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Abstract.  The Jones matrix method is used to analyse the polarisa-
tion eigenmodes of a solid-state laser with an anisotropic Fabry – 
Perot cavity containing amplitude and phase anisotropic elements. 
The results demonstrate that, when the axes of these elements 
do not coincide, the eigenpolarisations become elliptical and non
orthogonal. The ellipticities and azimuths of the polarisation modes 
and the magnitude and phase of the nonorthogonality parameter 
are determined as functions of polariser angle at different relation-
ships between the amplitude and phase anisotropies, and the effect 
is shown to be strongest at a polariser angle of 45°. There is critical 
phase anisotropy, dependent on amplitude anisotropy, at which the 
magnitude of the nonorthogonality parameter and ellipticity of the 
polarisation modes approach unity.

Keywords: phase anisotropy, amplitude anisotropy, polarisation 
mode, nonorthogonality parameter, pump-induced gain anisotropy, 
Fabry – Perot cavity, microchip lasers, Jones matrix method.

1. Introduction

Modes generated in multimode lasers are usually assumed to 
be orthogonal, which is typically quite justified but is not 
always the case. Mode nonorthogonality means that there is 
linear coupling between the modes. The result is excess noise, 
which considerably broadens the laser emission line [1, 2]. In 
ring lasers, linear coupling between counterpropagating cavity 
modes may cause self-modulation oscillations [3 – 6]. In  this 
paper, we consider several model problems that highlight some 
common properties of polarisation eigenstates in anisotropic 
cavities. These properties are rather important and should be 
taken into account in describing laser dynamics.

One effective way to assess laser radiation dynamics is to 
expand the electromagnetic field in the laser cavity in terms of 
its eigenmodes. Further, one can expand the population inver-
sion in terms of the cavity eigenmodes and derive equations 
for each particular mode. In this approach, one usually selects 
a basis of orthogonal modes whose polarisations are specified 
at the outset and do not vary in space [7]. This approach is 
however not always rigorous: eigenmodes are orthogonal 
only in the case of an isotropic cavity, whereas the modes of a 
cavity that possesses phase or amplitude anisotropy may be 

nonorthogonal. It is therefore important to take into account 
the mutual orientation of the eigenaxes of anisotropic elements.

Cavity anisotropy is not always caused directly by aniso-
tropic elements placed in the cavity. Sometimes, this is simply 
impossible, e.g. when the cavity is very short (chip laser) or 
mirrors are deposited directly onto crystal faces. There may 
be other causes of anisotropy, in particular, pump-induced 
anisotropy (for example, linearly polarised radiation from a 
semiconductor laser leads to gain anisotropy [8, 9]). An exter-
nal magnetic field or internal-stress-induced residual birefrin-
gence produces phase anisotropy. This means that there is 
always at least a small anisotropy and it has to be taken into 
account under some conditions.

This paper examines the behaviour of eigenpolarisations 
of a system. In connection with this, it is worth while to spec-
ify the assumptions used below. The modes in a Fabry – Perot 
cavity have longitudinal and transverse structures and polari-
sations. Resonance conditions require the formation of stand-
ing waves along the length of the cavity, which eventually 
ensures orthogonality of different longitudinal modes. Of the 
transverse modes, there is usually only the fundamental one, 
which has the lowest loss (the other transverse modes can be 
eliminated by an aperture). Therefore, in what follows the 
transverse beam structure can be left out of consideration and 
each cavity mode can be thought of as a standing plane wave. 
The question of coupling between polarisation modes having 
the same longitudinal index remains open. This issue will be 
addressed in what follows. Mode coupling is rather difficult to 
assess, which typically requires numerical simulations. At the 
same time, because polarisation modes are considered, there 
are approximations that can significantly simplify the problem.

Neglecting diffraction, the variation of the cavity and beam 
parameters with the transverse coordinates (i.e., considering 
the system near the cavity axis), and frequency dispersion, one 
can calculate eigenpolarisations using the Jones matrix method. 
This method allows one to find the polarisation of eigenmodes 
at any point of the cavity and to calculate their quality factors 
and frequency difference. The results thus obtained provide 
answers to a number of questions regarding the key features 
of eigenpolarisations, dual- or single-polarisation operation of 
the laser and coupling between its eigenmodes.

The purpose of this work is to identify common features 
in the polarisation properties of anisotropic cavities using 
particular model problems as examples. 

2. Linear cavity with a partial polariser 
and a wave plate

Consider an anisotropic cavity containing anisotropic ele-
ments with amplitude and phase anisotropies. The residual 
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birefringence of an active element can be modelled by a wave 
plate of phase thickness q. The x and y axes of the Cartesian 
coordinate system are parallel to the axes of the wave plate, 
as shown in Fig. 1. In addition, the cavity contains a partial 
polariser with a rotation angle j relative to the x axis, which 
models the gain anisotropy induced by linearly polarised 
pump light [8 – 10]. Rotation of the plane of polarisation of 
the pump light through an angle j means rotation of the 
polariser through the same angle. It is convenient to perform 
calculations for an anisotropic cavity using the Jones matrix 
method [11].

In this method, the polarisation eigenstates of a cavity can 
be found by constructing a cavity round-trip Jones matrix M 
and determining the eigenvectors u and eigenvalues l of the 
matrix:

M = Mn Mn – 1 ... M2 M1,

Mu = lu.	
(1)

We will consider eigenvectors in the form

,Eu
1

x c
= e o 	 (2)

where c = Ey /Ex is a complex-valued polarisation parameter 
which can be used to determine ellipticity e (the ratio of the 
minor axis to the major axis of the polarisation ellipse) and 
azimuth b (the angle between the semimajor axis of the polar-
isation ellipse and the x axis) [12, 13]:
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Here n = 0 for one polarisation mode and n = 1 for the other.
Equation (1) has a solution in the form of two eigenvectors, 

u1,2, and accordingly two eigenvalues, l1,2. The eigenvalues 
can be expressed through the matrix elements Mi j :
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where Tr(M) = M11 + M22 and det(M) = M11M22 + M12M21. 
The complex-valued polarisation parameters are given by
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To characterise the nonorthogonality of polarisation eigen-
modes, we use the parameter
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where g0 1G G . The condition g = 0 means that there is no 
linear coupling between the polarisation modes.

Since we are interested in the state of polarisation modes 
in an active medium, we will consider polarisation parameters 
in zone 2 of an anisotropic cavity (Fig. 1). Matrix M in zone 2 
can be represented in the form

M = r1r2F2R(j)P2R(–j).	 (7)

Here,
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is the matrix for rotation through an angle j; and r1,2 are the 
reflectivities of the mirrors.

Multiplying the matrices in (7) and introducing /b b b1 2= -u ^ h, 
we obtain
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The eigenvalues l in (4) determine the loss in the cavity, p 
= 1 – |l|2, and the correction to the polarisation mode fre-
quencies:

f = Dn/n0 = arg l/(2p),

where n0 = c/(2Lopt) is the mode spacing (c is the speed of light 
and Lopt is the optical length of the cavity).

General expressions for the polarisation parameters e and b 
and the nonorthogonality parameter g are difficult to derive. 
Illustrative expressions for these parameters can only be obtained 
in two limits: when the phase anisotropy is small compared to 
the amplitude anisotropy and in the opposite case.

Consider first the case of small phase anisotropy. For

q << bu ,	 (9)
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Figure 1.  Schematic of a Fabry – Perot cavity with an intracavity polar-
iser and wave plate making an angle j.
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the radicand in (4) can be expanded in terms of a small param-
eter. Retaining only the first-order terms, we obtain after 
simple transformations

e1 » – sin (2q) sin (2j)/(4bu),

e2 » – (1 – 2bu) sin (2q) sin (2j)/(4bu),

b1 » j,	 (10)

b2 » p/2 + j,

g » i(1 – bu) sin (2q) sin (2j)/(2bu).

It can be seen from (10) that the ellipticities of the two 
polarisation modes, e1,2, differ in magnitude and have the 

same sign. They reach their maximum values at j = p/4 and 
3p/4, as does the magnitude of the nonorthogonality param-
eter g. The ellipticities e1,2 and the magnitude of g increase 
with decreasing b [when condition (9) is fulfilled].

The azimuth of the polarisation ellipse specifies the rota-
tion angle of the anisotropic-amplitude element. To first order 
in q/bu , the azimuth difference is p/2.

In the case of small amplitude anisotropy, the radicand in 
(4) can be expanded into a power series when the following 
conditions are fulfilled:

bu << 1,    bu << tan q.	 (11)

Omitting intermediate steps, we give the final expressions for 
the ellipticities e1,2, azimuths b1,2 and nonorthogonality param-
eter g:
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Figure 2.  Azimuth b1, ellipticities e1,2, magnitude and phase of the nonorthogonality parameter g, frequency corrections f1,2 and losses p1,2 as func-
tions of polariser angle, j, for the two polarisation modes at an amplitude anisotropy b = 0.01 ( ), 0.015 ( ) and 0.04 ( ) and a phase anisotropy 
q = 1° (0.0175 rad). Here and in what follows, the data for the subscript 1 are represented by solid lines and those for the subscript 2 are represented 
by dashed lines.
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where A = 1 + 2 cot2q cos2j. It follows from (12) that the 
ellipticities of the two polarisation modes are equal in magni-
tude and have the same sign. Accordingly, the azimuths of the 
polarisation ellipses are close to zero and p/2 because of the 

small amplitude anisotropy b. The azimuth difference gener-
ally differs from p/2 by the small quantity 2b1.

3. Numerical simulation results

The mode polarisation and nonorthogonality parameters of a 
Fabry – Perot cavity (Fig. 1) were evaluated numerically using 
the exact expressions (4) – (8). Figure 2 shows characteristics 
of cavity polarisation modes as functions of polariser angle, 
j, at a phase thickness q = 1° (0.0175 rad) and different ampli-
tude anisotropy values, b. At a small amplitude anisotropy 
(b = 0.01 < q, Fig. 2a), the orientations of the polarisation 
modes are essentially independent of polariser orientation 
(large phase anisotropy), whereas for b = 0.04 > q the azi-
muths of the polarisation modes specify the polariser orienta-
tion, j. This corresponds to large amplitude anisotropy.
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Figure 3.  Azimuths b1 and b2 – p/2, ellipticities e1,2, magnitude and phase of the nonorthogonality parameter g, frequency corrections f1,2 and losses 
p1,2 as functions of phase anisotropy, q, for the two polarisation modes at an amplitude anisotropy b = 0.01 ( ), 0.015 ( ) and 0.04 ( ) and a polar-
iser angle j = 45°.



575Nonorthogonal polarisation eigenstates in anisotropic cavities

The variations in the azimuths of the eigenpolarisations 
with polariser angle are accompanied by variations in the ellip-
ticities e1,2 (Fig. 2b) and the magnitude and phase of the non-
orthogonality parameter (Figs 2c, 2d). As seen, e1,2 have the 
maximum magnitude at j = 45°. The ellipticities then have 
the same sign and differ in magnitude (solid and dashed lines). 
The curves for the magnitude of the nonorthogonality param-
eter, |g|, have a similar shape (Fig. 2c). Figure 2d shows the 
arg g curves. At small q, arg g varies little, with a minimum at 
j = 45°. With increasing q, the variations become more sig-
nificant, and arg g drops to zero at j = 45°. Figure 2e shows 
the corrections to the frequencies of the two polarisation modes 
(normalised to the mode spacing) as functions of j. For b H q 
(the amplitude anisotropy is comparable to the phase aniso
tropy), the initial frequency difference due to phase anisotropy 
varies considerably.

To assess the influence of the phase thickness of the wave 
plate, q, on the polarisation characteristics and nonorthogo-

Large phase 
anisotropy

Large amplitude 
anisotropy

qcr

0.015

0.010

0.005

0 0.005 0.010 0.015 b

Figure 4.  Critical phase anisotropy, qcr, against amplitude anisotropy, 
b, at a polariser angle j = 45°.

0 1 2 3 4 q/deg

b1, b2 – p/2

45

30

15

0

–15

–30

0 1 2 3 4 q/deg

e1,2

0.0

–0.2

–0.4

–0.6

–0.8

–1.0

0 1 2 3 4 q/deg

|g|

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 q/deg

arg g

75

90

60

45

30

15

0 1 2 3 4 q/deg

f1,2

0.010

0.005

0

–0.005

–0.010

–0.015

0 1 2 3 4 q/deg

p1,2

0.15

0.10

0.05

a d

b e

c f

Figure 5.  Azimuths b1 and b2 – p/2, ellipticities e1,2, magnitude and phase of the nonorthogonality parameter g, frequency corrections f1,2 and losses 
p1,2 as functions of phase anisotropy, q, for the two polarisation modes at a polariser angle j = 45° ( ), 40° ( ) and 20° ( )  and b = 0.04.
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nality parameter, we calculated e1,2, b1,2, |g| and arg g as func-
tions of q at a polariser angle j = 45° and different values of 
amplitude anisotropy, b. The results are presented in Fig. 3. 
It is seen that, at a certain low value q = qcr, dependent on b, 
the eigenpolarisations may approach circular configurations, 
and the magnitude of the nonorthogonality parameter then 
approaches unity (Figs 3b, 3c). With increasing amplitude 
anisotropy, b, the value of qcr, corresponding to the maximum 
in e1,2, shifts to greater phase thicknesses.

At a wave plate thickness qcr, the azimuths drop by ~45° 
at j = 45° (Fig. 3a). Figure 4 plots qcr against b (dashed line). 
The data are well represented by the linear relation qcr = b 
(solid line). The straight line separates the regions of large and 
small amplitude anisotropy.

Figure 5 shows the polarisation and nonorthogonality 
parameters as functions of phase thickness, q, at different par-
tial polariser angles (45°, 40° and 20°) and b = 0.04. At j = 45°, 
the ellipticities of the two polarisation modes have the largest 
magnitude (nearly circular polarisations) and the orthogonality 
parameter approaches unity. At j less or greater than 45°, 
the curves have a similar shape, but the above parameters are 
considerably smaller, especially at q » qcr.

Analysis of the polarisation modes in zones 1 and 3 (Fig. 1) 
indicates that the above relations remain almost unchanged, 
but the ellipticities in these zones are the same for the two 
polarisation modes and are half the sum of the ellipticities in 
zone 2.

4. Conclusions

The present simulations demonstrate that linearly polarised 
pump light induces amplitude anisotropy that may have – in 
combination with the residual phase anisotropy of the active 
element – a significant effect on the polarisations of the two 
cavity eigenmodes, leading to their nonorthogonality (and 
accordingly to coupling and interaction between these modes 
in the active medium). The polarisation eigenmodes are 
orthogonal only when the eigenaxes of the polariser coincide 
with those of the anisotropic-phase medium. Linear amplitude 
anisotropy can be prevented by employing circularly polar-
ised or unpolarised pump light.
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