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Abstract.  The issues of detecting the inhomogeneities are studied 
aimed at mapping the distribution of absorption and scattering in 
soft tissues. A modification of the method of diffuse optical tomog-
raphy is proposed for detecting directly and determining the region 
of spatial localisation of such absorbing and scattering inhomoge-
neities as a cyst, a hematoma, a tumour, as well as for measuring 
the degree of oxygenation or deoxygenation of blood, in which the 
late arriving photons that diffuse through the scattering object are 
used. 

Keywords: diffuse optical tomography, time point spread function, 
late arriving photons, homogeneity index.

1. Introduction

Diffuse optical tomography (DOT) can sometimes replace 
the X-ray computer tomography (CT) and nuclear magnetic 
resonance (NMR) tomography and sometimes is used as a 
complementary method of diagnostics. Though the CT and 
NMR provide perfect spatial resolution, they require rather 
cumbersome and expensive equipment. The DOT methods 
are substantially cheaper and more mobile and provide infor-
mation about the oxygenation or deoxygenation of blood and 
about the functional condition of tissues.

The X-ray radiation is a hard and ionising radiation, dan-
gerous for a living organism. Due to the quantum mechanical 
nature of the interaction, even small doses of X-ray radiation 
can cause mutations at the genetic level and lead to serious 
diseases.

In magnetic resonance tomography (MRT) the equipment 
is also cumbersome and the strong magnetic fields are used. 
The influence of such fields on the human organism is not 
studied completely; however, in the medical practice essential 
limitations are imposed on the value of magnetic induction 
(no greater than 4 Tesla).

Infrared spectroscopy and tomography are based on mea-
suring the absorption and scattering spectra of optical radia-
tion with the wavelength 700 – 1100 nm. More often they use 
the window 780 – 830 nm in the vicinity of the isosbestic point 
l = 805 nm. Optical methods make use of safe and noninva-
sive ways of diagnostics, and the instrumentation for their 
implementation is much less cumbersome and much cheaper. 

In the future it is suggested to reduce the dimensions of the 
devices up to the size of a portable computer to provide con-
venient point-of-care diagnostics.

There are two methods of IR diffusion spectroscopy and 
tomography: the time-domain (pulse modulation tomogra-
phy) [1 – 7] and the frequency-domain (frequency modulation 
tomography) [8, 9]. Obviously, the formulae, describing these 
two approaches, are related via the Fourier transform; how-
ever, in practice the use of the pulse-modulation approach 
provides certain advantages. The accumulation of the pulsed 
signal is equivalent to detecting a broad frequency band, theo
retically, from zero to infinity. For example, the use of a 100-fs 
pulse is equivalent to the frequency region 0 – 1013 Hz. The 
instrumentation for the frequency-modulation tomography is 
cheaper and more compact, but the accumulation and pro-
cessing of the signal take essentially more time.

In the time-domain tomography the registered quantity is 
the time-dependent intensity R¢(a, t) of the ultrashort IR 
pulsed radiation, diffused through a scattering medium, 
referred to as time point spread function (TPSF) (Fig. 1). Here, 
a is the angle between the source and detector fibres. Usually 
most attention is paid to the initial part of the curve (region I, 
corresponding to early arriving photons) or its middle part 
(region II, determining the mean time of flight of a photon) 
[10]. However, it is possible to use also the last part of the time 
dependence of the diffused radiation (region III), correspond-
ing to late arriving photons [11, 12]. It is important to note, 
that late arriving photons practically do not contribute to the 
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Figure 1.  A typical view of TPSF for a scattering phantom with optical 
properties, similar to those of a biomedical object.
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calculated mean time of flight of the photons diffusively trav-
elled through the medium.

2. Formulation of the problem

The solution of the radiative transfer equation in the diffusion 
approximation for a cylinder and a sphere may be obtained in 
the analytical form [13]; however, for solving inhomogeneous 
problems of simulating hematomas, vascular neoplasms, or 
cancer tumours one should use 2D or 3D finite-element meth-
ods (2D, 3D FEM) [14 – 17].

A cylindrical or spherical phantom usually serves as a 
model object. At small distances between the source fibre and 
the detector fibre such an object may be treated as semi-infi-
nite. It is traditionally agreed, that the major contribution to 
the signal, registered by the detector, comes from the banana-
shaped region of the object [2, 3]. However, this is true only 
for early photons, while the middle part of the TPSF and the 
late arriving photons diffuse through the whole volume of the 
phantom and bring integral characteristics.

Analysing the experiments with real biological objects, whose 
scattering coefficient is m¢s = 0.5 – 1.5 mm–1, one can conclude 
that there are almost no early photons that travel slightly 
declining from a straight line [4, 12]. The signal-to-noise ratio 
greater than 1 is realised in the diffusively scattered signal at 
delay times that are 2 – 3 times greater than the time of straight 
flight. Therefore, the detected signal of the first part of a TPSF 
covers from 50 % to 80 % of the object volume.

Theoretically it is possible to develop another integral 
approach, in which a virtual isotropic source (VIS) is formed 
at the depth, equal to the transport length l * = m¢s and moves 
from the surface to the centre of the object [18 – 21]. 
Developing this idea, it is possible to justify the use of late 
arriving photons for the frequency-domain tomography too, 
which may reduce the cost of the experimental equipment; 
however, this is a subject of a separate theoretical study.

At sufficiently large times any diffusion problem yields a 
stationary solution. Earlier it was shown [11] that the depen-
dence ln [R¢(a, t)] tends to an inclined straight line with the 
slope equal to the absorption coefficient of the medium ma. 
Having the absorption coefficient determined, one can use the 
same dependence to find the reduced scattering coefficient of 
the medium m¢s [5]. It follows that for a homogeneous object 
all TPSFs will converge into a single line independent of the 
detection point [13]. This is important because for a spherical 
phantom the slope may be calculated independently of the 
location of the source and detector fibres. For the experiment 
with a cylindrical phantom all optical fibres should lie in a 
single plane.

The convergence of all lines ln [R¢(a, t)] to a single straight 
line indicates that after a certain time tiso the VIS stays in the 
centre of the phantom [12, 17], which is equivalent to placing 
the source fibre directly into the centre of the object. This allows 
direct detection of the inhomogeneity presence in asymmetric 
cases without solving the inverse problem.

It is important to note, that for an absorbing inhomogene-
ity the TPSF curves must never intersect [17]. Besides that, the 
convergence of TPSF logarithms to a single line in the experi-
ments with a homogeneous object provides a test for the cor-
rectness of the experiment carried out or for modelling, e.g., 
using the finite-element method, Monte Carlo method, or ana-
lytical calculations. Note, that in a number of publications 
before papers [12, 17] the necessity of accurate determination 

of the absolute TPSF intensity and precise time synchronisa-
tion of different TPSFs was not taken into account. That is 
why the curves ln [R¢(a, t)] in earlier papers usually crossed 
each other.

The second test for the correctness of modelling and 
experiment is the analysis of an absorbing inhomogeneity. If 
it is located not in the centre of the symmetric object, then in 
the logarithmic scale the curves R¢(a, t) should converge to 
parallel lines. This method can be also used for fast detection 
of inhomogeneities in a variety of asymmetric cases. 

The DOT problem is traditionally formulated as follows: a 
definite distribution of inhomogeneity in the object corresponds 
to a certain data set. Usually, after this the inverse problem is 
solved and certain solutions are obtained [13, 19, 20, 22]. Unfor
tunately, the inverse problem is often solved by step-by-step 
fitting of the direct problem solution. This could be correct, if 
the results of finite-element (FEM), Monte Carlo or analyti-
cal calculations were compared with those of the experiment. 
But when the results, obtained by means of FEM, are com-
pared with those of Monte Carlo solution, based on the same 
diffusion approximation, it is hard not obtain good agreement. 
Sometimes they even discuss the possibility of millimetre and 
submillimetre resolution in DOT of biological objects, which 
is too optimistic, especially taking their high scattering coef-
ficients into account.

Taking into account the characteristic linear dimensions 
of the object (5 – 10 cm), the dimensions of the minimal detect-
able inhomogeneity may be estimated as 5 – 10 mm. For a 
cylindrical phantom this is a coaxial cylindrical inhomogene-
ity inside the main object, for a three-dimensional case this 
is a spherical inhomogeneity inside a spherical object. Having 
solved the classical problem of determining the resolution of 
the measuring device, one can discuss the detection of two, three 
and more inhomogeneities with different optical properties. 
At present, when the role of late arriving photons became 
clear, this problem may be solved by means of numerical mod-
elling, too.

The goal of the present paper is to develop an experimental 
technique for direct detection of absorbing inhomogeneities 
in strongly scattering objects using late arriving photons, with-
out reconstruction of the inhomogeneity distribution by solv-
ing the inverse scattering problem. 

3. Experiment

The experimental setup is shown in Fig. 2. The pulsed radia-
tion from a femtosecond mode-locked Ti : sapphire MIRA 
900-B laser (Coherent) is transmitted through a waveguide 
and is incident on the studied object. The pulsed laser is pumped 
using radiation from a cw argon INNOVA 307 laser (Coherent). 
The pulse duration (FWHM) was 100 fs; the wavelength of 
radiation was 730 nm. The diameter of the source light guid-
ing fibre was 0.5 mm; the diameters of the detector fibres were 
0.25 mm.

The role of a phantom was played by a cylinder, made of 
epoxy resin with the admixture of the titanium dioxide TiO2 
particles with the mean diameter 0.3 mm. The concentration 
of the particles was chosen such that the reduced scattering 
coefficient m¢s was equal to 0.52 mm–1, which corresponds to 
the scattering coefficient of a biological tissue. The diameter 
and height of the cylinder were both 68 mm.

To increase the precision of measurements instead of two 
phantoms, a homogeneous and an inhomogeneous one, we 
used one phantom, a cylinder with a hole 20 mm in diameter 
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parallel to the axis of the cylinder (Fig. 3). The measurements 
in a homogeneous phantom were carried out using the small 
cylinder (with the diameter 20 mm) with the same optical pro
perties ( m¢s = 0.52 mm–1, ma1 = 0.0042 mm–1) as those of the 
main cylinder. To perform the measurements in an inhomo-
geneous phantom, a cylinder with a greater absorption coef-
ficient ( ma2 = 0.017 mm–1) was introduced into the hole. To 
model the absorption, a special dye (Indian Ink) with the 
known spectra of IR absorption was added to the material, 
from which the cylinder was made. 

The detector fibres were arranged in one row and deliv-
ered the signal to the Streak Camera C4334 detector array 
(Hamamatsu Photonics K.K.) with the temporal resolution 
10 ps. The measurements of the integral intensity were carried 

out using the same device, but with the time sweeping switched 
off. The dynamical range of the detector (103 – 104) is essen-
tially lower than that of photomultipliers. This did not allow 
measurements during one pulse, because the intensity ratio at a 
= 18° and 180° was or the order of a few millions, which is 
typical for DOT.

A small fraction of the pulsed radiation was used for simul-
taneous control of the wavelength and power of the radiation 
by means of the OMM-6810 multimeter (ILX Lightwave). The 
other part of radiation arrived at the trigger (a special design 
by Hamamatsu Photonics K.K.) for synchronisation and trig-
gering of the radiation detector. From the detector the signal 
was transmitted to the computer for further processing.

The large dynamic range of the detected signal causes seri-
ous difficulties in measuring the absolute values of R¢(a, t) 
and ln [R¢(a, t)]. Apparently, this was the reason why in earlier 
papers the signal measured was typically normalised to its 
maximal value, and the main attention was paid to the shape 
of TPSF in linear and logarithmic intensity scales [2, 3, 8, 9].

To obtain all curves of the diffused radiation R(a, t) in the 
same scale and with the account of the absolute intensity, a 
new two-stage method of measurements was proposed [12]. 
At the first stage the integrated signal was detected
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Figure 2.  Experimental setup for diffuse optical tomography.
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Figure 4.  Experimental (a) and calculated (b) intensities of pulsed IR 
radiation, diffused through a homogeneous phantom and detected at 
different angles a.
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without taking the pulse shape into account. At the second 
stage only the shape of the diffused pulse was detected (i.e., the 

time dependence of intensity) with no account for the abso-
lute value of the intensity. The calculation using the formula

3

, , ,dR t T R t t R t
0

1
a a a a=

-
l l^ ^ ^c ^h h h m hy  

yields the desired distributions of the TPSF intensity for each 
angle a.

A part of the obtained dependences is shown in Figs 4, 5. 
It is important to note, that in the inhomogeneous case at the 
infinity all the curves ln [R(a, t)] become parallel (Fig. 5a); at 
that, as mentioned before, ma2 > ma1. It is not difficult to show, 
that in the case of scattering inhomogeneous medium, when 
m¢ s inhom >  m¢ s back, the curves will intersect; however, this is a 
problem to be studied, using 3D FEM or Monte Carlo method. 

4. Comparison with modelling

Figures 4b and 5b, с present the results of 3D FEM modelling. 
The homogeneous and inhomogeneous diffusion problems were 
solved for the geometry, similar to that of experiment. Figure 4b 
illustrates the homogeneous case. Apparently, all curves con-
verge into a single line. In Fig. 5b the results for the inhomo-
geneous case are shown, when the absorbing inhomogeneity is 
located far from the source fibre (near the fibre with a = 180°), 
and in Fig. 5c the inhomogeneous case is illustrated, when the 
absorbing inhomogeneity is near the source fibre (near the fibre 
with a = 0). In this case the curves intersect near t = 2.5 – 3 ns 
and become parallel.

Figure 6 presents the results of calculation of the homoge-
neity index HI using all TPSFs. This quantity corresponds to 
the time dependence of the standard deviation of L(ai, t) = 
ln [R(a, t)] from its mean values áL(t)ñ = N–1SN

i = 1 L(ai, t) for N 
detecting points (in our case N = 19) and is calculated using 
the formula [17]

, ,HI t
N

L t L t1
/

i
i

N
2
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1 2

a= -
=

^ ^ ^h h h6 @) 3/

where ai is the angle at which the corresponding fibre is 
located.

In the case of an inhomogeneous object the value of HI(t) 
tends to zero. In the presence of an inhomogeneity the curves 
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Figure 5.  Experimental (a) and calculated (b, c) intensities of pulsed IR 
radiation, diffused through a phantom with the absorbing inhomogene-
ity and detected at different angles a; (b) calculation for the inhomoge-
neity near the fibre with a = 180° (corresponds to Fig. 5a), (с) calcula-
tion for the inhomogeneity near the fibre with a = 0.
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tend to straight lines, parallel to the time axis, and at a = 0 the 
dependence exhibits a minimum. 

5. Conclusions

In the situation considered, when the formed virtual isotropic 
source moves from the surface, after a certain time t = thom it 
is possible to consider it as located in the centre of the phan-
tom, i.e., when registering the late arriving photons, one can 
assume that the radiation source is placed into the centre of 
the object. In the case of a moving virtual source the diffusion 
approximation allows the solution of the DOT problem in 
two steps: direct detection of the inhomogeneity and restora-
tion of the inhomogeneity distribution map, i.e., the tomogra-
phy proper.

It is proposed to begin the solution of the DOT problem 
from finding the difference in time dependent point spread 
functions at the times, exceeding 2 ns. Then one should pro-
ceed to the central part of TPSF, and then to early photons 
(see Fig. 1).

If one collects all curves into one 3D picture, then in the 
homogeneous case a plane will appear, while in the inhomo-
geneous case there will be planes with dips at the angles, near 
which the inhomogeneity is located. Such a 3D representation 
will allow direct detection of the presence or absence of an 
inhomogeneity in real time for the majority of asymmetric 
cases without solving the inverse problem.

Further research will be concentrated on achieving precise 
quantitative agreement of the experimental results with those 
of 3D FEM for a wider class of phantoms, including the case, 
when the inhomogeneities of different size are located in the 
centre. For such symmetric phantoms we suggest changing 
the position of the source fibre with respect to the plane of the 
detector fibres.
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