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Abstract.  We present the results of numerical simulation of the 
adiabaton emergence process in the lambda scheme of degenerate 
energy levels with the quantum number of the total angular momen-
tum, J = 0, 2, 1. In the case of linear polarisation of the input high-
frequency field and circular polarisation of the input low-frequency 
field, the energy of the high-frequency component of the adiabaton 
is shown to focus in two or more pulses: in one of the pulses the field 
is circularly polarised in a direction opposite to that of the low-fre-
quency input field, whereas in other pulses it is circularly polarised 
in the same direction as that of the field. This effect is caused by the 
specific character of electromagnetically induced transparency in 
the lambda scheme under study and by the trends introduced by 
self-induced transparency in it. 

Keywords: electromagnetically induced transparency, self-induced 
transparency, adiabaton. 

1. Introduction 

Electromagnetically induced transparency (EIT) occupies a 
worthy place among the most important effects of laser phys-
ics. The EIT principles formed the basis of substantial prog-
ress in the fields of nonlinear optics and quantum information 
theory [1 – 3], quantum communication [3 – 5], optical sys-
tems, quantum memory [3], high-precision magnetometry [6] 
and chronometry [7]. Apart from atomic and molecular sys-
tems, media, where EIT is observed, include, for example, 
solids with rare-earth impurities [8], quantum-well semicon-
ductor structures [9], superconducting structures [10] and 
metamaterials [11]. Investigation of polarisation effects 
accompanying EIT in the media with degenerate quantum 
energy levels is the next step in studying this phenomenon. 
For example, in rubidium vapours with EIT, birefringence 
[12], magneto-chiral anisotropy [13], optical activity [14], and 
nonlinear Faraday effect [15] were observed. 

In most EIT experiments [2, 3], there are situations that 
can be interpreted as formation of a special pulse structure 
called an adiabaton. The adiabaton theory in the case of EIT 
on nondegenerate quantum transitions was first proposed in 
[16, 17] and later refined and extended in [18, 19]. 

Volkov et al. [20] simulated numerically EIT in the lambda 
scheme of degenerate energy levels with the quantum number 
of the total angular momentum, J = 0, 2, 1. They showed that 

if the input high-frequency radiation is linearly polarised, and 
the input low-frequency field is circularly polarised, then 
inside the medium the high-frequency component of the adia-
baton splits into two pulses with circular oppositely directed 
polarisations of the fields. Theory [16 – 19] described the adia-
baton with a single high-frequency pulse, and, therefore, the 
authors of [20] called the considered pulse structure the dou-
ble adiabaton. However, in [20], the input high-frequency 
pulse area was assumed smaller than the area needed for 
appearance of self-induced transparency (SIT) [21] in the 
absence of the low-frequency field. This excluded any effect of 
the SIT on the EIT process. 

This paper presents the results of studies that extend the 
scope of the theory [20] by considering input high-frequency 
pulses, whose intensity is sufficient for the occurrence of SIT 
in the absence of low-frequency radiation. We have per-
formed simulations for the lambda scheme of the 208Pb iso-
tope energy levels, where EIT of circularly polarised laser 
fields is observed [22]. As in [20], we take into account the 
level degeneracy and Doppler broadening of quantum transi-
tions. In addition, we consider relaxation processes. 

2. Formulation of the boundary problem 

Consider the lambda scheme consisting of the nondegenerate 
(J = 0) lower, five-fold degenerate (J = 2) middle, and triply 
degenerate (J = 1) upper levels, which is formed by the 6p2 3P0, 
6p2 3P2, and 6p7s 3Po1 levels of the 208Pb isotope. Let fk (k = 1, 
2, . . . , 9) be the orthonormalised set of common eigenfunc-
tions of the Hamiltonian, momentum and its projection on 
the z axis for an isolated atom, which correspond to the lower 
(k = 1, M = 0), upper (k = 2, 3, 4, M= –1, 0, 1, respectively) 
and middle (k = 5, 6, 7, 8, 9, M = –2, –1, 0, 1, 2, respectively) 
levels. Here, M is the quantum number of the total angular 
momentum projections on the z axis. Let D1 and D2 be the 
reduced electric dipole moments for the J = 0 ® J = 1 and J = 
2 ® J = 1 transitions, respectively, and w1 and w2 be the fre-
quencies of these transitions for an atom at rest. We also 
assume that T1 = 2/D1, where D1 is the width (at the e –1 height 
level) of the density distribution of the quantum transition (J 
= 0 ® J = 1) frequencies w¢1 due to the Doppler effect. 

We represent the electric field of two laser pulses pro
pagating along the z axis with carrier frequencies w1 and w2 
(w1  > w2 ) in the form 

Re exp if g t k xE e el l l
l

l l
1

2

m w= + -+ -

=

^ ^h h6 @/ ,	 (1) 

where / | |l D T2 1l l 1'm = + ^ h; e+ = e–* = (i + i j )/2; i, j are the 
unit vectors of the x and y axes, respectively; fl, gl are the com-
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plex amplitudes of the right- and left-hand polarised circular 
components of high-frequency (l = 1) and low-frequency 
(l = 2) radiations, respectively, which are the functions of z 
and t; kl = wl  /c. Note that in the EIT theory, high-frequency 
radiation is called the probe field and low-frequency radiation 
– the control field [2, 3]. 

The wave function of an atom can be written in the form 

exp ic ck k
k

1 1
2

4

1f f xY = + -
=

e ^o h/

	 exp ick k
k 5

9

1 2f x x+ - -
=

e ^o h6 @/ ,	 (2)

where xl = wl – kl z; l = 1, 2. Let us introduce the ck quantities 

c1 = p*1   c
– 
1 ,   c2 = c

–
2 ,   c4 = c

–
4 ,  c5 = p2 c 

–
5 ,

c7 = (1/ 6 )p2c–7 ,   c9 =  p2 c
–
9 ,

where pl = 2Dl  /|Dl |. Let us define the normalised independent 
variables s and v as
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where N is the concentration of atoms and c is the speed of 
light. By describing the evolution of the field and atoms with 
the help of Maxwell and Schrödinger equations, respectively, 
we obtain, in the slowly varying amplitude approximation, 
the system of equations 
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where 

e1 = T1(w¢ – w1);   b = w2 /w1;   x = 0.75b|D1/D2|2.

The amplitudes c–3, c
–
6 and c

–
8 are not included in system (4). 

Their evolution is determined by a closed system of three dif-
ferential equations, which, under the initial conditions c–3 = c

–
6 

= c–8 = 0 assumed below, has a solution c
–
3 = c

–
6 = c

–
8 = 0 for all 

s and v. Integrals in the right-hand sides of the first four 
equations of system (4) are introduced to account for Doppler 
broadening by averaging the field-induced dipole moments of 
individual atoms in the parameter e1, which is uniquely related 
to the velocity of thermal motion of each atom along the z 
axis. In the equation for c2 and c4 we introduced phenomeno-
logically the terms – gc2 and – gc4 to take into account the 
spontaneous decay of the upper-level states of the lambda 
scheme in question. Here, g = T1/(2th), where th is the radia-
tive lifetime of the 6p7s 3P1o  level. For the selected transitions 
of 208Pb, we have, according to [23], b = 0.7, x =2.11 and g = 
1.5´ 10–2 at temperature T = 900 – 1000 K. 

To present the results of calculations, we will use below 
the parameters al, al, gl of the polarisation ellipse of high- 
(l = 1) and low-frequency (l = 2) fields. Here, al  is the semi-
major axis of the polarisation ellipse, measured in units of ml ; 
al is the angle of its inclination to the x axis; gl is the ratio of 
the minor axis of the polarisation ellipse to the major (al ³ 0, 
0 £ al < p, –1 £ gl £ 1 [24]). The condition 0 < gl < 1 (–1 < gl 
< 0) means the right-hand (left-hand) elliptic polarisation, gl 
= 0 corresponds to linear polarisation, gl = +1 – to right-hand 
circular polarisation, gl = –1  –  to left circular polarisation. 
If | gl | = 1, the angle al is not defined and we formally assume 
that al = – 0.1. 

The initial conditions (v = 0) for system (4) are commonly 
used to find all the atoms at the lower energy level at the ini-
tial instant of time. The boundary conditions (s = 0) are given 
in the form 

a1 = 0.5,   g1 = 0,   a1 = a10sech[(v – v10)/t10],	 (5)

a2 = – 0.1,   g2 = –1,   a2 = a20{tanh[(v – v21)/t20]

	 + tanh[(–v + v22)/t20]}.	 (6)

Equalities (5) describe a bell-shaped pulse of linearly 
polarised input high-frequency radiation, whose polarisation 
plane makes an angle of ~30° to the x axis. Equalities (6) cor-
respond to the input low-frequency pulsed left-hand circu-
larly polarised radiation with the envelope in the form of a 
pulse with a flat top, which is switched on before the arrival 
and switched off after the termination of the input high-fre-
quency radiation pulse. Such a scheme for imposing the input 
pulses is called counterintuitive [17] and is most often used in 
the experimental study of EIT. The amplitudes a10 and a20 
give a peak intensity of the input high-frequency pulse and the 
intensity of the input low-frequency pulse with a flat top. 
Parameters t10 and v10 determine (in units of T1) the duration 
of the input high-frequency pulse and the temporal position 
of its peak. Parameters t10, v21 and v22 set, respectively,  the 
duration  (in units of T1) of the fronts of the input low-fre-
quency pulse and temporal position of each of them (v21< 
v22, t10 = v22 – v21). 

Note that the area Q1 of the input high-frequency pulse 
(5) in terms of the SIT theory is determined by the area under 
the graph of the function 2 a1(v) and specifies the number 
of 2p-pulses appearing in the medium in the absence of low-
frequency radiation and relaxation [21]. As characteristics of 
the radiation intensity, use is also made of the fluence Il of 
high- (l = 1) and low-frequency (l = 2) pulses, measured in 
units of cm12 /(8p), and the energy W1 of high-frequency radia-
tion per unit cross section, measured in units of cm12  T1/(8p). 
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3. Results of calculations 

The first variant. We set in (5) and (6) a10 = 0.08, a20 = 2.46, t10 
= 20, t20 = 10, v10 = 140, v21 = 30, v22 = 470. In this case, Q1 
= 1.6p, and according to the area theorem [21], in the absence 
of the low-frequency field and relaxation inside the medium 
the input high-frequency pulse must be converted to a single 
2p-pulse. 

Time dependences of the intensities I1 and I2 are shown in 
Fig. 1. Inside the medium, the input low-frequency radiation 
pulse (1 in Fig. 1a) splits into two pulses (1 and 2 in 
Figs 1b – d). The low-frequency radiation pulse (3 in Fig. 1) 
remains virtually unchanged with increasing distance s. The 
detailed structure of high-frequency radiation at s = 270 is 
shown in Fig. 2. One can see that the first high-frequency 
radiation pulse, corresponding to pulse 1 in Fig. 1d, is right-
hand circularly polarised (g1 = 1), whereas the second pulse, 
corresponding to pulse 2 in Fig. 1d is left-hand circularly 
polarised (g1 = –1). The dependence of a1 on v attests that at 

instants of time when polarisation is not circular, the position 
of the major axis of the polarisation ellipse of high-frequency 
radiation in the medium coincides with that of the input high-
frequency pulse. 

The adiabaton known from the EIT theory [16 – 19] in the 
absence of degeneracy of the quantum-transition levels differs 
from the pulse structure, shown in Fig. 2, by the presence of a 
single high-frequency pulse only. In [20], the pulse structure, 
similar to that presented in Fig. 2, was investigated for the 
case Q1 = 0.8p, when even in the absence of low-frequency 
radiation, SIT cannot appear, and was called the double adia-
baton. The current calculation as well as calculations, details 
of which we omit, show that the double adiabaton emerges at 
least in cases when the area Q1 of the input high-frequency 
radiation pulse is no more than 2 – 3 times higher than 2p – 
the threshold value of the area at which SIT takes place (in the 
absence of low-frequency radiation). 

The physical cause for formation of the two pulses in the 
high-frequency radiation channel was discussed in detail in 
[20]. Therefore, we only recall here that the right- (s–) and 
left-hand polarised (s+) circular components of high-fre-
quency radiation evolve in different lambda schemes, namely, 
the lambda schemes of states 1, 2, 5 and 1, 4, 7, respectively. 
(Figure 3 shows the circular components by thin arrows and 
left-hand circularly polarised low-frequency radiation by 
thick arrows.) Difference between the electric dipole moments 
of 7 – 4 and 5 – 2 transitions lead to difference between the 
group velocities of high-frequency field components s– and 
s+, and, consequently, to their spatial separation. 

Curve ( 1 ) in Fig. 4 describes the decrease in energy W1 of 
the high-frequency pulse as it propagates into the medium, 
and curve ( 2 ) – the same process in the absence of relaxation 
(g = 0). It is evident that relaxation has little effect on the evo-
lution of high-frequency radiation (see dashed curves in Figs 
1c, d, obtained in the absence of relaxation). This is explained 
by the fact known from the EIT theory [1, 2] that in the pro-
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Figure 1.  Evolution of the intensities I1 and I2 at s = 0 (a), 90 (b), 180 (c) and 270 (d): high-frequency components of the pulse ( 1, 2 ) and a low-
frequency pulse ( 3 ). Solid curves are plotted taking relaxation into account and dashed curved – by neglecting it. 
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cess of interaction of the fields, the upper level of the lambda 
scheme remains virtually unpopulated. Curve ( 3 ) shows the 
dependence of energy W1 on s in the absence of low-frequency 
radiation (a2 = 0) and relaxation. The constancy of W1 in this 
case is due to the appearance of the 2p-pulse propagating 
without energy loss in the medium. Curve ( 4 ) illustrates the 
behaviour of W1 in the absence of low-frequency field, but in 
the presence of relaxation. Comparison of curves ( 3 ) and ( 4 ) 
indicates that relaxation quickly destroys the 2p-pulse and 
suppresses SIT. 

The second variant. We set in (5) and (6) a10 = 2.5, a20 = 
2.46, t10 = t20 = 10, v21 = 30, v22 = 270. Now, the input high-
frequency pulse is twice shorter, and its peak intensity is 
almost 103 times larger than in the previous variant of calcula-
tions. In this case, Q1 = 25p, so that in the absence of low-
frequency radiation and relaxation in the medium twelve 
2p-pulses must arise. 

Time dependences of the intensities I1 and I2 are presented 
in Fig. 5. Figures 5b – d show that high-frequency radiation is 
concentrated in the main pulse 1 and group 2 consisting of 
three (as in Fig. 5d – even of four) shorter pulses. The detailed 
structure of high-frequency radiation at s = 180 is given in 
Fig. 6. One can see that the head high-frequency radiation 
pulse corresponding to pulse 1 in Fig. 5d is right-hand circu-
larly polarised (g1 = 1), whereas the delayed pulses, i.e., pulses 
of group 2 in Fig. 5d, are left-hand circularly polarised (g1 = 
– 1). Jumps up in the value of a1 of height p/2 from the 0.5 
level mean transformation of the major axis of the polarisa-
tion ellipse into the minor axis, i.e., the polarisation ellipse 
becomes a circle, and then again becomes an ellipse. The 
jumps in the opposite direction have the same meaning. 

Energy redistribution between high- and low-frequency 
radiations leads to a significant distortion of the top of the 
low-frequency pulse inside the medium [see curves ( 3 ) in 
Figs 5b – d). Near the leading edge of the low-frequency pulse 
there appears a hump, and in the region of high-frequency 
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radiation pulses dips are formed on the plateau of the low-
frequency pulse. Because of the presence of more than two 
high-frequency pulses we call below the pulse structure shown 
in Fig. 5 the compound adiabaton. (Note that the adiabaton 
theory in the lambda scheme of nondegenerate transitions 
[16 – 18] predicts the formation of a hump and a single dip in 
the plateau of the low-frequency radiation pulse.) The detailed 
structure of the low-frequency radiation at s = 180 is pre-
sented in Fig. 7. The dependence of g2 on v, shown in this 
figure, indicates the presence of regions with a noticeable 
deviation from circular polarisation states. In the case when 
polarisation is not circular, a2 takes the value of 0.5 or 
0.5  +  p/2. This means that one of the axes of the polarisation 
ellipse of the low-frequency pulse makes the same angle with 
the x axis, as the plane of polarisation of the input high-fre-
quency radiation. Note that low-frequency pulse plateau is 
distorted in the first variant of calculations. However, because 
the high-frequency pulse is weak, the distortion in Fig. 1 is 
imperceptible. 

Figure 8 explains the physical reason for appearance of 
the compound adiabaton. It shows the v dependence of the 
high-frequency component intensity of such an adiabaton at 
the initial stages of its formation (s = 75) and the SIT 2p- 
pulses, which would have been in the region of the high-fre-
quency pulse in the absence of low-frequency radiation. Note 
that the region of each of the three spikes of the envelope of 
the adiabaton high-frequency component contains a 2p-pulse. 
(The far right 2p-pulse is in the region of origin of the fourth 

spike, which is weak at this distance.) This allows the process 
of the compound adiabaton appearance to be interpreted as 
influence of SIT on EIT. 

The EIT effect is associated with formation of the ‘dark’ 
state [1, 2], characterised by the absence of population of the 
upper level in the lambda scheme. In the case of an ideal real-
isation of the dark state, any manifestation of SIT is not pos-
sible, because it is related to a significant population of this 
level. At the initial stage of adiabaton formation at the bound-
ary conditions (5) and (6), when ¶W2 /¶t = 0, the state of the 
lambda scheme is close to dark with increasing Rabi fre-
quency W2 of the low-frequency transition [16, 17]. 

In the case of the lambda scheme of degenerate levels, the 
right-hand (left-hand) circularly polarised high-frequency 
component evolves into the lambda scheme of states 1 – 2 – 5 
(1 – 4 – 7) (Fig. 3). Because at small distances s, low-frequency 
fields in both lambda schemes are the same and p52 > p74, the 
Rabi frequency of low-frequency radiation in the lambda 
scheme 1 – 2 – 5 is higher than that in the lambda scheme 
1 – 4 – 7. In this connection, the state of the lambda scheme 
1 – 2 – 5 is closer to the dark one than that of the lambda 
scheme 1 – 4 – 7. Therefore, SIT does not affect the evolution 
of the right-hand circularly polarised high-frequency pulse of 
the double adiabaton formed in the lambda scheme 1 – 2 – 5. 
(Three left-hand 2p-pulses in Fig. 8 do not generate spikes in 
the envelope of the high-frequency pulse of the adiabaton.) 
However, the initial stage of SIT formation affects the left-
hand circularly polarised high-frequency pulse of the double 
adiabaton produced in the lambda scheme 1 – 4 – 7 in the form 
of spikes on its envelope. 

In the region of each spike, the value of ¶W1 /¶t (W1 is the 
Rabi frequency of the high-frequency transition) increases. 
According to the criterion of adiabatic approximation 
[16, 17], this leads to further deviation of the state of the 
lambda scheme 1 – 4 – 7 from the dark and to decay of the left-
hand circularly polarised high-frequency component of the 
adiabaton to sufficiently well separated subpulses (Fig. 5d, 
pulses of group 2). 

The dashed curve in Fig. 8 shows the v dependence of h2 
= |c4| – population of the upper level of the lambda scheme 
1 – 4 – 7, averaged over the Doppler spread in frequency of 
quantum transitions. According to the dependence, distor-
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tion of the envelope to the left-hand polarised high-frequency 
components of the adiabaton is accompanied by the transfer 
of ~1 % of the atoms to the upper level 4 of the lambda 
scheme 1 – 4 – 7. Calculation also shows that the population of 
the upper level 2 of the lambda scheme 1 – 2 – 5 is 50 or more 
times less, i.e., it remains virtually unpopulated. 

The role of inhomogeneous broadening of the resonance 
processes is known to decrease with increasing radiation 
intensity. On the other hand, inhomogeneous broadening 
leads to a decrease [2] in the effectiveness of EIT, which is 
responsible, in this case, for splitting high-frequency radiation 
of the adiabaton into right- and left-hand circularly polarised 
components. This explains the fact that such a splitting in the 
first variant of calculations takes place at a greater distance 
(s » 180, Figs 1b, c) than in the second variant (s » 90 – 120, 
Figs 5b, c) when high-frequency field is more intense.

4. Dimensional estimates 

The most important characteristic of 208Pb isotope vapours 
from the standpoint of experimental verification of the con-
clusions of the above theory is the concentration N. Another 
important parameter is the ‘time of the inhomogeneous 
broadening’ T1. Both these quantities enter into formulas (3) 
determining the normalisation of the variables of the bound-
ary problem. If the vapour is saturated, T1 and N are uniquely 
related to each other through the absolute temperature T. 

Let N = 3.4 ´ 1013 cm–3, which corresponds to the satu-
rated 208Pb vapours at T = 950 K [25]. At this temperature, 
T1  = 1.63 ´ 10-10 s. Using (3) and the data of [23] for the 
oscillator strengths of quantum transitions of the 208Pb iso-
tope, we find z0 = 0.034 cm. Then, the duration of the input 
high-frequency pulses (FWHM) for the first and second vari-
ants of calculations amounts to 8 and 4 ns, and peak intensity 
of the pulses – to 8 and 3 kW cm–2, respectively. In both vari-
ants, the intensity of the input low-frequency pulse in the 
region of its flat top is about 20 kW cm–2, and its duration 
should exceed the length of the input high-frequency pulse by 
several times. The maximum normalised distances s = 270 
and 180 in the first and second variants of calculations corre-
spond to distances of ~9 and ~6 cm. In the second variant, 
the velocity of pulses 1 and 2 in Fig. 5 is, respectively, 14 and 
77 times less than the speed of light in vacuum. 

5. Conclusions 

Numerical simulations have shown that when EIT appears in 
the lambda scheme of degenerate quantum transition, the SIT 
effect leads not to splitting of the high-frequency pulse into 
2p-pulses but to significant changes in the pulse envelopes of 
adiabatons realizing EIT. The SIT influence is most clearly 
expressed in the splitting of one of the circularly polarised 
components of high-frequency radiation into subpulses. Such 
a modification of the adiabaton structure occurs at sufficiently 
strong input high-frequency pulses whose area is substantially 
greater than the threshold one for the SIT equal to 2p. If the 
area of the input high-frequency pulse slightly exceeds the 
threshold, SIT does not affect the structure of the adiabaton 
pulses and the adiabaton is qualitatively similar to the double 
adiabaton arising in the case when the area of the input high-
frequency pulse is less than the threshold value 2p [20]. 

The distance at which the adiabaton with a multipulse 
structure of high-frequency radiation is formed, decreases 
with increasing intensity of the input high-frequency pulse. 

This is due to a decrease in the role of inhomogeneous broad-
ening in the formation of EIT. 

Note that the adiabatons considered in this paper do not 
retain their shape during propagation, as opposed to the adia-
batons described in [16, 17]. This is explained by the fact that 
the authors of [16, 17] neglected such an important factor as 
the inhomogeneous broadening of quantum transitions. 
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