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Abstract.  We present the results of interference studies of a diode-
pumped active disk element made of a gadolinium – gallium – garnet 
(GGG:Nd) crystal. The disk is cut perpendicular to the crystallo-
graphic axis [001], along which the pump beam propagates. With 
absorbing pump radiation, a thermal lens, which has been investi-
gated by the interference methods using linearly polarised probe 
radiation, is formed in the disk. At the absorbed pump power up to 
12 W, the interference pattern near the disk surface is a system of 
concentric rings. With increasing absorbed pump power up to 24 W, 
the outer rings transform into hexagons. It is shown that such an 
interference pattern in the garnet crystal is caused by thermally 
induced birefringence. 

Keywords: birefringence, disk laser. 

1. Introduction 

In designing ~1-mm high-power solid-state lasers much atten-
tion is paid to the development of pumping and cooling sys-
tems. The use of a thin disk active element in such systems is 
one of the most successful projects aimed at overcoming the 
beam quality degradation caused by thermal effects in the 
active medium. These active elements have significant advan-
tages over traditional rod laser due to the radiation quality 
and power scalability. 

There are several types of disk lasers differing in the ways 
of pumping the active medium and in methods of heat removal 
from it: thin disk lasers pumped by a small diameter beam [1]; 
lasers with so-called active mirrors, long cavity and several 
active elements in the resonator pumped by a broad beam [2]; 
disk lasers with multichannel pump architecture [3]; cryo
genically cooled lasers [4], etc. The scheme with a multichan-
nel-pumped active medium presented in [3] is of special inter-
est for fabricating high-power disk lasers with diffraction-
limited beam divergence. The study of temperature, 
mechanical stress and thermal-induced birefringence distribu-
tion in the pump beam spot and in its vicinity for one channel 
is a necessary step in the development of this direction. 

This paper presents the results of interference studies of disk 
active element made of gadolinium – gallium – garnet (GGG : Nd) 
crystal in terms of thermally induced mechanical stress and 
birefringence. 

2. Observation of the interference pattern near 
the disk surface 

The experimental setup is shown in Fig. 1. The disk planes 
are parallel to crystallographic axes [100] and [010], and the 
optical axis of the scheme is parallel to the crystallographic 
axis [001]. A 0.808-mm diode laser with a pump beam spot 
diameter d = 5 mm is used for pumping. The thickness of the 
disk is h = 2.5 mm, and its diameter is 50 mm. The disk was 
attached to a water-cooled duralumin holder with a duralumin 
plank having a circular hole 47 mm in diameter. The thermal 
contact was provided using the KPT-8 thermal grease. The 
disk surface had a dielectric coating. The reflection coeffi-
cients of the pump from the front and rear surfaces of the 
disk were 0.1 % and 99.6 %, respectively. The pump power 
could be varied in the range 1 – 34 W. In two passes through 
the disk about 90 % of incident radiation is absorbed. The 
intensity distribution in the pump beam cross section was 
nearly Gaussian. With absorbing pump radiation a thermal 
lens, which was investigated using the probe linearly polarised 
radiation of a 0.5435-mm He – Ne laser, was formed in the disk. 
The electric field vector of the probe radiation was directed 
along the [010] axis of the Nd:GGG crystal. The reflection 
coefficients of the probe radiation from the front and rear 
surfaces of the disk were 5 % and 10 %, respectively. The probe 
beam was directed along the normal to the disk under study and, 
reflecting from its two surfaces, formed an interference pattern. 
This pattern is similar to that with fringes of equal thickness, 
obtained in the presence of birefringence. The path difference 
of the interfering beams was equal to the optical path length of 
the probe radiation in the sample before pumping P1 = n0L, 
and after absorption of the pump – P2 = (n0 + Dn)(L + DL), 
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Figure 1.  Optical scheme of the experiment:	
( 1 ) disk active element made of GGG:Nd; ( 2 ) diode pump system; 
( 3 ) and ( 4 ) expansion telescope lenses; ( 5 ) beamsplitter; ( 6 ) He – Ne 
laser; ( 7 )  filter; ( 8 ) screen. 
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where L and n0 are the doubled thickness and refractive index 
of the sample; Dn and DL are the changes in the refractive 
index and thickness L.

The interference pattern localised near the disk surface was 
displayed on the screen and recorded with a camera (standard 
recording speed of 24 fps). The camera recorded the develop-
ment of the pattern upon switching on the pump and after 
switching it off. Processing was performed using the first frame 
after switching off the pump to eliminate the effect of radia-
tion. The initial intensity distribution obtained in the absence 
of pumping was subtracted from the intensity distribution in 
this frame, so that to exclude in the difference interference 
pattern the phase incursion caused by the wedge shape of the 
disk and by the phase incursion produced due to reflection of 
the probe radiation from a dielectric mirror deposited on the 
rear side of the disk. 

Below, when it comes to the interference pattern obtained 
in the experiment, the difference interference pattern is implied. 
It characterises the change in the sample temperature and 
induced mechanical stress, caused by to the heating during 
the absorption of the pump. At a small pump power (absorbed 
power up to 12 W) the interference pattern represented a system 
of concentric rings (Fig. 2a). With increasing pump power the 
number of rings and their radii increased. When the absorbed 

pump power was W = 12 W, we observed breaks at several 
points of outer interference rings. With a further increase in 
the pump power the outer rings transformed into hexagons 
(Fig. 2c). The observed interference pattern was not related 
to the possible asymmetry of cooling and sample mounting, 
because the form of the pattern did not change at different 
positions of the pump spot on the disk surface. At the same 
time by rotating the polarisation plane of the probe radiation 
by p/2 the interference pattern also turned by p/2, and when 
turning it by p/4, it transformed into a system of ellipses. 

The same experimental setup (Fig. 1) was used to obtain 
the patterns of the depolarised component of the probe radia-
tion, which twice passed through the disk, at different pump 
powers. To do this, we placed in front of the screen an addi-
tional polarisation filter ( 7 ) which blocked polarisation of the 
incident radiation. Such patterns had the fourth order rota-
tional symmetry and the form typical of polariscopic patterns 
of a garnet crystal cut perpendicular to the [001] axis. Figure 3a 
shows the polariscopic pattern obtained at W = 24 W. 

To our knowledge, hexagonal contours in the interference 
pattern near the garnet crystal surface (crystallographic axes 
[010] and [100] are parallel to the surface) have never been 
observed previously. In order to determine whether the fea-
tures of such an interference pattern are due to the induced 
thermo-mechanical stresses in the disk, we simulated a ther-
mal lens in the disk and the interference pattern. The problem 
was solved in the plane stress approximation. For an arbitrary 
point of the disk surface we calculated eigenpolarisations and 
corrections to the refractive index. Then, we calculated the 
square of the field strength (proportional to the intensity) of 
the interfering probe radiation at this point, and then com-
pared the calculated and experimental interference patterns. 
Unlike previous similar calculations for disk active elements 
(see, for example, [4]), in our case we used experimental (aver-
aged over the disk thickness) data on the temperature distri-
bution along the disk surface (see Section 4) rather than com-
putational. 

In calculations we used the following physical characteris-
tics of the GGG crystal: b = 17.5 ́  10–6 K–1, the temperature 
coefficient of refractive index [5]; E  = 2.25 ́  1011 Pa, Young’s 
modulus [6]; n = 0.28, Poisson’s ratio [6]; n0 = 1.98 (at a wave-
length of 0.5461 mm); p11 = –0.086, p12 = –0.027, p44 = –0.078, 
elastooptical coefficients [6]; x = 2p44/(p11 – p12) = 2.64, the 
optical anisotropy parameter; aT = 8 ́  10–6 K–1, the linear 
expansion coefficient [5]. We also used the notations: sij, eij, 
components of stress and strain tensors in the crystallographic 
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Figure 2.  Experimental (a, c, e) and calculated (b, d, f) interference pat-
terns at the absorbed pump power W = 3 (a, b) and 24 W (c, d), the 
pump spot diameter d = 5 mm. Figures 2e, f shows the central part of 
the frames from Figs 2c, d. The width of the frame in Fig. 2a corresponds 
to 38.9 mm, and in Fig. 2e – to 9.5 mm. Arrows indicate the character-
istic features of the interference patterns (see the text). 

a b

Figure 3.  Experimental (a) and calculated (b) polariscopic patterns 
obtained at the absorbed pump power W = 24 W. 
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system of coordinates (i, j = 1, 2, 3); Bij, the components of the 
dielectric impermeability tensor; DBij, the components of the 
change in the dielectric impermeability tensor. 

3. Calculation of the interference pattern 		
near the disk surface 

To calculate the light intensity in the interference pattern near 
the disk surface, we calculated projections of the electric field 
onto the directions of eigenpolarisations for an arbitrary 
point on the surface, and defined the field intensities of the 
probe radiation. 

In the calculations we used three systems of coordinates 
(Fig. 4). Position of the points on the disk surface was speci-
fied in the cylindrical coordinate system r, j, z, whose origin 
was associated with the pump spot centre on the disk surface 
(z = 0). Elastooptical coefficients of the crystal were given in 
the crystallographic coordinate system with axes х || [100], 
y || [010], z || [001]. In addition, the local coordinate system with 
axes directed along eigenpolarisations at a given point of the 
crystal was tied to each point of the disk surface. The direc-
tions of eigenpolarisations coincide with the principal directions 
of the change in the dielectric impermeability tensor DB. 

The pump spot diameter (d = 5 mm) was significantly 
smaller than the disk diameter, and the temperature distribu-
tion in the plane of the disk was axially symmetric. Nonuni
form temperature distribution resulted in the thermal stresses 
in the crystal and lead to birefringence. The incident wave of 
the probe radiation passing through each point of the heated 
region cross section can be decomposed into two components 
with field strengths Er1 and Ej1, directed along the eigenpo-
larisations at a given point of the crystal. The direction of the 
vector Er1 is closer to the radial and the direction of the vector 
Ej1 – to the tangential direction in the above-mentioned cylin-
drical coordinate system. Therefore, in what follows, Er1 is called 
the radial field component, and Ej1 – tangential. Waves with 
strengths Er1 and Ej1 spread at different velocities. 

The electric field vector of the incident wave E in the local 
coordinate system can be decomposed into the components 
(Fig. 4) 

Er1 = E cos j1 cos (wt),

Ej1 = E sin j1 cos (wt),	
(1)

where j1 is the angle between the direction of the incident 
probe radiation polarisation (in our case – along the [010] 
axis) and the direction of the vector Er1. The angle j1 differs 
from the polar angle j; these angles are related by the expres-
sion [7] 

tan 2j1 = x tan 2j .	 (2)

The probe radiation has only a radial component of the 
field Er1 for points in the pump spot which are located along 
the y axis (j = j1 = 0), and only a tangential component of the 
field Ej1 along the x axis (j = j1 = p/2). At other points the 
vector E will have non-zero components Er1 and Ej1. 

After two passes through the disk, each of these compo-
nents takes an additional phase incursion yr1 or yj1. Near the 
disk surface the total field is determined by the field E of the 
wave reflected from the front surface and by the field E' of the 
wave passing through the disk and reflected from its rear 
surface. We assume for simplicity that the intensity of waves 
reflected from two surfaces of the disk are equal, then the 
radial and tangential components of the total field in the local 
coordinate system are written in the form: 

Er1 + E'r1 = E cos j1 [ cos (wt) + cos (wt + yr1) ],

Ej1 + E'j1 = E sin j1 [ cos (wt) + cos (wt + yj1) ],	

(3)

where the phases yr1 and yj1 are the functions of the coordi-
nates r and j of the given point on the disk surface. Then the 
square of the field strength at a point can be expressed in 
terms of the radius r and the polar angle j with account for 
relation (2). After its time-averaging, we obtain 

ES
2(r, j) = (Er1 + E'r1)

2 + (Ej1 + E'j1)
2

	 = E2(1 + cos2j1 cos yr1 + sin
2j1 cos yj1).	 (4)

Expression (4) determines the probe radiation intensity at 
an arbitrary point on the disk surface. The phase incursion 
yr1, j1(r, j) at each point of the disk is related to the optical 
path difference DРr1, j1(r, j) by the expression 

yr1, j1(r, j) = DРr1, j1(r, j)
2p
l
,	 (5)

where l is the probe radiation wavelength. The integer part 
[DРr1, j1(r, j)/l] corresponds to the number N of the maximum 
(or bright ring) in the interference pattern.

4. Calculation of the optical path length 		
of the probe radiation in the disk 

The experimentally observed interference pattern at each point 
near the disk surface was determined by the optical path dif-
ference of the beam reflected from the front surface, and the 

x, [100]

y, [010] E

Er1

Ej1

r

j

j1

j1

Figure 4.  Coordinate system used in this paper (see the text). 
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beam passing through the disk and reflected from its rear 
surface. When passing through the disk the probe radiation 
intersected regions with different temperatures, because the 
temperature over the disk thickness was not constant. There
fore, the interference pattern was determined by the phase 
incursion, integral over the disk thickness, and this phase 
incursion could be used to find a phase profile averaged over 
the disk thickness. 

In calculatying thermal stresses in the disk it is needed to 
know the temperature distribution T(r). In some cases, when 
determining the temperature profile in axially symmetric active 
elements, use can be made of analytic solutions of a two-
dimensional heat equation for a thin plate or a cylinder [4, 5]. 
In our experiments, the heat problem is not reduced to any of 
these approximations, because the disk thickness and the 
pump spot diameter are close quantities. 

We determined the distribution T(r) in another way – by 
the interference pattern, suggesting that the main contribu-
tion to the phase incursion for an arbitrary point on the sur-
face is made by terms proportional to the temperature at this 
point. In the calculations we assumed that the distribution 
function T(r) coincides with the normalised distribution func-
tion of the phase incursion, multiplied by the maximum tem-
perature which was found from the condition of equality of 
the number of interference maxima in theoretical and experi-
mental interference patterns. The temperature distribution in 
the sample was axially symmetric which was due to the disk 
pumping and cooling geometries and was confirmed by the 
form the interference pattern. Figure 5 shows the polarisation 
averaged profiles of the phase incursion (number of rings), 
measured by the experimental interference patterns shown in 
Figs  3a, c, e. For the outer rings the average value of their 
radius was selected.

Because the linear dimensions of the disk surface and the 
diameter of the interference rings are much larger than the disk 
thickness, in calculating the thermal stresses we used the plane 
stress approximation [8] and neglected for simplicity the change 
in the temperature gradient in the disk along the z axis, because 
the mechanical stresses in the object in the direction of the 
constant temperature gradient do not arise [7]. 

At a given temperature distribution the tensor components 
of stress (s), strain (e) and displacement (u) at each point in 
the crystal are determined by the equilibrium equations, rela-

tionships between strains and displacements, strains and 
stresses, and boundary conditions. The corresponding equa-
tions are given in [9]. For a thin plate the stress components 
along the z axis are equal to zero in the plane stress approxi-
mation: szz = srz = sjz = 0. In this case, the stress and strain 
depend on two variables – r and j – in the sample plane.

As a result of pumping up to terms of the second order 
smallness, the change (measured by the interference pattern) 
in the optical path of the probe radiation in the sample is 
expressed as: 

DP = P2 – P1 = LDn + n0DL = L(Dn + n0ezz),	 (6)

where Dn are the refractive index changes caused by tempera-
ture and mechanical stresses [7]; the term n0ezz takes into 
account the elongation of the active element. 

As a result of the induced birefringence, the optical path 
lengths for radially and tangentially polarised light are differ-
ent. At each point of the disk surface, there are two compo-
nents of the change in optical path length (DРr1, j1), which can 
be expressed through the change in the principal values of the 
optical indicatrix DBr1, j1(r, j): 

DРr1, j1 = L T n
n

B
2 ,zz r0
0
3

1
Tb e+ - j1c m,	 (7)

where the first term takes into account the temperature changes 
in the refractive index, the second term – thermal expansion, 
and the third term – the contribution of thermal stresses into 
the refractive index change.

In the calculations we used the methods described in [7 – 10]. 
For an Nd : GGG crystal the tensor components of the elasto
optic coefficients p11, p12, p44 are given in the crystallographic 
coordinate system [6]. Taking into account the geometry of 
the problem, the stress tensor is more convenient to write in 
the  cylindrical coordinate system. Because the calculations 
should be performed in one coordinate system, the relations 
between the tensor components DBi j, ei j and si j were written 
in the crystallographic system. Then, the eigenvalues DBr1 and 
DBj1 were expressed via DBi j, and the components si j – via 
eigenvalues sr and sj and the angle j (the angle of the main 
direction of the tensor s). As a result, we derived the expres-
sions for DBr1, j1(r, j), which are convenient for further calcu-
lations. 

Expressions for the radial and tangential stress compo-
nents that are the principal values of the stress tensor at the 
point with coordinates r, j in the case of a plane axially sym-
metric thermal field in the cylindrical coordinate system have 
the form [8] 

sr = 2
ETa
(TR – Tr),  sj = 2

ETa
[TR + Tr – 2T(r)],	 (8)

where TR is the average temperature of the disk of radius R; 
Tr is the average temperature inside the disk bounded by a 
circle of radius r: 

r
( ) .dT

r
T r r r2

r 2 0
= y 	 (9)

Expressions for DBr1 and DBj1 can be written in the form: 

0
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Figure 5.  Ring number N in the interference pattern as a function of 
radius for the absorbed pump power W = 3 ( 1 ), 12 ( 2 ) and 24 W ( 3 ). 
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DBr1, j1(r, j) = 2
1

E

rs s+ j
'  [p11(1 – n) 

	 + p12(1 – 3n)] + 2aTT(r)( p11 + 2p12)
E

sj
1

	 ( ) ( )
( )

( )
.

tan

tan
p p

2
1 1

1 2

1 2

E
r 11 12 2

2 2

!
n s s

j

x j+
- -

+

+
j* 4 	 (10)

As a result, components (7) can be written as 

DPr1, j1(r, j) = L ( )

. ( )

tan

tan

1 2

1 2 64 2
2

2 2

j

j

+

+* 4( ) ( )T r n
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p p

4
2T T0

0
3
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n
4
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j
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4 	 (11)

We select in (11) the terms depending only on the radius r. 
Then, the phase incursion component, which is common for 
both eigenpolarisations, has the form 

y0(r) = 
2p
l

L
E

sj' 1( ) ( )T r n
n
p p

4
2T T0

0
3

11 12b a a+ - +; E

+ [T(r) – TR] aT 
n
4
0
3

' [ p11(1 – n) + p12(1 – 3n)] + nn0
E

sj
1
E

sj
1, 	(12)

and the phase incursion Dy(r, j), which depends on the radius 
r, polar angle j and is equal to the phase difference for eigen-
polarisations, has the form 

Dy(r, j) = 2p
l

L[ ( )] (1 )( )T T r
n

p p
4r T
0
3

11 12a n- + -

	
( )

( )
.

tan

tan

1 2

1 2
2

2 2

#
j

x j

+

+
	 (13)

Then, formula (4) can be represented as follows: 

ES
2(r, j) = E2{1 + cos2j1 cos[ y0(r) + Dy(r, j)]

	 + sin2j1 cos[ y0(r) – Dy(r, j)]}.	 (14)

Our calculations are valid for any crystal with a garnet struc-
ture. 

Substitution of the numerical parameters of the Nd : GGG 
crystal in (11) makes it possible to evaluate the contribution 
of individual terms into the phase incursion (Fig. 6): 

( , )P r,r 1
T

l

jj1  » 10–2
( )

. ( )

tan

tan

1 2

1 2 64 2
2

2 2

j

j

+

+* 435T(r) + 3.1[T(r) – TR]

	 1.1[ ( )]
( )

. ( )
.

tan

tan
T T r

1 2

1 2 64 2
r 2

2 2

!
j

j
-

+

+
4 	 (15)

One can see that the phase incursion profile [curve ( 1 )] 
is  almost completely determined by the temperature profile 
[curve ( 2 )]; therefore, the choice of approximation of the tem-
perature function by the phase incursion profile seems justi-
fied. Note [see expression (8)] that the difference sr – sj is 
proportional to Tr – T(r). Curve ( 5 ) is shown in an enlarged 
scale. It can be seen that the maximum difference Tr – T(r) 
and, consequently, sr – sj is achieved outside the pump spot 
(at r » 4 mm).

It follows from (4) and (14) that the interference maxima 
at j = 0 are determined by the radial component of the phase 
incursion yr1, and if j = p/2 – by the tangential component 
yj1.When j = p/4, equation (14) reduces to the form that 
allows the difference between the phase incursions Dy(r, j) 
for the radial and tangential polarisation components to be 
found. Below we present formulas for determining the posi-
tion of interference maxima: 

ES
2(r, 0) = E2{1 + cos[y0(r) + Dy(r, 0)]} at j = 0,

ES
2(r, p/2) = E2{1 + cos[y0(r) – Dy(r, p/2)]} at j = p/2,	 (16)

ES
2(r, p/4) = E2{1 + cos[y0(r)] cos[Dy(r, p/4)]} at j = p/4.

Figure 7 shows the function F1(r) = ES
2(r, p/4) correspond-

ing to the beat pattern. Modulating is the phase difference 
function of radial and tangential components F2(r) = E2{1 + 
cos[Dy(r, p/4)]}. 

Comparison of theoretical and experimental interference 
patterns (Figs 2c, d) showed good correspondence between 
their features: the hexagonal contour, thickening of the hexa-
gon vertices and incomplete dark ring behind the hexagon 
are clearly visible. Figures 2e, f present the central part of the 
interference pattern with concentric rings and contours of 
interference lobes. The contours of the lobes can be also seen 
in Figs 2c, d. Against the background of the rings, we see a 
four-lobe contour of the change in the fringe contour corre-
sponding to the change in the lobe colour in polariscopic pat-
terns (Fig. 3). 

Thus, the interference pattern obtained by using linearly 
polarised light contains information about the absolute values 
yr1 and yj1, as well as their difference. Comparison of the 
theoretical and experimental patterns (Fig. 2) suggests that 
these patterns have the second-order rotational symmetry, and 
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well as the contribution of terms proportional to T(r) ( 2 ), T(r) – TR ( 3 ), 
Tr – T(r) ( 4, 5 ) at j = p/4. 
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the hexagonal contour is the result of interference of the beams 
of linearly polarised light in a crystal with the fourth-order 
rotational symmetry in the case of induced birefringence. 

5. Conclusions 

Comparison of experimental data and results of the calcula-
tions allows the following conclusions to be drawn. 

(i) The maximum difference between the quantities sr and 
sj  is achieved outside the pump beam spot, approximately at 
a distance of its double radius. In this region the phase differ-
ence between radiations with two polarisations reaches maxi-
mum values, and the interference pattern exhibits a change in 
the form of the rings. 

(ii) The proposed calculation model and method for esti-
mating the temperature profile in the medium are consistent 
with the results of experiments. 
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Figure 7.  Function F1(r) (solid curve) and modulating function F2(r) 
(dashed curve).


