

Z �j�s �j�scat �
4pk 4

m

3E0H
�
0

Re
ÿ
d
�j�
0x m

�j��
0y ÿ d

�j�
0y m

�j��
0x

�
. (31)

Using (23), (24) and (31), we énd from (29) an explicit
asymptotic expression for the light pressure cross section,
which is suitable in the case of chiral spherical nano-
particles. Note that for the nanoparticles (k0a! 0) the
contribution of Z �j�s �j�scat in expression (29) is small
compared with the contribution of s �j�ext ; therefore, the
characteristic features of the light pressure cross section will
be the same as those of the extinction (absorption) cross
section, and hence, the maximum radiation pressure will be
determined by conditions (25) or (26).

4. Discussion of the results

The analytic results obtained in the previous sections are
valid for chiral spherical particles with arbitrary properties,
i.e. the properties of a dielectric (ep, mp > 0), metal
(ep < 0, mp > 0), material with negative refraction
(ep, mp < 0) and magnetic plasma (ep > 0, mp < 0). In this
section, using the numerical examples we will study in detail
the most interesting, in our opinion, cases of particles made
of a dielectric and of a material with negative refraction.
Without loss of generality, we consider a chiral particle in
vacuum (em � mm � 1).

Figure 1 shows the scattering cross section of a plane
monochromatic electromagnetic circularly polarised wave
by the chiral spherical particle, normalised to the geometric
cross section pa 2, as a function of the particle size k0a. One
can see from Fig. 1a that if the dielectric particle has chiral
properties, the scattering cross sections of left- and right-
hand polarised waves are different. Nevertheless, regardless
of the incident wave polarisation and the chirality param-
eter, we can note the general character of the dependences of
the normalised cross section on the size of the chiral particle
having the form of a slowly oscillating function with more
rapid oscillations against its background [31, 34]. The
presence of chirality results in either an increase in the
amplitude of fast oscillations in the case of the incident
right-hand circularly polarised wave, or in their smoothing
in the case of a left-hand circularly polarised wave. It should
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Figure 1. Normalised scattering cross section of the electromagnetic left-
( j � L) and right-hand ( j � R) circularly polarised wave incident on a
chiral spherical nanoparticle made of a dielectric (ep � 2, mp � 1) (a) and
of a material with negative refraction (ep � ÿ3, mp � ÿ1) (b) as a
function of k0a. The chirality parameter of the particle is w � 0:2.
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also be noted that depending on the incident wave polar-
isation, the period of slow oscillations of the normalised
cross section varies: it can be smaller (the curve for j � R in
Fig. 1a) or larger (the curve for j � L) than the same period
for a dielectric particle without chiral properties (the curve
for w � 0). Both these effects are due to the difference in the
wave vectors of right- and left-hand polarised waves in the
particle [see formula (5)].

Optical properties of a chiral spherical particle made of a
material with negative refraction are more complicated
(Fig. 1b). Characteristic of the normalised scattering cross
section in this case is the presence of one or more major
peaks at relatively small values of k0a; with increasing the
particle radius, we observe an oscillatory dependence of the
cross section on k0a with a small amplitude of oscillations.
Unlike the dielectric particle it is obviously due to the fact
that for the given negative values of ep and mp there exist
such values of the radius at which the denominators of
coefécients (15) will be close to zero. This corresponds to the
excitation condition in a spherical particle made of a
material with negative refractions of different types: plas-
mon, high-Q surface modes and whispering gallery modes
[35]. At the same time, only whispering gallery modes can be
excited in a dielectric particle [36].

Figure 2 shows the normalised cross section of the light
pressure of a plane monochromatic electromagnetic circu-
larly polarised wave incident on the chiral spherical particle
as a function of k0a. One can see from Fig. 2a that for right-

hand polarised light, the number of fast oscillations
increases against the background of a slowly varying
dependences of the light pressure cross section with increas-
ing size of the dielectric particle [30, 31]. In this case, on
average the normalised cross section érst increases, reaching
a maximum, and then slowly decreases. The amplitude of
fast oscillations is larger in the case of an incident electro-
magnetic right-hand circularly polarised wave. For a left-
hand polarised wave the amplitude of fast oscillations is
noticeably smaller. For a dielectric particle without chiral
properties (Fig. 2a, the curve for w � 0) the corresponding
cross section of the light pressure is in the range between the
values of sL

pr and sR
pr for the chiral dielectric particle.

The dependence of the normalised light pressure cross
section on the radius of a particle made of a material with
negative refraction (Fig. 2b), in general resembles a similar
dependence for the scattering cross section (Fig. 1b). At
relatively small values of k0a, we again observe the main
peak (corresponding to the main plasmon resonance), which
is replaced by some resonances that are smaller in amplitude
(corresponding to plasmon oscillations with a high multi-
polarity, high-Q surface modes and whispering gallery
modes) with increasing the particle radius.

Figure 3 shows the dependence of the normalised light
pressure cross section on the chirality parameter for several
radii of the particle. One can see that as in the case of a
dielectric particle so in the case of the particle made of a
material with negative refraction, there are some optimal
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Figure 2. Normalised light pressure cross section of the electromagnetic
left- ( j � L) and right-hand ( j � R) circularly polarised wave incident on
a chiral spherical nanoparticle made of a dielectric (ep � 2, mp � 1) (a)
and of a material with negative refraction (ep � ÿ3, mp � ÿ1) (b) as a
function of k0a. The chirality parameter of the particle is w � 0:2.
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Figure 3. Normalised light pressure cross section of the electromagnetic
left- ( j � L) and right-hand ( j � R) circularly polarised wave incident on
a chiral spherical nanoparticle made of a dielectric (ep � 2, mp � 1) (a)
and of a material with negative refraction (ep � ÿ3, mp � ÿ1) (b) as a
function of the chirality parameter w at different k0a.
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values of the chirality parameter w, which make it possible to
markedly increase (or decrease) the light pressure cross
section for the given radius, dielectric constant and perme-
ability if the polarisation of the incident electromagnetic
wave is properly selected. Thus, éner tuning (within small
variations in w) is possible only in the case of suféciently
large k0a, which is especially noticeable for particles made of
a material with negative refraction, when high-Q surface
modes are excited (curves for k0a � 4 in Fig. 3b). A change
in w for particles with k0a � 1 does not lead to a rapid
change in the normalised cross section of the light pressure
(cf. curves for k0a � 1 and 4 in Fig. 3a and b).

The most important is the dependence of the light
pressure cross section on the dielectric constant of the
chiral spherical nanoparticle made of a material with
negative refraction (Fig. 4). It is seen that in the region
[speciéed by conditions (25)] of the values of the dielectric
constant and permeability Reep � ÿ2� w and Remp �
ÿ2� w, the choice of the incident electromagnetic left- or
right-hand circularly polarised waves can signiécantly
increase or decrease the light pressure cross section for
the chiral particle compared with the cross section for the
nanoparticle without chiral properties. It is important to
note that these values of the dielectric constant and
permeability at the same time correspond to the conditions
of excitation of plasmon oscillations in the nanoparticle [the
conditions of vanishing denominators in expressions (18)
and (19)]. In this case, we will observe not only an increase
in the light pressure cross section of the incident electro-
magnetic wave with one of circular polarisations compared
with the wave with a different polarisation but also an
increase in the cross section with decreasing imaginary parts
of the dielectric constant and permeability.

The above demonstrated strong dependence of the
characteristics of chiral spherical nanoparticles on the
polarisation of incident radiation (Fig. 4) can be used to
improve the synthesis of nanoparticles made of different
metamaterials. Indeed, suppose that there is a set of
synthesised nanoparticles with a negative refractive index.
Then, by exposing them to right- or left-hand polarised light

only those particles can be extracted from an ensemble that
satisfy condition (25) or (26). Similar effects also take place
for dielectric particles (see Fig. 3a).

5. Conclusions

Thus, we have studied the properties of a chiral spherical
particle made of an arbitrary metamaterial, the particle
being located in the éeld of a plane monochromatic
electromagnetic circularly polarised wave. We have
shown that, depending on the polarisation of the incident
electromagnetic wave, the cross sections of scattering and
light pressure for a chiral particle can be larger or smaller
than the corresponding values for a particle made of a
material with the same dielectric constant and permeability
but without chiral properties. We have derived asymptotic
expressions for cross sections of scattering, extinction and
light pressure in the case of chiral spherical particles of very
small radii. We have obtained explicit expressions for the
induced electric and magnetic dipole moments of a chiral
spherical nanoparticle in the éeld of a plane monochro-
matic electromagnetic circularly polarised wave. We have
determined the conditions under which the absorption
(extinction) and light pressure cross sections are signié-
cantly different for electromagnetic left- and right-hand
circularly polarised waves.

Analytic results obtained in this paper are quite general
in nature and can be used to calculate characteristics of
chiral spherical micro- and nanoparticles in optical éelds as
well as to test the algorithms of numerical calculations of
characteristics of chiral nonspherical particles.
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