
Abstract. Analytical formulas are derived to approximate the
probability density functions of `zero' and `one' bits in a linear
communication channel with a binary format of optical signal
phase modulation. Direct numerical simulation of the
propagation of optical pulses in a communication line with
optical phase conjugation is performed. The results of the
numerical simulation are in good agreement with the
analytical approximation.
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1. Introduction

A measure for estimating the quality of a communication
line is the bit error rate (BER), which is the ratio of the
number of incorrect bits to the total number of transmitted
bits. Exact estimation of BER is important in designing
optical communication systems. Gaussian approximation is
often used for the probability density of `one' and `zero'
bits. In this case, to calculate the BER, one must know the
Q factor, which is determined from the formula Q �
(m1 ÿ m0)=(s1 � s0), where m1 and m0 are the mean values of
the currents of `one' and `zero' bits and s1 and s0 are their
standard deviations; in this case,

BER � 1
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The Gaussian approximation is fairly simple but predicts
the error probability with a low accuracy.

Currently the main working regime of ébre communi-
cation lines is the amplitude modulation, at which a `one' bit
is transmitted in the form of a light pulse, while `zero' bit
corresponds to the absence of a pulse in a selected bit
interval. An increase in the bit rate in a channel leads to an
increase in the negative inêuence of nonlinear and dis-

persion effects and in the noise of ampliéed spontaneous
emission. Therefore, an urgent problem is to study new
formats for optical signal modulation (for example, phase-
modulation format) and search for optimal conégurations
of optical communication lines based on these formats using
mathematical simulation methods. In the simplest binary
phase-modulation format with coding over the optical-
phase difference (DBPSK format) data are coded using
the phase difference between neighbouring bits. In contrast
to the conventional amplitude modulation format, the
format with coding data over the phase difference is based
on coding logic `zero' by the shift of the optical pulse phase
in a bit interval by p with respect to the previous bit, while
logic `one' corresponds to identical phases of two neigh-
bouring bits. Due to the uniform power distribution in all
bit intervals and a random phase shift between neighbouring
bits, this format is more stable to the negative inêuence of
such nonlinear effects as the phase cross-modulation and
four-wave mixing (see, for example, [1 ë 7]).

In this study we derived simple analytical formulas for
the error statistics in DBPSK communication lines with
suppression of nonlinear effects. In addition, direct numer-
ical simulation of the propagation of optical pulses was
performed to check the applicability of these formulas. The
analytical estimates are in good agreement with the results
of numerical calculations.

2. Derivation of analytical formulas

When deriving analytical formulas, we assumed (as in [8])
that the main factor determining the signal distortion is the
noise of spontaneous emission of ampliéers in the
communication line. We used the model [8], where the
noise is expressed in terms of a Fourier series with a period
T, which coincides with the bit interval width. The real and
imaginary parts of the Fourier coefécients are independent
Gaussian random values with a `zero' mean value and
standard deviation s.

The analytical formulas for the density of `zeros' and
`ones' at the receiver were obtained for a linear transmission
channel and the `no return to zero' (NRZ) format.

A sequence of pulses arrives at the receiver in the end of
the communication line. This sequence is set by the formula
anEs(t)� en(t). Here, n is the bit number; Es(t) � E exp (ioct)
is the complex representation of an optical pulse; t is the
time; oc is the carrier frequency; and an is 1 or ÿ1. The
ampliéer noise is set by the formula en(t) � rn(t)� isn(t),
where the imaginary and real parts of the noise en(t) are
Gaussian random values with a zero mean.
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At the input of the receiver the bit sequence is trans-
formed into amplitude modulation using optical delay lines
and interference. The interferometer transforms the signal
into two sequences, corresponding to a current of `zeros',
J0(t), and a current of `ones', J1(t). The electric current is
proportional to the squared magnitude of the sum of the
signal and noise. The transformation of optical pulses into
electric current by the detector is set by the formulas

J1�t� � K

���� anEs�t� � en�t� � anÿ1Es�t� � enÿ1�t�
2

����2;
(1)

J0�t� � K

���� anEs�t� � en�t� ÿ anÿ1Es�t� ÿ enÿ1�t�
2

����2:
where K is the photodetector sensitivity. The receiver
processes the difference between the currents of `ones' and
`zeros': J(t) � J1(t)ÿ J0(t). The electric current is averaged
over the bit interval T:

x � 1
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Generally, the cases x < 0 and x > 0 correspond to
recording `zero' and `one' bits, respectively.

Let us énd the probability densities of `one' and `zero'
bits at the receiver. We will consider the coding of a `one'
bit; in this case an � anÿ1. Note that the functions

Z��t� � en�t� � enÿ1�t�
2

� rn�t� � rnÿ1�t� � i�sn�t� � snÿ1�t��
2

and

Zÿ�t� � en�t� ÿ enÿ1�t�
2

� rn�t� ÿ rnÿ1�t� � i�sn�t� ÿ snÿ1�t��
2

which correspond to the ampliéer noises, are independent
random values with a Gaussian distribution of the real and
imaginary parts. Since a signal passes through an optical
élter in the receiver, the expansion of the ampliéer noise in
a Fourier series contains a énite number of terms:

Z��t� �
Xm1�M

m�m1

cm exp�iomt�; Zÿ�t� �
Xm1�M

m�m1

c 0m exp�iomt�;

where om � (2p=T )m is frequency (m � 0;�1;�2; :::).
Let Bopt be the transmission band of the optical élter;

then the BoptT value sets the number M of the Fourier
harmonics transmitted by the optical élter.

Then we énd the characteristic function F1(k) for the x1,
value, which is equal to the current of `ones' J1(t), averaged
over the bit interval T:

x1 �
1

T

� T

0

J1�t�dt: (3)

The function

F1�k� �
�1
0

w1�x1� exp�ikx1�dx1;

where w1(x1) is the density of the random value x1.

Having substituted (1) into (3), we obtain

x1 �
1

T

� T

0

K �jEs�t�j2 � Es�t�Z��t� � Es�t�Z��t� � jZ��t�j2 �dt

(the bar above indicates complex conjugation). Since the
functions exp (iomt) are orthogonal in the interval T, and
the characteristic function of a sum of independent random
values is the product of the characteristic functions of the
terms,

F1�k� � exp

�
iKjEsj2kÿ

2s 2K 2jEsj2k 2

1ÿ 2is 2Kk

�
1

�1ÿ 2is2Kk�M :

The characteristic function F0(k) for the current of
`zeros' averaged over the interval T, x0 � 1

T

� T
0 J0(t)dt, is

determined by the formula

F0�k� �
�1
0

w0�x0� exp�ikx0�dx0;

where w0(x0) is the density of x0. As in [8],

F0�k� �
1

�1ÿ 2is 2Kk�M :

Therefore, the characteristic function of the random value x
[difference in the currents of `ones' and `zeros' (2)],
averaged over the bit interval T, is set by the formula

hexp�ikx�i � exp

�
iKjEsj2kÿ

2s 2K 2jEsj2k2
1ÿ 2is 2Kk

�

���1� 4s 4K 2k 2�M�ÿ1: (4)

The inverse Fourier transform of expression (4) yields
the density of `one' bits r1(x). Let us introduce the
designations Z � 2Ks 2k, I1 � KjEsj2, and I0 � 2s 2KM.
Then

r1�x� �
1

2p
M

I0

�1
ÿ1

exp

�
M

I0

�
�iI1 ÿ ix�Z

ÿ I1
Z 2

1ÿ iZ

��
dZ

�1� Z 2�M : (5)

Similarly to the derivation of the formula for r1, the
density function of `zero' bits can be written as

r0�x� �
1

2p
M

I 00

�1
ÿ1

exp

�
M

I 00

�
�iI 01 ÿ ix�Z

� I 01
Z 2

1� iZ

��
dZ

�1� Z 2�M : (6)

In the case of the NRZ format of optical pulses I 01 � I1,
and I 00 � I0.

Formulas (5) and (6) were obtained under assumption
that the communication channel is linear. In this case, the
main source of errors is the ampliéer noises. If the channel is
nonlinear, one of the main factors of signal degradation is
the Kerr nonlinearity. The nonlinearity effect is small when
the initial pulses have low power. In the case of higher
power initial pulses one can use optical phase conjugation to
suppress the Kerr nonlinearity [9].
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3. Results of numerical simulation

The propagation of Gaussian optical pulses was numeri-
cally simulated for a communication line with optical phase
conjugation. It was found that formulas (5) and (6) give a
good approximation for the statistics of the currents
corresponding to `zeros' and `ones' at the receiver, in a
system based on the `return to zero' (RZ) format and using
optical phase conjugation. The results of the numerical
simulation demonstrate that optical phase conjugation
effectively suppresses the Kerr nonlinearity.

We considered an optical communication line composed
of 16 periodic sections with the conéguration

SMF (85 km)+EDFA+DCF (14.85 km)+EDFA

followed by 16 periodic sections with the conéguration

DCF (14.85 km)+EDFA+SMF (85 km)+EDFA.

Here, SMF is the standard single-mode ébre, DCF is the
dispersion-compensating ébre, and EDFA is an erbium-
doped ébre ampliéer. An optical phase conjugation device
was mounted in the middle of the line, after the érst 16
sections.

The parameters of the optical ébres are listed in Table 1.
The erbium-doped ampliéers had a noise coefécient of
4.5 dB and completely compensated for the signal decay
at the ébre segment between ampliéers. The mean dis-
persion of a periodic section of the optical communication
line was zero.

Gaussian pulses with a duration of 7.5 ps and a peak
power of 5 mW were used as bits in the line of the RZ-
DBPSK format. We considered the data transmission in one
frequency channel with a rate of 40 Gbit sÿ1.

The dynamics of optical pulses was described using the
generalised nonlinear Schr�odinger equation for the complex
envelope A of electromagnetic éeld [10]:

i
qA
qz
ÿ b2�z�

2

q 2A

qt 2
� s�z�jAj2A

� i

�
ÿ g�z� �

XN
k�1

rkd�zÿ zk�
�
A:

Here, z is the distance along the line; N � 32; jAj2 is the
power; b2 is the dispersion parameter of the group velocity;
s � 2pn2=(l0Aeff) is the Kerr nonlinearity coefécient; zk are
the ampliéer location points; g�z� is the signal decay
coefécient; and rk is the gain. The s and b2 values are
presented as functions of z to take into account the change
in these parameters at a transition from one type of optical
ébre to another.

Communication systems with dispersion control use
optical ébres with chromatic dispersion of opposite sign,
which makes it possible to control the dispersion broadening

of pulses. If the average dispersion of a communication line
is zero, in the linear case and in the absence of decay and
noise, the signal shape is completely recovered in the end of
the line [10]. The model of generalised nonlinear
Schr�odinger equation, which describes the propagation of
optical pulses, takes into account the following effects that
contribute to signal distortion: Kerr nonlinearity, dispersion
broadening, and the ampliéer spontaneous emission noise.

The data were statistically processed after the propaga-
tion of optical signals at a distance of 3200 km. The receiver
included a rectangular optical élter with a transmission
band Bopt � 100 GHz and a third-order Butterworth élter.

We compared the statistics of `zero' and `one' bits
transmitted through a line with optical phase conjugation,
with the statistics of `zeros' and `ones' for the transmission
without phase conjugation. In addition, a comparison with
the statistics of `zeros' and `ones' in the linear channel was
performed. The statistics of `zeros' and `ones' in a linear
channel were obtained by adding the noise of all ampliéers
of the communication line to the initial signal, without
transmission of pulses through the ébre line. All obtained
samples of `zero' and `one' bits were normalised to the mean
current of `one' bits in the communication line with optical
phase conjugation.

Figure 1 shows the probability density functions PDF
for `zero' and `one' bits, depending on the normalised
electric current. The samples of `ones' and `zeros' included
12892 and 12708 values, respectively. The dotted lines show
similar density functions for the linear channel, and the
dashed lines are the probability densities of `one' bits (on the
right) and `zero' bits (on the left) after the transmission
through a communication line without optical phase con-
jugation.

It can be seen that optical phase conjugation effectively
suppresses the Kerr nonlinearity. Without the phase con-
jugation the PDFs of `zero' and `one' bits are overlapped,
and about 5% bits are incorrect. As can be seen in Fig. 1,
the signal quality in the system with optical phase con-
jugation is much better. In this case, the probability densities
of `zero' and `one' bits differ only slightly from those for the
linear channel.

Figure 2 shows the probability densities of `one' and
`zero' bits on the logarithmic scale after the transmission
through the communication line with optical phase con-
jugation and the analytical approximation set by formulas
(5) and (6). Due to the normalisation of the samples to the
average value of `one' bits, I1 � 1. The approximation
parameters I 01 and M=I 00 for `zero' bits and the parameter
M=I0 for `one' bits were found by the least squares method
from a sample of bits at the receiver. The following values of
the approximation parameters were obtained: I 01 � 0:93,
M=I0 �M=I 00 � 112. The number M of the harmonics
transmitted through the optical élter is three. One can
see good coincidence of the analytical approximation of the
probability densities of `zeros' and `ones' with the results of
direct numerical simulation.

Table 1. Parameters of optical ébres.

Optical ébres
Optical loss g

at 1550 nm
�
dB kmÿ1

Effective mode

area Aeff

�
mm2

Group velocity disper-

sion D
�
ps nmÿ1 kmÿ1

Dispersion slope
dD

dl

.
ps nmÿ2 kmÿ1

Nonlinear refractive

index n2
�
m2 Wÿ1

SFM 0.2 80 17 0.07 2:7� 10ÿ20

DCF 0.65 19 ÿ100 ÿ0:41 2:7� 10ÿ20
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Note that formulas (5) and (6) set the behaviour of the
probability density of `zero' and `one' bits. The error
probability depends on the parameters M=I0 and M=I 00,
which are determined by numerical calculation from a
sample of `zero' and `one' bits at the receiver. The larger
these parameters, the higher the signal quality. To determine
them, it is sufécient to have a fairly small sample of `zeros'
and `ones' at the receiver. Thus, the amount of calculations
necessary for precise determination of the probability error
in a communication line can be signiécantly reduced.

In the case of data transfer in the RZ format, generally
speaking, the set of the parameters I1, I0 should not coincide
with the set I 01, I

0
0. The reason is as follows: when coding

`zero' bit, the function of the electromagnetic éeld envelope
A is zero at the boundary of the bit intervals, whereas, when
coding a `one' bit, this condition does not hold true because
the characteristic width of Gaussian optical pulses is
0.3 ë 0.5 of the bit period. Since the electric current at
the receiver is averaged over the bit period, the mean of the
currents corresponding to `one' bits exceeds in magnitude
the mean of the currents corresponding to `zeros'.

4. Conclusions

We derived analytical formulas, which give a good
approximation of the densities of `zero' and `one' bits at
the receiver in optical communication systems with
suppression of nonlinear effects. The probability density
functions for `zero' and `one' bits, calculated from these
formulas, were compared with similar functions obtained
by direct numerical simulation of an optical communication
line with transmission capacity of 40 Gbit sÿ1, based on a
standard single-mode optical ébre and a dispersion-
compensating ébre. It is shown that optical phase
conjugation effectively suppresses the Kerr nonlinearity
and reduces the error rate of the system.
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Figure 1. Probability densities of `zero' and `one' bits for different pro-
pagation modes as functions of normalised current.
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Figure 2. Probability densities of `zero' and `one' bits as functions of
normalised current: (solid lines) the calculation results and (dashed lines)
the analytical approximation.
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